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Abstract—Constraint handling techniques are of great 

significance in efficiently solving constrained optimization 

problems. This paper proposes a novel ensemble framework for 

constraint handling techniques based on voting-mechanism, in 

which four popular constraint handling techniques are included. 

Each of the constituent constraint handling techniques votes for 

the solutions at each generation based on its own rules. Solutions 

getting more votes are regarded as promising individuals and 

survive to the next generation. This ensemble framework based 

on voting-mechanism reflects the collective wisdom in decision-

making of human beings. In addition, a differential evolution 

(DE) variant is designed as the search engine, in which four 

search strategies are combined to generate new individuals and 

maintain the balance between diversity and convergence of the 

population. The proposed algorithm has been tested on 57 real 

world single-objective constraint optimization problems and 7 

problems are selected using variable reduction strategy (VRS). 

The experiment shows that the proposed algorithm achieves 

competitive performance, indicating that the voting-mechanism 

ensemble constraint handling technique combine DE algorithm 

together can effectively deal with constrained optimization 

problems.  

Keywords—Constraint-handling, Differential Evolution, Vot-

ing-mechanism  

I. INTRODUCTION 

In the real world, there are a lot of complex constrained 

optimization problems need to be optimized, such as job 

scheduling, intelligent control, traffic optimization and task 

allocation
[1][2]

. For this reason, the IEEE Congress on 

Evolutionary Computation (CEC) holds the competition for 

single-objective constrained optimization, aiming to develop 

more excellent algorithms to solve practical problems. 

Abhishek et al.
[1]

 collected 57 real-world single-objective 

constrained optimization problems as the benchmark for the 

competition and provided the baseline solutions using several 

state-of-the-art algorithms. Without loss of generality, a 

constrained single-objective optimization problem (CSOP) 

includes equality constraints and inequality constraints can be 

formly described as: 
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where f is the objective function, (x1, x2,…,xn) are the variables. 

gi(x) is the i-th inequality constraint and hj(x) denotes the j-th 

equality constraint. The equality constraint hj(x) is generally 

transformed into inequality constraint and can be defined: 

( ) max(| ( )| ,0) 1,...,j jg h j p m    x x ，            (2) 

where   is a tolerance parameter and set to 0.0001 according 

to [1]. The constraint violation of a solution x  is the weighted 

average of violations over all constraint s: 
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Recently, ensemble optimization algorithms are attracting 

an increasing attention and show impressive performance in 

dealing with complex optimization problems
 [2],[4],[5]

. 

Especially, Mallipeddi, et.al. 
[14]

 proposed an ensemble of 

constraint handling techniques, which is very competitive in 

solving different kinds of constrained optimization problems. 

Inspired by the human wisdom in collective decision-making, 

this paper proposes a novel ensemble framework based on 

voting-mechanism, which brings together multiple constraint 

handling techniques to deal with constraints cooperatively. 

Each constraint handling technique uses its specific rules to 

handle constraints during the optimization process and select 

superior solutions via the voting manner like an expert. The 
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solutions getting more votes from the experts (i.e., the 

constraint handling techniques) will survive to the next 

generation.  

The proposed ensemble constraint handling technique is 

combined with an ensemble differential evolution (DE) 

variant to solve constrained optimization problems. In the 

ensemble DE variant, several search strategies are included. 

Ensemble of multiple mutation strategies is a promising 

paradigm in designing versatile DE algorithms
 [4]

. For example, 

Mallipeddi et al.
[23]

 proposed an adaptive differential 

evolutionary algorithm EPSDE, in which all mutation 

strategies and control parameters compete with each other in 

the evolutionary process to produce offspring. Inspired by 

EPSDE, Wang et al.
[5]

 proposed the CoDE algorithm which 

combined three search strategies and three control parameter 

settings to generate new solutions. Wu et al.
[6]

 proposed an 

ensemble framework including three indicator subpopulations 

and a reward subpopulation. Each indicator subpopulation is 

assigned a mutation strategy, while the larger reward 

subpopulation is assigned the mutation strategy that currently 

performs best and would be given more computational 

resources adaptively during the evolutionary process. 

Moreover, they proposed the EDEV algorithm in [7], which 

realizes the ensemble of several efficient DE variants rather 

than a set of mutation strategies, including JADE
[19]

, CoDE
[5]

 

and EPSDE
[23]

, and the efficient algorithms getting more 

computing resources. 

In addition, we introduce the variable reduction strategy 

(VRS) to reduce the number of equality constraint and 

variables according to [22]. Through using VRS, the 

complexity of the problem can be effectively reduced and the 

search engine can obtain high-quality solution efficiently. 
The rest of the paper is structured as follows. Section II 

briefly introduces four classical constraint handling techniques 
that are integrated in the proposed ensemble framework. In 
section III, the voting-mechanism based ensemble constraint 
handling technique framework is described. In section IV, 
experimental results are reported and discussed. The final 
section concludes the paper. 

II. RELATE WORK 

As mentioned above, a constrained optimization problems 

(COPs) can be solved by evolutionary algorithms with the 

assist of constraint handling techniques. In this paper, we 

propose a voting-mechanism based ensemble framework 

which form four constraint handling techniques in an 

ensemble, including Self-Adaptive Penalty (SP), Superiority 

of Feasible Solutions (SF), Stochastic Ranking (SR) and ε-

Constraint (EC). We briefly review these four popular 

constraint handling techniques in this section.  

A. Self-Adaptive Penalty (SP) 

The core idea of SP is adding a penalty term p(x) to the 

objective function f(x) to construct the penalty fitness function 

F(x). Thus, the constrained optimization problem is 

transformed into an unconstrained problem. The penalty 

fitness function is defined as: 
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where Gi(x) represents the violation of constraint ,ri is the 

number of constraint violation levels defined for each 

constraint,  α is the punish coefficient. 
B. Tessema et al.

[8]
 proposed an adaptive penalty func-

tion method to dynamically adjust the number of penalties for 

different infeasible individuals. The fitness value is calculated 

considering constraint violation and the number of penalty. If 

there are fewer feasible solutions, then the individual with 

higher constraint violation receives more penalties. If there are 

more feasible solutions, the individual with high fitness gets 

less penalties. An adaptive penalty function
[9]

 is proposed to 

dynamically adjust the coefficients of penalty terms by 

obtaining useful information in optimization process. The 

penalty degree of infeasible solution depends on the degree of 

constraint violation. 

B. Superiority of Feasible Solutions (SF) 

The constraint handling technique of Superiority of 

Feasible Solutions proposed by Zielinski
 [10]

, which is 

conformed the following three rules in comparing two 

solutions. 1). If both solutions are feasible, the one with 

smaller objective function value is better; 2). If both are 

infeasible solutions, then the one with less constraint violation 

is better; 3). If one solution is infeasible solution and another 

is feasible solution, then the feasible solution is better. 

However, if the solution space is extremely complex and the 

feasible region accounts for a small proportion of the search 

space, it may be not enough to simply category the solutions 

into the feasible solution and the infeasible solution. 

Considering this, Cui
[11]

 proposed the concept of relative 

feasibility to compare and select solutions. If both solutions 

are not feasible, they are compared first based on the relative 

feasibility and the one with higher relative feasibility is better. 

If the relative feasibility of both solutions is equal, then the 

one with smaller constraint violation is superior.  

C.  Stochastic Ranking (SR) 

Runarsson
[12] 

proposed Stochastic ranking (SR), which 

introduces a probability pf to compare the two solutions based 

on the objective function value or constraints violation. It 

makes use of probabilistic parameter pf to balance objective 

function values and constraint violations of solutions. 

However, this algorithm raises a new problem on how to set 

the pf value appropriately. In the general SR algorithm, the pf 

value is set to 0.475. Further research
[13]

 suggested that it is 

better that probability pf changes adaptively during 

evolutionary process, which is then combines with the DE 

algorithm and comes to the DSS-MD algorithm. 

D.  ε-Constraint (EC) 

ε-Constraint
[14]

 is an efficient constraint handling method 

initially proposed by Takahama.  ε-Constraint can be viewed 

as a general version of SF. ε is a key coefficient adjusting the 

solution comparison process in ε-Constraint technique. ε is set 

by a piecewise function as below. 
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To resolve the contradiction between the convergence of 
and the diversity of population in ε-constraint technique, 
Takahama

[15]
 proposed a graded ε-constraint technique 

combined with DE algorithm. 

III. ALGORITHM FRAMEWORK 

Evidences show that there is no single constraint handling 
technique that is the most appropriate for all constrained 
optimization problems. Ensemble of multiple constraint 
handling techniques is becoming a promising way to get 
desired performance in solving a variety of constrained 
optimization problems. For instance, Mallipeddi et al.

[16]
 

proposed an ECHT method, in which four popular constraint 
handling techniques are integrated by partition the population 
into four subpopulations. Tasgetiren and Suganthan et al.

[17]
 

proposed the eDE algorithm, which adopts different search 
strategies and constraint handling techniques in different 
optimization processes to generate offspring solutions. In this 
work, we propose a novel general framework for the ensemble 
of constraint handling based on voting-mechanism. The voting-
mechanism is like the voting behavior human experts and 
reflects collective wisdom of human beings, which realizes to 
handle the constraints in a robust manner. 

A. The proposed ensemble constraint handling technique 

based on voting-mechanism 

The proposed framework for the ensemble of constraint 

handling techniques based on the voting-mechanism is named 

VMCH for short. Each constraint handling technique is 

considered as an expert and compare and select solution via 

the voting behavior. Constraint handling experts compare 

parental and offspring solutions with their specific rules. If a 

solution is considered being better by a constraint handling 

technique, it will get a vote from this technique. Based on the 

voting results, the new solution with more votes is passed to 

the next generation. In addition, the proposed constraint 

handling technique is integrated with an efficient DE variant, 

in which four mutation strategies are included to produce 

high-quality offspring solutions. The pseudo-code of the main 

procedure of VMCH is given in Algorithm 1. 

Firstly, the parameters of population size and the number 

of iterations are initialized (line 1). The initial population is 

generated (line 2). Then, a probabilistic approach is introduced 

to select a mutation strategy dynamically, in which the 

probability is updated by eq.(10) (line 5). The framework uses 

historical information to generate parameters Fi and CRi 

according [18] (line 6). Offspring individual is generated 

based on the selected mutation strategy and parameters (line 

7). All solutions are voted by four kinds of constraint handling 

techniques (line 8). The detailed process is clearly described in 

the ExpertVote algorithm. The promising historical parameters 

are record for later reuse (line 9). The probability ql and 

successful count ns are updated (lines 10). Population P is 

updated (line 12). The currently optimal solution is updated if 

there is a better solution find (line 14).  

 

 

Algorithm 1：The Main Procedure of VMCH 

 

Input    : H: the set of constraint handling techniques 

(SP, SF, EC and ER) 

Output : Sbest 

1 Initialize: population size N, probability ql for l=1,2,3,4 

2     generate an initial population P 

3     while(FEs<MaxFEs)  

4         for each pi in P      

5            choose a solution generation strategy according to ql 

for l=1,2,3,4 

6            generate Fi and CRi based on SF and SC 

7            oigenerate a new individual with selected stratgy 

and parameters 

8            execute ExpertVote (H, pi, oi, P’) to select solution 

and update to P’ 

9            record promising Fi and  CRi to SF and SC, 

respectively 

10                update ns and ql according eq.(10)  

11        end for   

12        update P P’ 

13    end while  

14    Sbestchoose the best solution in P 

 

 

Inspired by human voting behavior, a voting-mechanism 
based ensemble framework is proposed to get an ensemble 
constraint handling technique including multiple constraint 
handling techniques. Each constituent constraint handling 
technique is exactly an expert. The framework is very flexible 
and it is theoretically able to include any number of constraint 
handling technique. Each constraint handling technique 
compares the parental and offspring solutions according to 
their special rules, i.e., voting either parent solution or the 
offspring solution to survive to the next generation. The voting 
result of the i-th expert vi on one pair solution is 1 or 0, in 
which value 1 represents that the offspring individual is better 
and value 0 means that the parental individual is preferred. For 

example, 1k

iv   means that the i-th expert vote the offspring 

individual on k-th pair. Algorithm 2 gives the pseudocode for 
voting procedure of the constraint handling techniques. 

In Algorithm 2, we describe  the algorithm of ExpertVote, 
in which four experts of constraint handling techniques work 
cooperatively, that is, Self-Adaptive Penalty (SP), Superiority 
of Feasible Solutions (SF), ε-Constraint (EC) and Stochastic 
Ranking (SR). First, initialize the vote values to zero for both 
parental and offspring solution (line 1). Each constraint 
handling technique is employed to vote between the parental 
solution and the offspring solution and vote results are 
computed accordingly (lines 3-7). The individuals with more 
votes are selected to enter the next generation and the 
population P’ is updated with the superior solution being 
inserted (lines 9-13). 

 



Algorithm 2：ExpertVote algorithm 

 

Input：p: a parental solution  

             o: an offspring solution  

            H: a set of constraint handling techniques 

P’: the population to be updated 

Output: Updated population P’ 

1    Initialize Vo and Vp to zero 

2    for each h in H 

3        if o is better than or equal to p according to the rules of 

constrain handling technique h 

4             Vo =Vo +1       

5    else 

6         Vp = Vp +1      

7         end if   

8    end for  

9    if Vo  Vp 

10        insert o into population P’ 

11   else  

12        insert p into population P’ 

13   end if 

 

B.  Variable Reduction Strategy 

In order to decrease the complexity of problems, we 

introduce Variable Reduction Strategy (VRS) by using part of 

variables to represent the other part of variables. Thus, the 

variables are reduced and the decision space of this problem is 

decreased, what’s more, the search efficiency of the algorithm 

VMCH is improved. In particular, VRS is defined as follow：

Assume A is collection of variables, ={ | 1,2, , }kA x k n , Aj 

denodes variable collection of j-th equality variable, 
jA A . 

For the equality hj(x), if xk can represent by: 

, ({ | , })k k j l jx R x l A l k                          (6) 

where xk is reduced variable, xl is core variable. xk can be 

calculated through the relation Rk,j. Thus, the variable xk is 

reduced and the equation hj(x) is also reduced. Meanwhile, a 

boundary constraint associated with x is added: 

, ({ |mi , }) maxn k k k j l j kx R x l A l kx x          (7) 

In the process of solving the nonlinear equation system, 

the constraint conditions of eq.(7) can be handled without 

affecting the complexity of the algorithm.  

C. DE variant with multiple mutation strategies 

We adopt four solution search strategies as search engine 

in this study. The search strategies are dynamically selected 

and the related parameters are adapted during the optimization 

process. The four efficient solution search strategies are: 

(a) DE/current-to-pbest/1 and Bin, and (b) DE/current-

to-pbest/1 and Exp. These two variants are derived from 

DE/current-to-pbest/1, which is proposed in [19]: 

, , , , 1, 2,( ) ( )i G i G i pbest G i G i r G r Gv x F x x F x x                (8) 

(c) DE/randr1*/1 and Bin, and (d) DE/randr1*/1 and 

Exp. The mutation strategy of DE/randr1*/1 is improved from 

DE/randr1/1, which is presented in [20]: 

* * *, 1 , 2 , 3 ,
( )i G ir G r G r G

v x F x x                      (9) 

The four efficient solution search strategies above is 

selected via a competition mechanism in Algorithm 1 (line 8), 

which is based on a probability-based selection strategy 

proposed in [21]. The search strategy is selected in terms of 

the probability values at different evolutionary stages and the 

probability values are dynamically updated. The values of 

initial probabilities of all search strategies are set to be equal. 

The probability value is determined based on the performance 

of each search strategy in the evolutionary process. The update 

formula of the strategy selection probability is as below. 

0

1 0( )

l
l K

k k

n n
q

n n





                               (10) 

where, nl is the number of successful individuals produced by 
the l-th search strategy. To prevent a certain strategy from 
losing selection opportunity in the evolutionary process, reset 
ql to 1/K and nl to 0 respectively, when value of ql is less than a 
threshold value  . 

IV. EXPERIMENTAL STUDIES 

A.  Experimental setting 

To investigate the effectiveness of the proposed algorithm 

VMCH, we use the competition benchmark in CEC2020 

including 57 real-world single-objective constrained 

optimization problems. The proposed algorithm VMCH 

integrates four classical constraint handling techniques, 

including Self-Adaptive penalty (SP), Superiority of Feasible 

Solutions (SF), Stochastic Ranking (SR) and ε-Constraint 

(EC). The main parameters of these constraint handling 

techniques are as follows: Tc = 0.2* MaxGen, cp = 5, Sr = 

0.475. In addition, we set the population size to 150. The 

allowed maximum function evaluations are given in [1]. 

Besides, The mutation strategy parameter p of DE/current-to-

pbest/ 1 is set to 0.05. In addition, we set assigned K=4 and 

n0=2. 

B. Variable Reduction Strategy Experiment 

In this experiment part, in order to test the performance of 

variable reduction strategy, we choose RC01, RC02, RC04, 

RC05, RC6, RC07 and RC09 from CEC2020 competition 

benchmark to pre-process problems using VRS. Table I shows 

the reduction of the number of equations and variables by 

using the reduction strategy. Nv is the original number of 

variables, Nv (VRS) is the number of variables after using VRS, 

Ne is the original number of equality constraints. Ne(VRS) is the 

number of equality constraints after using VRS. Table II 

shows the results of solving these problems with and without 

using VRS. 
TABLE I.    The reduction of equation and variable 

  

Problem Nv Nv (VRS) Ne Ne(VRS) 

RC01 9 5 8 3 

RC02 11 6 9 3 

RC04 6 3 4 1 

RC05 9 6 4 1 

RC06 38 12 32 8 

RC07 48 27 38 16 

RC09 3 2 1 0 



 

As seen in Table II, through the using of variable 

reduction strategy, the proposed VMCH with VRS find better 

solutions on 5 problems of these 7 problems than without 

using variable reduction strategy, and problem 02, problem 05, 

problem 06 and problem 07 are not find optimal solutions. In 

addition, the result of using VRS has less variance than 

without using VRS, indicating that the VRS strategy can make 

the search for solutions more stable.  

 

C.  VMCH Experiment and Discussion 

For the sake of fair competition, the proposed algorithm 

runs 25 times on each problem according to the setting of 

Test-suit in [3]. This algorithm calculates the Best, Worst, 

Median, Mean and Std of the objective function values f and 

the constraint violation values v of 25 independent runs, 

respectively. FR represents the proportion of the runs that at 

least find one feasible solution. v is the averaged constraint 

violation of all 25 runs. c is a sequence of three numbers 

represents the number of times the constraint has been 

violated on the median solution. The three number indicates 

that the number of constraints is more than 1.0, between [0.01, 

1.0] and less than 0.01, respectively. The experimental results 

of VMCH algorithm are shown in Table III~Table VIII.  

From Table III~Table VIII, the results are shown in bold if 

the mean value of solutions is close to the optimal solution 

known up to now. The performance of the proposed VMCH is 

similar to the algorithms of top3 in the competition of 

CEC2018, i.e., IUDE, ϵMagES and iLSHADEϵ. Due to the 

complementary between constraint handling techniques, such 

as feasibility rule and penalty function, have been verified by 

theoretical. The reason of VMCH is competitive is that these 

four constraint handling techniques are complement each 

other in some sense and this mechanism adopts the principle 

that the minority is subordinate to the majority to vote for the 

better solution, which has strong robustness for the problem 

with poor effect of single constraint handling technique. From 

the Mechanical Engineering problems, the proposed 

framework achieves competitive result, which the number of 

variables is less than or 30. However, the proposed VMCH 

finds few optimal solutions known up to now on these 

problems in Power System and Livestock Feed Ration 

Optimization filed, which have more than 50 dimensions. In 

the view of this phenomenon, the proposed framework is suit 

for solving low dimensional problems.  

The algorithm complexity is measured by the criterion in 

[1], T1 is the average computing time of running 100,000 

times on the test set, and T2 is the complete computing time 

for the algorithm of running 100,000 times on the test set. The 

complexity of VMCH in this paper is compared with the test 

algorithm in [1], including IUDE, ϵMagES and iLSHADEϵ. 

The comparison results are shown in Table IX. 

 
TABLE IX.    Algorithm Complexity 

 

Algorithm T1(sec) T2(sec) (T2- T1)/ T1 

VMCH 8.57 11.34 0.32 

IUDE 8.57 9.93 0.16 

ϵMAgES 8.57 12.67 0.48 

iLSHADEϵ 8.57 15.76 0.84 

 

As shown in Table IX, As a result, compare with the three 

algorithms, VMCH is particularly efficient in dealing with 

constrained optimization problems of relatively smaller size. 

We conclude two reasons as follow: 1). these constraint 

handling techniques are sensitive and can’t handle effective on 

high dimension problems. 2). these constraint handling 

techniques underutilize domain knowledge to guide the search 

algorithm to better solutions, especially in complex, narrow 

feasible regions with high dimension. 
 

TABLE II.      Experimental results of VMCH with  VRS  or without VRS 

  RC01 RC02 RC04 RC05 RC06 RC07 RC09 

VMCH 
with  

VRS 

Best 9.37E+01 6.85E+03 -3.88E-01 -4.00E+02 9.98E-01 1.86E+00 2.56E+00 

Median 2.08E+00 3.07E+03 -3.86E-01 -4.00E+02 1.14E+00 1.52E+00 2.56E+00 

Mean 7.41E+00 3.08E+03 -3.87E-01 -4.00E+02 1.09E+00 1.39E+00 2.56E+00 

Worst 6.68E-01 4.78E+02 -3.85E-01 -4.00E+02 1.76E+00 1.13E+00 2.56E+00 

Std 2.04E+01 1.57E+03 1.13E-02 7.42E-12 5.21E-01 1.34E+00 9.06E-16 

v 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.96E-02 6.35E-01 0.00E+00 

VMCH 
without  

VRS 

Best 3.55E+02 9.65E+03 -1.67E-01 -4.00E+02 1.76E+00 1.93E+00 2.56E+00 

Median 9.08E+01 8.85E+03 -3.51E-01 -4.09E+02 1.89E+00 1.45E+00 2.81E+00 

Mean 1.12E+02 8.89E+03 -3.39E-01 -4.12E+02 1.83E+00 1.47E+00 2.87E+00 

Worst 0.00E+00 8.21E+03 -3.95E+00 -4.27E+02 2.03E+00 1.28E+00 3.11E+00 

Std 1.19E+02 3.78E+02 4.22E-02 5.29E-01 1.89E+00 1.21E+00 8.58E-01 

v 1.06E+02 1.73E+01 0.00E+00 0.00E+00 5.08E-01 7.96E-01 1.79E-05 



  

      TABLE III.      EXPERIMENTAL RESULTS OF VMCH ON CEC2020 CSOPS (FROM RC01 TO RC10) 

  RC01 RC02 RC03 RC04 RC05 RC06 RC07 RC08 RC09 RC10 

Best 
f 9.37E+01 6.85E+03 -1.88E+04 -3.88E-01 -4.00E+02 9.98E-01 1.86E+00 2.00E+00 2.56E+00 1.08E+00 

v 0.00E+00 2.73E+01 0.00E+00 0.00E+00 0.00E+00 6.17E-02 4.81E-01 0.00E+00 0.00E+00 0.00E+00 

Median 
f 2.08E+00 3.07E+03 -2.07E+04 -3.86E-01 -4.00E+02 1.14E+00 1.52E+00 2.00E+00 2.56E+00 1.08E+00 

v 0.00E+00 1.73E+01 0.00E+00 0.00E+00 0.00E+00 2.65E-02 8.03E-01 0.00E+00 0.00E+00 0.00E+00 

Mean 
f 7.41E+00 3.08E+03 -2.06E+04 -3.87E-01 -4.00E+02 1.09E+00 1.39E+00 2.00E+00 2.56E+00 1.08E+00 

v 0.00E+00 1.65E+01 0.00E+00 0.00E+00 0.00E+00 2.96E-02 6.35E-01 0.00E+00 0.00E+00 0.00E+00 

Worst 
f 6.68E-01 4.78E+02 -2.16E+04 -3.85E-01 -4.00E+02 1.76E+00 1.13E+00 2.00E+00 2.56E+00 1.08E+00 

v 0.00E+00 6.14E+00 0.00E+00 0.00E+00 0.00E+00 1.57E-02 4.84E-01 0.00E+00 0.00E+00 0.00E+00 

Std 
f 2.04E+01 1.57E+03 7.11E+02 1.13E-02 -4.00E+02 5.21E-01 1.34E+00 0.00E+00 9.06E-16 4.53E-16 

v 0.00E+00 5.72E+00 0.00E+00 0.00E+00 0.00E+00 6.71E-03 1.30E-01 0.00E+00 0.00E+00 0.00E+00 

FR 100 92 100 100 100 0 0 100 100 100 

c 0,0,0 0,0,0 2,0,0 0,0,0 0,0,0 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

           TABLE IV.      EXPERIMENTAL RESULTS OF VMCH ON CEC2020 CSOPS (FROM RC11 TO RC20) 

  RC11 RC12 RC13 RC14 RC15 RC16 RC17 RC18 RC19 RC20 

Best 
f 1.54E+02 4.00E+00 2.69E+04 6.25E+04 3.00E+03 6.35E-02 1.27E-02 6.37E+03 1.67E+00 2.64E+02 

v 3.56E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Median 
f 5.71E+01 2.92E+00 2.69E+04 5.86E+04 2.99E+03 3.24E-02 1.27E-02 6.06E+03 1.67E+00 2.64E+02 

v 2.11E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Mean 
f 1.25E+02 2.92E+00 2.69E+04 5.99E+04 2.99E+03 3.35E-02 1.27E-02 6.06E+03 1.67E+00 2.64E+02 

v 1.42E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Worst 
f 1.21E+02 3.07E+00 2.69E+04 6.02E+04 3.00E+03 3.69E-02 1.27E-02 6.07E+03 1.67E+00 2.64E+02 

v 1.59E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 
f 2.34E+01 3.54E-01 1.11E-11 1.29E+03 1.04E+00 7.33E-03 1.58E-08 6.23E+01 4.68E-06 1.16E-14 

v 1.14E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

FR 100 100 100 64 100 100 100 100 100 100 

c 0,0,0 0,0,0 0,0,0 1,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 

 TABLE V        EXPERIMENTAL RESULTS OF  VMCH ON CEC2020 CSOPS (FROM RC21 TO RC30) 

  RC21 RC22 RC23 RC24 RC25 RC26 RC27 RC28 RC29 RC30 

Best 
f 2.35E-01 5.37E-01 1.76E+01 6.25E+00 1.81E+03 1.63E+02 5.42E+02 1.46E+04 2.96E+06 2.91E+00 

v 0.00E+00 0.00E+00 1.65E-02 0.00E+00 0.00E+00 1.31E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Median 
f 2.35E-01 5.26E-01 7.90E+00 3.26E+00 1.62E+03 3.95E+01 5.24E+02 1.46E+04 2.96E+06 2.66E+00 

v 0.00E+00 0.00E+00 2.78E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Mean 
f 2.35E-01 5.26E-01 8.82E+00 3.93E+00 1.62E+03 6.43E+01 5.31E+02 1.46E+04 2.96E+06 2.66E+00 

v 0.00E+00 0.00E+00 8.67E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Worst 
f 2.35E-01 5.27E-01 1.04E+01 4.07E+00 1.64E+03 7.05E+01 5.31E+02 1.46E+04 2.96E+06 2.67E+00 

v 0.00E+00 0.00E+00 8.31E-03 0.00E+00 0.00E+00 5.24E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 
f 1.13E-16 2.41E-03 2.61E+00 6.48E-01 4.71E+01 2.97E+01 4.49E+00 6.58E+00 1.43E-09 5.02E-02 

v 0.00E+00 0.00E+00 4.71E-03 0.00E+00 0.00E+00 2.62E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

FR 100 100 100 0 100 100 72 100 100 100 

c 0,0,0 0,0,0 0,0,0 0,2,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 



  

      TABLE VII.        EXPERIMENTAL RESULTS OF VMCH ON CEC2020 CSOPS (FROM RC41 TO RC50) 

  RC41 RC42 RC43 RC44 RC45 RC46 RC47 RC48 RC49 RC50 

Best 
f 2.69E+05 -6.62E+02 -1.07E+02 -5.45E+03 2.03E+00 1.58E+00 7.93E-01 7.47E-01 7.75E-01 4.28E-01 

v 2.75E+01 3.11E+01 3.13E+01 0.00E+00 1.14E-04 4.17E-05 7.88E-05 1.25E-05 3.66E-05 3.82E-05 

Median 
f 6.43E+04 -2.18E+03 -1.04E+03 -6.05E+03 2.54E-01 1.23E-01 7.30E-02 1.23E-01 7.10E-02 4.70E-02 

v 1.99E+00 5.17E+00 8.25E+00 0.00E+00 6.63E-08 7.44E-08 5.60E-11 5.77E-08 9.95E-08 1.60E-07 

Mean 
f 1.13E+05 -1.42E+03 -5.69E+02 -5.73E+03 7.36E-01 4.74E-01 3.02E-01 3.04E-01 2.38E-01 1.78E-01 

v 2.16E+01 1.73E+01 1.85E+01 0.00E+00 3.91E-06 4.39E-06 2.73E-06 2.34E-06 1.42E-06 2.03E-06 

Worst 
f 1.29E+05 -1.37E+03 -5.74E+02 -5.76E+03 8.51E-01 5.18E-01 3.43E-01 3.32E-01 2.73E-01 1.97E-01 

v 2.02E+01 1.74E+01 1.90E+01 0.00E+00 1.03E-05 7.48E-06 8.21E-06 3.02E-06 5.15E-06 6.12E-06 

Std 
f 5.87E+04 3.52E+02 1.90E+02 1.60E+02 4.84E-01 3.19E-01 1.94E-01 1.66E-01 1.75E-01 1.09E-01 

v 5.97E+00 6.59E+00 5.93E+00 0.00E+00 2.32E-05 1.01E-05 1.78E-05 2.91E-06 8.30E-06 8.86E-06 

FR 0 0 0 0 100 0 0 0 0 0 

c 1,0,0 2,0,0 1,0,0 1,0,0 0,0,0 0,2,0 1,0,0 1,0,0 0,1,0 0,1,0 

  

        TABLE VIII .        EXPERIMENTAL RESULTS OF VMCH ON CEC2020 CSOPS (FROM RC51 TO RC57) 

  RC51 RC52 RC53 RC54 RC55 RC56 RC57 

Best 
f 2.56E+04 4.54E+04 4.48E+04 2.17E+04 4.47E+04 3.63E+04 4.64E+04 

v 2.47E-06 3.87E-07 9.47E-07 7.64E-05 2.25E+00 1.38E+00 1.64E+00 

Median 
f 7.59E+03 6.42E+03 6.78E+03 4.59E+03 7.26E+03 9.33E+03 5.65E+03 

v 6.77E-10 1.05E-09 2.29E-13 3.27E-11 1.88E-01 4.66E-02 7.47E-02 

Mean 
f 1.27E+04 1.49E+04 2.10E+04 1.37E+04 2.07E+04 1.59E+04 2.09E+04 

v 1.77E-07 3.69E-08 3.30E-08 4.94E-08 5.60E-01 5.00E-01 7.09E-01 

Worst 
f 1.37E+04 1.68E+04 2.36E+04 1.33E+04 1.99E+04 1.85E+04 2.07E+04 

v 3.24E-07 8.48E-08 8.79E-08 3.83E-06 8.10E-01 5.66E-01 8.17E-01 

Std 
f 5.10E+03 9.88E+03 1.26E+04 5.77E+03 9.38E+03 7.67E+03 1.02E+04 

v 5.35E-07 1.11E-07 1.87E-07 1.53E-05 5.57E-01 3.41E-01 4.61E-01 

FR 0 0 0 0 0 0 0 

c 1,0,0 1,0,0 2,0,0 2,0,0 1,0,0 2,0,0 2,0,0 

        TABLE VI.       EXPERIMENTAL RESULTS OF VMCH ON CEC2020 CSOPS (FROM RC31 TO RC40) 

  RC31 RC32 RC33 RC34 RC35 RC36 RC37 RC38 RC39 RC40 

Best 
f 2.57E-15 -3.07E+04 2.95E+00 6.85E+00 -1.99E+00 1.57E+02 2.55E-01 7.90E+00 1.83E+01 7.64E+05 

v 0.00E+00 0.00E+00 0.00E+00 1.12E-01 1.87E-01 1.69E-01 9.86E-02 1.06E-01 1.27E-01 4.20E+01 

Median 
f 0.00E+00 -3.07E+04 2.64E+00 4.11E-02 -7.11E+02 -3.40E+02 -1.26E+01 -1.71E+01 -2.77E+01 3.78E+04 

v 0.00E+00 0.00E+00 0.00E+00 1.07E-04 4.07E-04 7.38E-06 9.95E-06 6.23E-05 1.11E-03 2.15E+00 

Mean 
f 1.17E-19 -3.07E+04 2.64E+00 1.75E+00 -7.02E+02 -2.73E+02 -7.93E+00 -5.73E+00 -1.24E+01 1.76E+05 

v 0.00E+00 0.00E+00 0.00E+00 2.46E-02 2.93E-02 3.49E-02 2.92E-02 4.04E-02 2.92E-02 2.02E+01 

Worst 
f 1.61E-16 -3.07E+04 2.64E+00 2.11E+00 -5.87E+02 -2.42E+02 -7.70E+00 -5.72E+00 -1.29E+01 2.28E+05 

v 0.00E+00 0.00E+00 0.00E+00 3.40E-02 4.27E-02 4.51E-02 2.81E-02 3.88E-02 3.81E-02 1.99E+01 

Std 
f 5.30E-16 5.62E-01 6.24E-04 1.79E+00 2.10E+02 1.31E+02 3.70E+00 6.94E+00 9.48E+00 1.77E+05 

v 0.00E+00 0.00E+00 0.00E+00 3.07E-02 4.35E-02 4.81E-02 2.44E-02 2.61E-02 3.21E-02 1.04E+01 

FR 100 100 100 0 0 0 0 0 0 0 

c 0,0,0 0,0,0 0,0,0 1,0,0 2,0,0 1,0,0 1,0,0 2,0,0 1,0,0 2,0,0 



V. CONCLUSION 

In this paper, we propose a novel ensemble framework 
based on voting-mechanism, which integrates four classical 
constraint handling techniques, including Self-Adaptive 
Penalty (SP), Superiority of Feasible Solutions (SF), 
Stochastic Ranking (SR) and ε-Constraint (EC). These four 
techniques are viewed as experts and each expert votes for 
each pair of parent individual and offspring individual. The 
individual have more votes will be selected to enter to the next 
generation. The proposed ensemble constraint handling 
technique based on voting-mechanism overcomes the 
limitation of single constraint handling technique by 
integrating the advantages of multiple constraint handling 
techniques. The algorithm is tested on  the test-suite about 
constrained single objective optimization problems from the 
real world. The experimental results show that the proposed 
VMCH has competitive performance in solving constrained 
optimization problems. In the future, we will develop efficient 
constraint handling technique to search more efficient solutions.  
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