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Abstract—In this paper we consider districting problems with
routing criteria. Such problems arise when clients in a commer-
cial district need to be attended daily and the time to visit them
is limited, for example by working hours of retail businesses.
Routing costs are modeled by traveling salesman tours starting
from predetermined depot locations. Besides having low routing
costs, districts must also satisfy balancing (e.g. of total demand or
workload) and contiguity constraints, and may also be required
to be geographically compact. We propose a general heuristic
for solving such problems. It iteratively builds new solutions by
a greedy constructive heuristic, and then improves them by a
hybrid alternating tabu search strategy. We further propose an
efficient scheme for maintaining high-quality routes under small
modifications to districts, for example incurred by neighborhood
search operators. In extensive computational experiments we
study the different components of our method, and show that
it is effective in treating a number of problem variants with
different constraints.

Index Terms—districting, routing, heuristics

I. INTRODUCTION

Let G = (V,A) be an undirected planar graph of n vertices
with distances dij on edges a = {i, j} ∈ A. In districting
problems we want to partition the set of vertices or basic units
into p disjoint districts D1, . . . , Dp such that

⋃
i∈[p]Di = V .

Districting problems arise in many practical applications,
including the planning of public services (e.g. police or fire
stations [1]–[3], waste collection [4], health care systems [5]–
[7]), commercial [8], [9] and political districts [10], [11], or
fair land allocation in agrarian reform projects [12]. It is almost
always assumed that districts are connected, i.e. for each
i ∈ [p] the subgraph induced by Di is connected. Basic units
generally represent geographical entities such as city blocks
or contiguous land parcels. In most applications the basic
units have attributes such as the total population or product
demand that must be balanced evenly among the districts.
In general we assume that each vertex v ∈ V has a set
of a attributes w1

v, . . . , w
a
v and each attribute i ∈ [a] has a

tolerance τi. For attribute i ∈ [a] let W i(D) =
∑

v∈D w
i
v

be its total value on subset D ⊆ V , and w̄i = W i(V )/p its
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mean value per district. We call a district D ⊆ V balanced if
bi(D) = |W i(D)− w̄i|/w̄i ≤ τi for each attribute i, i.e., the
absolute relative deviations bi(D) of W i(D) from the mean
w̄i are not larger than τi. In practice the number of attributes
a rarely exceeds 3 and typical tolerances are about 1 % to 5 %.

Besides being connected, geometrically compact district
shapes (i.e. not too long, too narrow or having irregular
borders) with respect to given vertex positions pv ∈ R2, v ∈ V
are desirable. Compactness serves several purposes, such as
facilitating district traversal or mitigating gerrymandering, in
the case of electoral districts. A formal definition of compact-
ness that models human preferences well is difficult, and many
metrics have been proposed in the literature [13]. Among the
most common are the diameter d(D) = maxi,j∈D |pi − pv|2,
i.e. the maximum distance between two vertices of a district,
the total sum of distances PM(D) = minc∈D

∑
i∈D |pi− pc|2

to a district center c, also known as p-median (or moment
of inertia if distances are weighted by attribute values), or
the maximum distance PC(D) = minc∈D maxi∈D |pi − pc|2
to district a center c, also known as p-center. In this pa-
per we consider the p-median model. Its main advantage is
that it accounts for the compactness of all districts locally,
even if one of them is highly dispersed, whereas maximum-
based approaches only look at the most dispersed district.
The p-median function is also related to connectivity: [14]
found that optimal p-median solutions without connectivity
constraints are often connected nonetheless. Further, from our
earlier experience we have found the p-median function to
approximate other compactness measures much better than it
can be approximated by them.

Let us now consider routing costs. A route attending district
i is modeled by a shortest traveling salesman (TSP) tour
which starts and ends at a depot hi ∈ V , and visits all
vertices v ∈ Di in an order such that the total tour length
R(Di) is minimal. These tours represent, for example, routes
used by delivery trucks in the distribution of commercial
products to businesses. Real-world routes are often constrained
by time availability, fuel or vehicle storage capacity, and so
a budget constraint R(D) ≤ R on the length of each tour
is given, where the routing budget R > 0 is part of the
problem input. Here, graph G is assumed to be connected
such that dij is defined for all {i, j} /∈ A as the shortest path
distances. This means that, in practice, routes may visit some

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



3

1

7

5

5

4

2

6

3

9

9

8

3

5

1

3

2

9

�

Fig. 1. An example of a districting problem with routes. There are p = 3
districts; vertices v are labeled with their single attribute w1

v . The districts
are connected and balanced with a tolerance τ1 = 2.5%. The central station
is marked by a black square, edges are dashed, routes are shown in different
colors. Note how the routes from the central station pass over vertices from
different districts and the curved connection is the shortest intra-district path
going over the green vertex labeled 2.

vertices more than once or even make a detour outside of
their assigned district. A problem variant may exclude such
detours by requiring routes to stay within district boundaries,
in which case distances d vary according to each particular
districting plan. This variant is not considered here, however,
since maintaining shortest path matrices for each district is
computationally too expensive [15].

Depot vertices h1, . . . , hp are fixed to each district. For
simplicity we consider depots to be locally unique, i.e., hi 6=
hj ∀i, j ∈ [p], although some variants may also consider a
single global depot for all districts, or ignore depots altogether.
The algorithms proposed here can also handle these variants,
however, and in Section III-F we briefly examine them in an
experiment. Note that not necessarily hi ∈ Di, since in our
model we allow cross-district routes. An example of a routing
plan with a global depot can be seen in Figure 1.

The following mathematical model M summarizes the prob-
lem considered in this paper:

min
P∈{V

p }
Z = λR(P )/Ur + (1− λ)PM(P )/Uc (M)

subject to bi(D) < τi, ∀D ∈ P, i ∈ [a],

R(D) ≤ R, ∀D ∈ P,
connected(D), ∀D ∈ P,

where
{

V
p

}
is the set of all p-partitions of the basic units

V . The objective function Z is a convex combination of the
total p-median compactness PM(P ) =

∑
D∈P PM(D) and

routing costs
∑

D∈P R(D) of the districts, where λ ∈ [0, 1] is a
weight. In order to keep PM(P ) and R(P ) in the same order of
magnitude, thus allowing a more intuitive choice of λ, both are
normalized by upper bounds Ur and Uc, which are explained

in Section II-F. The first set of constraints ensures vertex
attributes are balanced across districts, and the second enforces
budgets on route lengths. To reflect real-world scenarios, we
assume routing costs are always either handled as a constraint
by setting λ = 0, or as an objective, by setting R = ∞. We
consider here a single objective rather than a multi-objective
model since it is more common in the literature.

In this paper we propose a flexible heuristic solver for
addressing districting problems with routing costs. It expands
on previous methods that have shown to be effective, and can
be adapted to include different constraints and optimization
criteria. We further propose dynamic algorithms to maintain
good TSP tours efficiently under small modifications to dis-
tricts, and show that the tours obtained are often close to
optimal. We next present some related work, and in Section II
explain the heuristic solver proposed. Section III presents an
experimental analysis of the proposed methods. We conclude
in Section IV.

A. Related work

There exists a rich literature on districting problems, and we
focus here on combined districting and routing. A thorough
overview of districting problems in general can be found in
[16, ch. 23].

Two related problems with an overlap in solution techniques
are vehicle routing and location routing. In vehicle routing
problems, clients need to be attended from a central depot
by vehicles of a limited capacity, minimizing the total travel
distance. For a fixed fleet of p vehicles the routes partition the
clients into p regions that are attended by the same vehicle.
Different from our problem, there are no constraints con-
cerning connectivity or compactness of the resulting regions,
and no balancing requirements except from the demand upper
bound given by the capacity of the vehicle. In location-routing
problems, on the other hand, the focus lies on facility location:
one must open a set of facilities and assign clients to them.
In addition, routes must be constructed for the clients each
facility attends. Vehicles are usually capacitated, and thus
several routes may be required to attend the clients assigned
to a facility [17], [18]. In contrast, in combined districting
and routing we do not consider opening costs and assume the
clients of each district can always be visited with a single tour.

For the routes in each district three models are common: the
clients in all districts may have to be attended from a single
depot (e.g. in commercial districting, [19]), or from a depot
assigned to the district (e.g. in salt spreading, [20]), or with
open routes (e.g. in waste collection where routes finish at a
dump [4]). Usually an upper bound (or budget) on each tour
length is imposed, and in rare cases also on the total length of
all tours. Some models also consider arc-routing (e.g. in salt
spreading and patrolling) instead of vertex-routing, which we
do not consider here.

Many authors recognize the importance of combined dis-
tricting and routing. [21], for example, consider the problem
of designing districts for a Meals-On-Wheels service, subject
to constraints on capacity, total service time, and maximum



diameter. However, to simplify the model, the total service
time does not consider traveling time, and the districts are
not required to be connected. Similarly, [4] note that after
creating balanced municipal waste districts, routes that satisfy
time restrictions must be constructed, but use an approximation
by a nearest neighbor tour to simplify the problem.

Several authors consider combined districting and stochastic
vehicle routing, usually for a homogeneous fleet of p ve-
hicles [22]–[24]. These problems are modeled as two-stage
stochastic problems with recourse actions, where in the first
stage customers are partitioned into at most p connected
districts, each to be attended by a single vehicle, with the
goal to minimize the expected routing cost. Only after dis-
tricts have been defined the demands of the customers are
revealed, and for each district a vehicle routing problem is
solved in the second stage. [22] propose a solver using tabu
search, which shifts and swaps vertices among districts, while
maintaining connectivity. The second-stage routing costs are
estimated heuristically by fixing a permutation of the clients,
which can be optimally segmented for a known demand, and
computing the expected value over all demands. [23] propose
a large neighborhood search heuristic, and approximate route
length by the Beardwood-Halton-Hammersley formula [25].
[24] extend the problem to unknown customers and optimize
number, compactness, similarity to existing plans, and balance
of districts with a multi-objective evolutionary algorithm. All
these approaches solve the problem from a vehicle routing
perspective, and consequently none of them enforce district
connectivity.

[19] consider an application from the bottled beverage
industry, where p connected districts must be found subject to
balancing the number of customers and the total demand, and
subject to routing budgets. The objective is to minimize the
maximum diameter compactness among all districts. The au-
thors propose a GRASP heuristic for solving the problem. The
heuristic first grows districts from seed vertices by randomly
selecting adjacent vertices that keep the diameter low, until
exceeding 70 % of the upper bound of an attribute. In a second
step, the construction considers also attribute balancing and the
frequency of assigning adjacent vertices to the same district.
The complete solution is improved by a local search that shifts
vertices to neighboring districts, minimizing a weighted sum
of diameter, routing cost, and imbalance. In this application,
all distances are intra-district shortest path distances.

II. SOLUTION APPROACH

The solution approach we propose builds upon the hybrid
heuristic of [26], which is a current state-of-the-art method
for solving districting problems with p-median, p-center and
diameter objectives and no routing criteria. In the subsections
that follow we explain this method in broad terms, and focus
on how it has been adapted to include routing criteria, both as
objectives and as constraints.

Algorithm 1 Main heuristic method
1: repeat
2: S ← selectInitialSolution()
3: for i ∈ [Amax] do
4: S′ ← optimizeObjectiveFunction(S)
5: S ← optimizeConstraints(S′, S)
6: if E(S) > 0 then
7: break
8: until time limit or maximum iterations reached
9: return best feasible solution encountered

A. The hybrid alternating search heuristic

In the following, let a solution be a p-partition of V .
Further, let E(S) = Eb(S) + Er(S) be the sum of
constraint violations to the balance constraints Eb(S) =∑

D∈S
∑

i∈[a] max{0, bi(D) − τi} and to the routing budget
constraints Er(S) =

∑
D∈S max{0, (R(D) − R)/R(D)} of

solution S, and let Z(S) be the objective function value of S
as given by model M. Here we normalize Er(S) by R(D) in
order to maintain both Er(S) and Eb(S) in the same order of
magnitude, therefore removing biases towards optimizing one
or the other.

Algorithm 1 outlines the main method. It uses a multistart
approach akin to a GRASP heuristic [27]. It iteratively obtains
a new solution through a greedy randomized constructive
heuristic, and then optimizes that solution by an improvement
strategy. This is repeated until a termination criterion is
reached, either a time limit or a maximum number of iter-
ations, and the best feasible solution encountered is returned.

The improvement strategy alternates between two neighbor-
hood search procedures optimizeObjectiveFunction and opti-
mizeConstraints, that optimize the objective function Z and
minimize constraint violations E, respectively. Sections II-C
and II-D further detail them. Each alternating iteration except
the first starts with a feasible solution, i.e. having E(S) = 0,
and optimizes first Z then E. Procedure optimizeConstraints
does not allow neighboring moves that cause the objective
value Z(S′) to fall below the value Z(S) of the previous itera-
tion, in order to ensure the progress made to Z is not lost while
optimizing constraints. Procedure optimizeObjectiveFunction,
however, may work with infeasible solutions by allowing E
to increase. Since it already begins at a feasible solution and
usually does not modify it much, in practice the additional
violations it causes can be easily overcome by optimizeCon-
straints next. The alternating phase stops whenever constraints
cannot be satisfied for a certain Z level, or after a maximum
Amax iterations, where Amax is a parameter.

District connectivity is always satisfied, as initial solutions
are connected by design and the local optimization procedures
operate on neighborhoods allowing only moves that keep
connectivity.

B. Generating initial solutions

Initial solutions are obtained using the greedy constructive
algorithm of [26], slightly modified to include routing costs.



It has two phases. First, p seed vertices, one per district,
are selected through a randomized p-dispersion algorithm.
Starting from an initial seed chosen randomly, it iteratively
selects the next seed so as to maximize the minimum distance
to all others. In the second phase, districts are “grown”
from the seeds by iteratively assigning fringe vertices until
a complete partition is obtained. Fringe vertices to district D
are unassigned vertices that share an edge with some vertex of
D. At each iteration, the algorithm greedily selects the district
i ∈ [p] with the least sum of attributes

∑
j∈[a] bj(Di), and

chooses from its fringe the vertex whose assignment would
lead to the smallest objective function value Z. If routing
budget constraints are enabled, i.e. R 6= ∞ and λ = 0, we
exceptionally use a value λ = 0.5 when computing Z here.
This gives a preference to initial solutions with shorter TSP
tours, even if routing costs are only considered as budget
constraints, and allows us to maintain the original greedy
algorithm unchanged. In this phase we also do not consider
depots when computing R, for reasons explained below. A
caching mechanism is further used that maintains the best
possible assignment of each districts fringe. This mechanism
remains valid with the addition of routing criteria.

1) Matching depots to districts: Though the method above
considers route costs in the selection of candidate vertices
to be included, the selection of initial seeds is agnostic of
depot locations, meaning there is no guarantee that a district
will be near its depot. This, of course, can have a significant
impact in final routing costs, since a far away depot will
induce additional travel times, and the later local search-based
methods are unlikely to restructure the solution enough to
mitigate this.

Note, however, that districts are anonymous: they all share
the same balancing constraints, routing budgets and do not
have location requirements. This means that any assignment
of depots to districts is valid, and we can choose one such
that total routing costs are minimized. We do this by solving
a minimum cost bipartite matching subproblem on a graph
of parts v1, . . . , vp and u1, . . . , up, where the cost of an edge
(vi, uj) is the length of a TSP tour over vertices Di ∪ {hj},
where Di is the i-th district of the greedily constructed
solution. The optimal matching can be obtained in O(p3) time
by the algorithm of [28], and each match (v∗i , u

∗
j ) corresponds

to depot hj servicing district Di.

In practice, computing p2 optimal TSP tours to build the
above graph is usually too expensive computationally, and so
we use 2-opt local searches, which we denote as simply 2OPT.
For district i ∈ [p] let Ti be a permutation of Di representing
its current TSP tour, and let |Ti| be its cost. We first optimize
each Ti, i ∈ [p] by 2OPT. Next, for each pair i, j ∈ [p] we
compute Tj

i as tour Ti with hj inserted to it by a greedy
insertion heuristic, explained further in Section II-E1. We then
optimize Tj

i once again with 2OPT, and set the cost of edge
(i, j) to |Tj

i |. Since Tj
i is only a slight modification over Ti to

include hj , in practice it is already close to a local minimum
and 2OPT takes only a few iterations.

2) Filtering: Following [26] a simple filtering mechanism
is used to skip unpromising initial solutions. At each mul-
tistart iteration it generates p new solutions and adds them
to a pool P , from which the best solution with respect
to (Z,E), compared lexicographically, is returned. Then, the
worst max{0, |P | − 2p} solutions from P are removed from
the pool.

C. Optimizing the objective function

We optimize the objective function by a tabu search [29].
Given a solution, it iteratively applies a neighborhood operator
leading to a neighbor of minimal Z. If multiple such neighbors
exist, we choose one randomly. The neighborhood consists of
two moves: shifts u→ k that move a vertex u from its previous
district to district k, and swaps u ↔ v that swap the current
districts of vertices u and v. We first try all possible shifts,
and consider swaps only if no improving shift was found.
This is done for performance, as there are roughly O(

√
n)

possible shifts and O(n) swaps and, in practice, improving
shifts are found in over 80% of cases. This is a change to
the original method of [26], which only uses shifts for the
p-median objective, since in early experiments we identified
that swaps play an important role in minimizing routing costs.

After a move is done, its corresponding vertices are declared
tabu (i.e., cannot be moved) for t iterations, where the tabu
tenure t is a parameter. Note that moves are not necessarily
improving. The search stops after Imax iterations without
improvement, where Imax is a parameter, and returns the best
intermediate solution. Moves which break district connectivity
are discarded. We refer the reader to [26] for details on
efficient dynamic data structures for connectivity and p-median
values, as well as how neighbors can be cached to reduce the
number of evaluations by a factor p; we omit these here for
lack of space.

D. Optimizing constraint violations

Constraint violations E are optimized by a series of tabu
searches of the same structure as above, but guided by E rather
than Z, and with an additional stopping criterion when E = 0
(i.e., when a feasible solution is found). To avoid deteriorating
the objective value too much, the tabu searches are constrained
by a parameter Zm that defines a maximum allowed objective
function value, thus prohibiting moves that would cause Z to
exceed it. These tabu searches are embedded into a binary
search strategy that looks for the smallest Z∗ ∈ [Zl,Zu] such
that a tabu search constrained by Zm ≤ Z∗ can find a feasible
solution, where Zl is the objective value of the solution given
to optimizeConstraints, and Zu is the objective value of the
best feasible incumbent.

E. Computing routing costs

Because the TSP is NP-complete [30], maintaining optimal
tours T1, . . . ,Tp throughout the entire algorithm is computa-
tionally too expensive for practical instance sizes. Therefore,
we rely on heuristics. Routing costs are evaluated at several



different stages of the algorithm, each with distinct require-
ments regarding performance and precision (i.e., gap from the
optimal tour value). For example, routing costs of neighbors
during the tabu search must be computed very fast, so that they
do not become a bottleneck. On the other hand, at the end of
each multistart iteration we update the globally best solution,
and so a high-precision heuristic is desired, even if it is slower.
We have identified five different levels of increasing precision
and decreasing performance requirements for the evaluation
of routing costs:

1) When evaluating a candidate shift or swap move during
tabu search. This action is performance-critical, since it
happens at the inner-most loop of the algorithm. All
other attributes of solutions, such as balancing con-
straints, p-median values, or connectivity can be kept
dynamically in constant time, and so a TSP heuristic
here must ideally also be computed in O(1), else it could
dominate the running time of the algorithm.

2) When executing a tabu search move, i.e., applying a shift
or swap to a solution, or when assigning fringe vertices
during greedy construction. This is executed once every
O(n) candidate move evaluations, on average, and so
the cost of a more expensive algorithm here is amortized
over the evaluations.

3) At the end of each tabu search. This happens after at
least Imax moves have been made. A better TSP heuristic
here helps mitigate possible deviations from optimality
that may have been propagated by successively using a
simpler heuristic earlier.

4) At the end of each multistart iteration. In practice this
happens after around 25 tabu searches, on average.
Besides reducing imprecisions from lower levels, a more
precise algorithm here helps to select the best solution
among all multistart iterations.

5) When the algorithm halts. Here, we always recompute
tours optimally.

In the literature there are several TSP heuristics with vary-
ing trade-offs between effectiveness and running times [31],
[32]. For our purposes here we consider three: a constant-
time greedy insertion heuristic GU, which we propose in
Section II-E1, 2-opt local searches (2OPT), which are easy
to implement and generally fast if the initial solution is
already optimized, and the well-known Lin-Kernighan [33]
heuristic (LKH), which is among the most effective and widely
used heuristics for the TSP today. For the LKH we use the
implementation in the Concorde solver [34] and consider two
variants, LK1 and LK2, with different parameter configura-
tions: LK1 uses stallCount = 1000 and maxKicks = n/5,
where stallCount is a stagnation parameter and maxKicks
defines the number of perturbation steps, while LK2 uses
stallCount = 5000 and maxKicks = n. Variant LK1 is aimed
to be faster at the cost of slightly worse tours, while LK2

invests more time in finding better solutions.
Let A1, . . . ,A5 be parameters that define the algorithms

used in levels 1-5 above. We have fixed A1 to be GU, as it is

imperative that evaluations at the lowest level be highly effi-
cient. Because the best choice of A2 and A3 was not obvious,
we considered A2 ∈ {GU, 2OPT} and A3 ∈ {2OPT,LK1},
and calibrate them experimentally in Section III-B. For A4

we use LK2, since an effective heuristic is needed to select
the best multistart solution. For the exact algorithm A5 we
use Concorde. Algorithms A3,A4 and A5 are warm-started
by the existing, already optimized tours, which improves their
performance considerably.

Note that, since heuristic solutions for the TSP are upper
bounds on the optimal tours, if any heuristic tour satisfies
budget constraints then the corresponding optimal tour also
does.

1) Dynamic greedy updates to TSP tours: In order to update
TSP tours efficiently upon vertex insertions and removals, we
propose the following greedy heuristic GU. It assumes the
given tours have already been optimized by a more expensive
TSP heuristic, and thus tries to maintain their original order
as much as possible.

When removing vertex vr from tour Ti, we simply remove it
and maintain the rest of the tour intact, i.e., we link the vertices
that come before and after vr. Because Ti must always include
depot hi, however, if vr = hi we simply do not remove it.

When adding vertex va to tour Ti, we choose a location
j ∈ [|Di| + 1] in the tour and insert va after the j-th vertex,
maintaining the rest of the tour intact. One way to select
j would be to test all possible locations and take the one
leading to the shortest tour. Since there are O(n/p) possible
candidates, however, this is too slow for our purposes, as GU
should ideally take constant time. We therefore only consider
locations directly before or after neighbor vertices of va that
are in Di. The constructive algorithm and tabu searches only
allow moves that keep connectivity, thus va is guaranteed to
have at least one such neighbor. Since instance topologies
emulate real-life planar domains, in practice optimal detours
to visit va tend to have va adjacent to one of its neighbors.
Because G is planar its average vertex degree is bounded by 6
(see e.g. [35, 4.2.10]), and so examining va’s neighbors takes
amortized constant time. Again, if va = hi, we do nothing,
since in this case va is already present in Ti.

F. Upper bounds

We obtain upper bounds by generating an example solution
Sd by a very simple algorithm, and setting Uc = PM(Sd)
and Ur = R(Sd). First, p initial seed vertices, one per
district, are selected uniformly at random. Then, while there
are unassigned vertices, we iterate cyclically over the districts,
each time assigning to the current district the vertex of least
index on its fringe, if it exists. Routes are updated by GU at
every assignment, and we run 2OPT on each district at the
end. Since upper bounds are only used for normalization in
the interest of choosing the λ weight, solution Sd does not
need to be feasible. In practice, final solution values deviate
on average 4.4% from Uc, and 21.3% from Ur.



III. COMPUTATIONAL EXPERIMENTS

In this section we report on experiments that assess the
effectiveness of the proposed methods. We have implemented
our algorithms in C++ and compiled them with GCC 7.2
and maximum optimization. All experiments were executed
on a PC with an Intel i7 930 CPU processor and 16GB
of main memory. For each test, only one core was used.
Following [26], We use parameters t = 1.5p, Amax = 100 and
Imax = 100 as recommended by [26], since in practice we have
found this setting to work relatively well with routing criteria
as well. Each run was limited to 1000 multistart iterations and
10 minutes, and uses a fixed random seed. The time used by A5

to compute the exact tours at the end is not counted towards
the time limit, and is thus omitted from the tables below. The
source code, instances and full results of the experiments are
available from the authors upon request.

A. Instances

We use four instance sets from the literature, described be-
low. They come from a commercial districting context, where
products must be distributed to customers in an urban area.
This application of districting has been extensively studied in
the recent years, and several variant models have been pro-
posed for it [8], [9], [19], [36], [37]. Instance set RF, proposed
by [36], has two instance classes that differ in the distribution
of attribute values, each having 20 instances of size n = 500
and p = 10. Instance set SRC, proposed by [14], contains
20 instances of each size (n, p) ∈ {(60, 4), (80, 5), (100, 6)}
and 10 of each size (n, p) ∈ {(150, 8), (200, 11)}, that reflect
instance sizes treatable by their exact algorithm. Instance set
RS, proposed by [19], has two instance classes, with 30
instances of size n = 1000 and p = 10 and 15 instances
of size n = 1000 and p = 40, respectively. Finally, in-
stance set GRM, proposed by [9], has the largest instances
with four of each size n ∈ {1000, 2500, 5000, 10000} and
p ∈ {n/200, n/100, n/62.5}; we have excluded, however,
instances of size n ≥ 5000 from this set, as they proved to be
too difficult when routing is considered.

All instances above have three balancing attributes, namely:
the number of customers, the product demand and the expected
visitation time of each basic unit. To be consistent with most
previous works, we used a tolerance τi = 0.05 for i ∈ [3].
The instances provide plane coordinates for each unit, and we
compute the graph distances dij by an all-pairs shortest paths
algorithm prior to the execution of our method. The time to
compute d was negligible.

Because these instances were originally proposed for mod-
els without routing criteria, no district depots are given. In
real-world scenarios depots tend to be more or less dispersed
over the input graph, and so we defined p depots for each
instance by executing the randomized p-dispersion algorithm
of Section II-B with a fixed random seed. We define the routing
budgets R of each instance in a separate experiment, reported
in Section III-D.

TABLE I
CALIBRATING TSP ALGORITHMS A2 AND A3 .

Inst. A2 A3 Z [rd.%] iter. t.

SRC

2OPT 2OPT 0.01694 1,000.0 70.2
2OPT LK1 0.01231 1,000.0 76.3
GU 2OPT 0.01682 1,000.0 65.0
GU LK1 0.01382 1,000.0 71.1

RF

2OPT 2OPT 0.24025 373.2 600.0
2OPT LK1 0.20466 390.5 600.0
GU 2OPT 0.29308 403.3 600.0
GU LK1 0.25944 416.5 600.0

RS

2OPT 2OPT 0.34796 164.8 600.0
2OPT LK1 0.20894 162.5 600.0
GU 2OPT 0.44179 176.4 600.0
GU LK1 0.40115 171.6 600.0

GRM

2OPT 2OPT 0.34927 19.2 600.0
2OPT LK1 0.25759 24.3 600.0
GU 2OPT 0.30405 20.1 600.0
GU LK1 0.44132 25.8 600.0

B. Experiment 1: influence of different TSP algorithms

In this experiment we calibrate algorithms A2 and A3

used to recompute district routes after neighboring moves and
after tabu searches, respectively. We considered the choices
A2 ∈ {GU, 2OPT} and A3 ∈ {2OPT,LK1}, as described
in Section II-E. In the case A2 = 2OPT, when applying a
neighboring move we first execute GU to update the given
tour, and then optimize it by a 2-opt local search. For this
experiment we used λ = 0.5 and no routing budgets. Table I
shows the results. For each instance set and parameter choice
we report averages of the final objective value Z, shown as
the relative deviation (in %) to the best known values, the
number of multistart iterations (iter.) and the total running time
in seconds (t.).

For all data sets the configuration (A2,A3) = (2OPT,LK1)
achieved the best average Z values, despite being slightly
slower when considering running times and iteration counts.
This configuration includes the two heuristics of highest time-
over-quality ratios, which suggests that investing more effort
in finding better TSP routes during optimization pays off. The
differences in performance between the four settings were not
significant, since all allowed enough multistart iterations for
feasible solutions to be found. Among the other three settings
there are no clear losers or winners. In the experiments that
follow, we have therefore fixed (A2,A3) = (2OPT,LK1).

Table II shows, for configuration (2OPT,LK1) and each
instance class, the average tour size n/p and the ratios between
tour lengths obtained at the five stages considered. Here, each
column Ai/Aj displays the average difference, in %, between
tour lengths found by algorithm Ai when it was executed on
a tour previously computed by algorithm Aj .

We see that the proposed greedy update heuristic A1 = GU
generally obtains results that are very close (under 0.08% dif-
ference, on average) to the local minima found by A2 = 2OPT.
This shows that, despite making some simplifications to be



TABLE II
RELATIVE DEVIATIONS OF TOUR LENGTHS BETWEEN THE DIFFERENT TSP

ALGORITHMS USED.

Inst. n n/p A2/A1 A3/A2 A4/A3 A5/A4

SRC 60 15.0 0.1098 1.6274 0.0035 0.0000
SRC 80 16.0 0.0999 1.7490 0.0026 0.0000
SRC 100 16.7 0.1085 1.7289 0.0032 0.0000
SRC 120 17.1 0.0998 1.7041 0.0028 0.0000
SRC 150 18.8 0.0983 1.9437 0.0040 0.0000
SRC 200 18.2 0.1066 1.9533 0.0044 0.0000
RF 500 50.0 0.0417 2.0347 0.0223 0.0004
RS 1000 75.0 0.0615 1.6006 0.0241 0.0013
GRM 1000 120.8 0.0224 1.1444 0.0361 0.0044
GRM 2500 123.6 0.0344 1.1705 0.0976 0.0047

Avg. 47.1 0.0783 1.6657 0.0201 0.0011

computable in constant time, GU can be an effective way to
maintain tours dynamically. Looking at n ≥ 500, we also
see GU scales well for larger tours. The largest deviations
are found between A3 = LK1 and A2 = 2OPT, and are
likely due to the large disparity in effectiveness between
these two heuristics. This effect had already been observed
earlier by [38]. Column A4/A3 shows only a small difference
between LK2 and LK1, specially for smaller instances, which
could indicate that the LKH stagnates quickly and additional
restarts do not help. Looking at the last column, we see that
LK2 is always optimal for n ≤ 200, and very close to optimal
(less than 0.005%) for n ≥ 500, and thus is usually successful
in selecting the best multistart iteration.

C. Experiment 2: effect of λ

In this experiment we analyze the effects of using different
values of λ when considering routing as objective. We consider
values λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, and no routing budgets.
At λ = 0.0 with routing costs disabled, for performance we
do not update routes during neighborhood search. The same
is done for PM when compactness is disabled at λ = 1.0.
Table III shows the results. For each instance set and value of λ
we report the average deviations (in %) of the p-median value
PM and the total routing costs R relative to the best known
values, as well as the total number of multistart iterations
(iter.).

We observe a clear progression in the quality of p-median
values with decreasing λ; all best known values for p-median
are found at λ = 0. For routing costs, on the other hand, we
see an interesting phenomenon: the best R was consistently
found not at λ = 1.0, but rather between λ = 0.6 and
λ = 0.8. This can be better seen in Figure 2, which shows
the progression of route length deviations as a function of λ,
averaged over all instances. We believe this effect is due to p-
median values being related to short TSP tours: geometrically
compact districts are intuitively faster to traverse, and it is
likely that PM has a better neighborhood landscape than R
for shifts and swaps.

Looking at the number of iterations we see that variants
λ = 0 and λ = 1.0 are the fastest, since they need not compute

TABLE III
EFFECT OF DIFFERENT VALUES OF λ IN THE OBJECTIVE FUNCTION.

Inst. λ PM [rd.%] R [rd.%] iter.

SRC

0.0 0.00 5.26 1,000.0
0.2 0.33 5.32 1,000.0
0.4 1.28 3.00 1,000.0
0.6 2.68 1.43 1,000.0
0.8 4.56 0.49 1,000.0
1.0 7.07 0.23 1,000.0

RF

0.0 0.00 5.38 619.7
0.2 0.60 3.51 384.8
0.4 1.46 1.51 391.8
0.6 2.68 0.92 383.1
0.8 5.94 0.28 346.4
1.0 11.88 0.57 679.8

RS

0.0 0.00 3.61 231.9
0.2 0.93 3.56 157.1
0.4 2.07 1.55 159.6
0.6 4.14 0.58 163.6
0.8 7.13 0.36 159.4
1.0 11.14 1.01 262.3

GRM

0.0 0.00 3.45 25.7
0.2 0.80 2.28 24.7
0.4 2.22 0.79 25.1
0.6 4.45 0.41 22.3
0.8 8.23 0.66 17.4
1.0 13.38 1.15 63.8
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Fig. 2. Effect of λ on routing costs, averaged over all instances.

R and PM, respectively. There does not seem to be a clear
trend in performance for the other values of λ.

D. Experiment 3: determining routing budgets for instances

Since the instances considered do not specify routing bud-
gets R, we define them experimentally. Ideally R should not
be so low as to make all instances infeasible, nor so high as
to make them trivial by allowing even unoptimized tours to
satisfy them.

We use the Beardwood-Halton-Hammersley formula [25]
as a base for our choice of R. It states that the length of
an optimal TSP tour on n uniformly distributed vertices on
surface of area A, with Euclidean distances, converges to H =



TABLE IV
CALIBRATING bd FOR DETERMINING ROUTING BUDGETS PER INSTANCE.

Inst. n bd
∗ feas. R∗/(pR)

SRC 60 1.10 4.15 1.19
SRC 80 1.08 4.60 1.19
SRC 100 1.05 3.40 1.21
SRC 120 1.09 3.10 1.23
SRC 150 1.06 3.20 1.24
SRC 200 1.11 2.70 1.30
RF 500 1.01 2.68 1.26
RS 1000 0.89 3.53 1.15
GRM 1000 0.86 5.92 1.12
GRM 2500 0.91 3.25 1.19

Avg. 1.02 3.65 1.21

bd/
√
An for large n and some constant bd. Here we extrapolate

the formula to p districts by setting R = H/p, and use area A
as the axis-aligned bounding box of all the vertices. Parameter
bd has been empirically determined to be about 0.714 [32];
however, since input graphs here are usually not complete and
thus distances d not always Euclidean, we have found bd < 0.8
to be too tight a constraint in almost all cases. Further, since
instance sets use different generators for their topologies, and
because instance difficulties also vary according to n and p,
it is unlikely that a single bd which works well for all cases
exists.

For each instance, we have therefore considered values bd ∈
{0.8, 0.85, . . . , 1.25, 1.3} and executed 10 multistart iterations
of our algorithm with no time limit. In order to choose budgets
that are challenging, for each instance we then selected the
smallest bd = bd

∗ for which at least 2 such iterations were
feasible. Table IV reports, for each instance set and n, the
average bd∗ found, as well as the actual number of feasible
iterations (feas.) obtained at bd = bd

∗. We also report the
average ratio between the mean tour length R∗/p of the best
known solutions and the calibrated budget R = bd

∗/
√
An.

We see that bd∗ has a mean of 1.02, suggesting that routing
costs for the instances considered deviate about 30% from the
empirical value 0.714 of the Beardwood-Halton-Hammersley
formula. The selected values bd∗ found feasible solutions in
3.65 out of 10 iterations, on average, and in at most 5.92
iterations for GRM instances of n = 1000, indicating that the
generated budget constraints were neither trivial nor impossi-
ble to satisfy. The difference between the chosen budgets and
the tour lengths of the best known solutions was 20.8%, on
average.

E. Experiment 4: routing budgets

In this experiment we solve our model with the routing
budget constraints defined in the previous section, and use λ =
0 to disable routing costs in the objective function. Table V
shows, for each instance set and n, the average deviations (in
%) of the p-median value PM and the total routing costs R
relative to the best known values, as well as the time (t.),

TABLE V
RESULTS FOR THE VARIANT WITH ROUTING BUDGET CONSTRAINTS.

Inst. n PM [rd.%] R [rd.%] t. iter. feas. [%]

SRC 60 1.64 5.68 30.6 1,000.0 51.3
SRC 80 1.14 5.34 49.5 1,000.0 43.3
SRC 100 0.99 7.03 57.6 1,000.0 35.1
SRC 120 1.25 8.12 70.7 1,000.0 27.3
SRC 150 1.22 8.76 94.5 1,000.0 27.8
SRC 200 0.82 9.45 117.0 1,000.0 23.9
RF 500 0.14 6.87 593.2 730.4 25.0
RS 1000 0.18 3.94 600.0 156.6 30.5
GRM 1000 0.12 3.83 600.0 64.9 38.4
GRM 2500 0.76 5.20 600.0 22.0 35.2

Avg. 0.83 6.42 281.3 697.4 33.8

in seconds, the number of multistart iterations (iter.), and the
percentage of multistart iterations that were feasible.

We see that average PM values stays within 0.83% of
the best known values, but nonetheless did not match them.
This suggests budget constraints were binding, as procedure
optimizeConstraints likely was unable to make highly compact
solutions feasible. Relative deviations of total routing costs R
were high (6.42%, on average), since after satisfying budget
constraints optimizeConstraints stops considering routing costs
at all. Feasiblity rates per multistart iteration averaged only
33.8%; however, given the high number of total iterations, all
runs found feasible solutions.

F. Experiment 5: different variants regarding routing depots

In this experiment we consider two additional variants
regarding routing depots. The first uses a global depot hG for
all districts, which we define in the instances as the optimal 1-
center vertex hG = argmini∈V maxj∈V dij . The second does
not use any depots. The adaptations to our algorithm required
to treat these variants are minor, and omitted here. For each
variant we ran our algorithm on all instances with λ = 0.5.
Table VI reports, for each instance set and n, the average
p-median value (PM) and routing costs (R) of each variant
as relative deviations (in %) from the values of the default
configuration, which uses a local depot to each district.

We observe that the variant with no depots finds 1.71%
smaller routes, on average, compared to local depots. This was
expected, as this variant incurs no additional costs when hi /∈
Di. The single depot variant had significantly higher routing
costs: 19% on average, which comes from all district tours
having to visit hG, regardless of the distance. Concerning PM,
we find that the variant without any depots was consistently
better for most instance sizes. A possible explanation is that,
because routes are shorter, R plays a lesser role in Z compared
to PM, and thus Z is more biased towards compactness.

IV. CONCLUSIONS

We have proposed a general heuristic solver for districting
problems with routing costs modeled by traveling salesman
tours. It builds upon existing state-of-the-art methods, and is



TABLE VI
COMPARISON OF DIFFERENT VARIANTS REGARDING DISTRICT DEPOTS.

Inst. n
no depots global depot

PM [rd.%] R [rd.%] PM [rd.%] R [rd.%]

SRC 60 -0.94 -1.72 -0.67 10.74
SRC 80 0.06 -3.65 0.01 13.49
SRC 100 -0.71 -1.30 -0.45 17.93
SRC 120 -0.37 -2.33 0.40 19.32
SRC 150 0.06 -2.17 -0.18 22.59
SRC 200 -0.62 -2.09 -0.53 29.64
RF 500 -0.83 -1.23 0.36 17.01
RS 1000 -1.66 -1.70 0.12 24.46
GRM 1000 -1.13 -0.07 0.43 12.00
GRM 2500 -2.41 -0.86 1.39 22.90

Avg. -0.85 -1.71 0.09 19.01

able to handle routing costs both as budget constraints and an
objective in instances of up to 2500 basic units. Because the
traveling salesman problem is NP-complete, we use a layered
strategy for determining which heuristic to use at different
stages of the algorithm, and show experimentally that this
helps maintain high-quality tours during optimization at low
computational costs. Experiments suggest that geometrically
compact districts, in particular ones with small p-median
values are also related to short tours, and that optimizing
compactness can play an important role in minimizing routing
costs. The proposed solver can also handle different problem
variants regarding routing depots, and provides good approx-
imations for variants that require tours to stay within district
boundaries.
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