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Abstract—The outgrowing application of machine learning
methods has raised a discussion in the artificial intelligence
community on model transparency. In the center of this dis-
cussion is the question of model explanation and interpretability.
The genetic programming (GP) community has systematically
pointed out as one of the major advantages of GP the fact
that it produces models that can be interpreted by humans.
However, as other interpretable supervised models, the more
complex the model becomes, the less interpretable it is. This
work focuses on post-hoc interpretability of GP for symbolic
regression. This approach does not explain the process followed
by a model to reach a decision. Instead, it justifies the predictions
it makes. The proposed approach, named Explanation by Local
Approximation (ELA), is simple and model agnostic: it finds the
nearest neighbors of the point we want to explain and performs
a linear regression using this subset of points. The coefficients of
this linear regression are then used to generate a local explanation
to the model. Results show that the errors of ELA are similar to
those of the regression performed with all points. It also shows
that simple visualizations can provide insights to the users about
the most relevant attributes.

Index Terms—Interpretability, Symbolic Regression, Explana-
tions

I. INTRODUCTION

The outgrowing application of machine learning methods
in sensitive areas of our daily lives, including medicine,
financial activities and the criminal justice system, has raised a
productive discussion in the artificial intelligence community
on model transparency, justice and accountability [1]–[3]. In
the center of these discussions lies the question of model
interpretability and explanation [4], [5].

Genetic programming (GP) is a method that has been used
for quite some time to generate models. It is a bio-inspired
method, where a population of solutions representing models
is evolved for a number of generations. The models are
evaluated according to a fitness function, and probabilistic
selected to undergo mutation and crossover operators. One of
the main advantages of models evolved by GPs is the fact
that the evolved models can be interpreted by humans [6],
[7]. However, in the same way as other supervised models
that are considered interpretable – including decision trees,
decision rules or linear regression – the more complex the
model becomes, the less interpretable it is.

When discussing model interpretability, most applications
involving interpretable models rarely analyze the simplicity or
easiness of use of the generated models. Most of the times,
model complexity (defined by the number of tree nodes, for
example, in the case of tree-represented symbolic regression
or rule induction with GP) is reported or optimized during
model generation together with accuracy to result in simpler
models. But hardly ever a specialist or human is involved in
the loop to say whether a model is interpretable or not.

In this direction, there has been a fruitful discussion on
how we define model interpretability [8]. Some papers relate
interpretability to trust, where trust is related to understanding
but can also refer to the confidence in the model accuracy.
Others use interpretability as a synonym of understandability
or intelligibility, and relate it to the concept of how the model
actually works and makes decisions. Finally, there are the
so called post-hoc interpretations, which explain predictions
without going into details on how the models work.

This work focuses on the interpretability of GP when
producing models for symbolic regression. As shown in our
experimental study, when non-linear relationships are present
in the data, even for synthetic datasets with two attributes
(explainable variables), as the maximum depth of the GP tree
increases (potentially increasing the model complexity) and
the root mean square error (RMSE) decreases, the number of
nodes in the tree grows from an average of 5 nodes (maximum
depth 2) to more than 65 nodes (maximum depth 6) – see
Table III.

In this direction, this paper proposes to use post-hoc inter-
pretation to understand the outcomes of symbolic regression
models. Post-hoc interpretability does not explain the process
followed by a model to reach a decision. Instead, it justifies
the prediction using, for example, text explanations, visual-
ization or explanations by example [8]. The proposed method
follows explanations by examples, as they resemble the way
humans use analogy to explain their decisions. In medicine,
for example, many diagnosis are “explained” by other case
studies.

The proposed approach, named Explanation by Local Ap-
proximation (ELA), is simple, effective and model agnostic
(i.e., it can be applied to any other regression model): it finds
the nearest neighbors of the point we want to explain and
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performs a linear regression using this subset of points. The
coefficients of this linear regression are then used to generate
a local explanation to the model. Note that this approach,
together with GP, has the advantage of intrinsically performing
an attribute selection during the GP evolution, and then using
a local approximation to justify the predictions of the method.

We perform a quantitative analysis of the proposed approach
in a set of 10 synthetic benchmarks with known non-linear
relations between the predictive and target variables. We then
present a qualitative analysis in a real-world dataset where
we do not need very specialized knowledge to interpret the
resulting justifications, as evaluation of the interpretability of
the models is complicated and, for most datasets, require
specialized expertise.

Results show that the errors of the local approximations are
similar to those of the regression performed with all points. It
also shows that simple visualizations can provide insights to
the users about the most relevant model attributes. Finally, we
also concatenate the results of many local interpretations into
a single, global explanation, which can also aid the process of
understanding predictions.

The remainder of this paper is organized as follows. Section
2 presents related work on interpretability. Section 3 introduces
the proposed method, while Section 4 presents the quantitative
and qualitative experiments. Finally, Section 5 draws conclu-
sions and point out direction of future research.

II. RELATED WORK

Given a classification or regression problem, the model it
produces is defined as transparent (or white box [9]) if it is
locally or globally interpretable on its own, i.e., understandable
by humans [4].

It is fair to assume that the models that currently generate
the best accuracy values for the classification and regression
tasks are those known in the literature as black box models
[4]. In these models, such as artificial neural networks and
Support Vector Machines, a data input is given to the model
and an output is obtained, but there is not a simple explanation
that can be given to human beings about the process that
was performed to obtain the output. They are systems that do
not reveal their internal mechanisms [9]. Questions we might
want to be able to answer regarding these models are: What
does the generated prediction mean? What motivated a certain
prediction? Is there any causal relationship? Was the decision-
making process free from bias and prejudice? Can I trust the
result? How can I improve the model?

Several works have been carried out in an attempt to
answer these questions, either in the sense of formalizing the
problem of model interpretability or proposing solutions to
make algorithms transparent.

The authors in [9] present a taxonomy of the methods used
for interpretability. These methods can be classified according
to several criteria, and can be: i) Intrinsic, if models are
represented by simple structures considered to be interpretable
– such as short decision trees or linear models, or Post Hoc,
where methods are applied to analyze the model produced

after training; ii) Model-Specific, if the interpretation occurs
directly from the model, e.g., through the analysis of the
weights of a regression or Model-Agnostic, if they can be used
together with any machine learning model; and iii) Methods
that provide Local interpretation, explaining an individual
forecast, or Global, if they explain the entire behavior of the
model.

According to these criteria, the method presented in this
work is Post Hoc, Model-Agnostic (although the analyzes
are focused on problems of symbolic regression with genetic
programming) and is capable of providing both local and
global explanations.

In [10] there is a discussion about when it is really necessary
to have an explanation of a model and also how the explana-
tions can be evaluated. The authors argue that often issues
involving interpretability are used as a means to understand
other possible issues, such as, for example, justice, impartial-
ity, security, reliability and causality. In this way, the concern
with interpretability is adequate for situations in which the
problems are incompletely specified. In the evaluation stage,
three possibilities are proposed: i) Application level evaluation
(real task): domain experts participate in the evaluation; ii)
Human level evaluation (simple task): laymen are used to test
more general functions of the quality of an explanation; and
iii) Function level evaluation (proxy task): it does not require
humans and uses, for example, previous knowledge. In this
case, it is assumed that someone has tested it with humans
before. For example, it is known that humans can interpret
the simple results of linear regression or decision rules, so this
knowledge is used during evaluation. The method proposed in
this work fits in this last category.

In the scenario of solutions to make algorithms transparent,
most of past works focused on the classification problem.
Among these works, some approach the problem in a non-
agnostic way [11], [12] and others in an agnostic way by
means of, for example, local linear approximations [13], by
rules-based structures [14], [15] or game theory [16].

We highlight the work developed by [13], where a technique
called LIME is presented to explain the predictions returned
by general classifiers. Their method learns a local interpretable
model around the prediction to be explained. They also present
a method to explain the whole model instead of individual
predictions. However, they propose to use perturbations in
data entries in order to understand the local behavior of the
model and to explain individual predictions. Although it can
also be used for regression, the presented approach clearly
focuses on classification problems. It is important to note that
perturbations on data may lead to fictitious inputs that are
invalid depending on the regression scenario. In this paper, we
opt to use only the training set to explain the local behavior
of predictions, that is, we do not generate potentially invalid
instances. In addition, the proposed method is also able to
provide a global view of the relevance of each attribute to
obtain the output by means of an importance metric.



III. EXPLANATION BY LOCAL APPROXIMATION

This section describes ELA (Explanation by Local Approx-
imation), a method based on local explanations used to help
justifying predictions made by a more complex regression
model. This section introduces the method in the context of
symbolic regression with GP, although ELA can be easily
generalized to any other type of regression method.

Let us assume we have a training set T = pi =
{(xi, yi)}ni=1 and a test set T ′ = pj = {(xj)}mj=1 — with
xi ∈ Rd, yi ∈ R for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
ELA works by generating a non-linear regression model (e.g.,
symbolic regression) for predicting the value y′ of data points
in T ′, and then performs a local approximation with a linear
regression method to generate explanations for the predictions
generated by the first model, as illustrated in Algorithm 1.

Algorithm 1 Explanation by Local Approximation (ELA)
Require: T (train), T ′ (test), k (# of neighbors)

1: SR = Run GP(T )
2: for each p ∈ T ′ do
3: y′= SR(p)
4: NN = Find k nearest neighbours of p considering only

attributes in SR
5: LR = Run linear regression(NN )
6: Compute importance of attributes in LR
7: Show local explanation for predicting y′

8: end for
9: Plot global explanation

The algorithm receives as input the training and a test sets,
T and T ′, and the value k of the number of neighbours to be
considered in the local explanation. First, we run the GP in the
training set to find the function that describes the in T (line
1). Having this function, we explain (or justify) its prediction
for each test point considering a local linear regression over a
set of k neighbour points.

Given a test point p, we first use the original GP model SR
to find the predicted value y′ (line 3). Each GP function is
represented by a tree, generated respecting a maximum tree
depth. The GP functions are evaluated using the RMSE as the
fitness fucntion. A tournament selection is used to select the
individuals that undergo crossover and mutation operators.

Next, we find the k neighbours of p (line 4 and Equation 1).
We use a d′-dimensional Euclidean distance to find the k
nearest neighbors, as shown in Equation 2. Note that d′ is
a subset of all attributes x that are present in the function SR
returned by the GP, and is in the interval 0, .., d, where d is
the number of predictive attributes.

NNp = argmin
pi

{dist(p, pi)} (1)

dist(p, pi) =

d′∑
h=1

√
(ph − phi )2 (2)

Having the k nearest points of an examples p, we use a lin-
ear regression method to find the function that best represents
these k points (line 5). This linear equation is able to provide
a local explanation of the prediction given to p considering its
neighbours. Being a linear equation, the interpretability of LR
is more straightforward than the interpretability of the function
returned by the GP. Of course there are exceptions, specially
if the number of nodes of the GP tree is small. However, note
that this method is recommended for cases where the original
function SR is difficult to be read and understood by a human.

Next, we analyze the coefficients of LR by calculating a
measure of importance of each attribute x to the final pre-
diction (line 6). Importance is defined as the contribution that
each attribute exerts to the final value of the output of p, given
by y′. As shown in Equation 3, we look at the module of the
importance of each attribute by multiplying its coefficient by
its value in p and normalizing it. This measure of importance,
where the signal is ignored, is able to provide extra information
about the proportional contribution of each attribute during the
regression task, both from a local or a global. Recall that the
user can also access the coefficients found by the local linear
regression directly, providing an additional way of explaining
the result obtained by the regressor.

Importancexi =
|coefficientxi

× xi| × 100∑d
h=1 |coefficientxh

× xh|
(3)

In order to provide a visual interpretation of the result to
the user, we use the following procedure (line 7). We start
by checking how different are the outputs of the K training
examples in NN from the test point of interest p. As they
are neighbours, we expect than to be similar. We consider
that a difference higher than 10% of the maximum range of
the output values in T should be disregarded. For example,
if the outputs y in T are in the interval [1,10], a variation
of 1 in the neighborhood is considered as the threshold of
similarity for visual explanations. This threshold is used to
reduce the risk of considering noisy data in the explanations,
damaging the method. For the subset of neighbours in NN
within this defined threshold, we look at the variation of
the values of each attribute x in the local explanation. The
process aforementioned is repeated for each test set, providing
a justification for each prediction.

Finally, the proposed method also presents an global ex-
planation of the behavior of the symbolic regression obtained
when we have a large set of explanations for different test
points. In order to obtain that, all test points are discretized
according to the output variable in z equally spaced intervals.
For each interval, the average importance of the subset of input
attributes x is calculated. The result is then plotted on a graph
of stacked areas, given insights of the importance of different
attributes to the whole dataset (see Figure 3).

Figure 1 illustrates the results of ELA using one of the
synthetic datasets considered in the experimental analyzes
reported in Section IV. The real function, shown in black in the
figure, is defined by Equation 4. The test point p we want an
explanation for is represented by the black diamond, and the



Fig. 1. Example of the method for the synthetic dataset keijzer-1.

red line going over the black diamond was generated by ELA.
The other functions shown in the figure were generated by the
GP using different maximum depths (a parameter that has a
direct impact on model interpretability) and a simple linear
regression using the whole set of training points in T . Note
that the line produced by ELA follows the same direction of
the function generated by the symbolic regression with depth
6, also represented in red.

f(x) = 0.3x sin(2πx) (4)

IV. EXPERIMENTAL ANALYSIS

This section presents an experimental analysis of the inter-
pretability of the proposed method. The symbolic regression
method was implemented using the Python package Deap [17].
The method was also implemented in Python and is available
for download1.

The results of the proposed method are compared to the
original function found by the GP and to a linear regression
method run with no regularization, an L1 and an L2 normal-
ization [18]. These models were chosen as they are considered
interpretable regression methods, as the coefficients give us a
notion of attribute importance.

Results are analyzed in three phases. First we perform an
analysis of the different methods using all training points,
considering both RMSE and model complexity. Next, we make
a quantitative analysis of ELA using 10 synthetic datasets.
Finally, we perform a qualitative case study considering a real-
world dataset, namely the wineRed dataset.

A. Experimental Setup

We tested the proposed method in a set of 10 synthetic and
one real-world dataset, which will be later used in a qualitative
case study. The datasets are described in Table I, which shows
the total number of attributes (predictive and target (Attr.),
number of data points used in the training (Train) and test
(Test) phases. All synthetic datasets were originally presented
in [19]. The real dataset is available at the UCI repository [20],
[21].

1https://github.com/renatomir/ELA-WCCI2020

TABLE I
DATASETS USED IN THE EXPERIMENTS

Dataset Attr. Train Test Nature

keijzer-1 2 21 2001 Synthetic
keijzer-4 2 101 101 Synthetic
keijzer-7 2 100 991 Synthetic
vladislavleva-1 3 100 2025 Synthetic
vladislavleva-2 2 100 221 Synthetic
vladislavleva-3 3 600 5083 Synthetic
vladislavleva-4 6 1024 5000 Synthetic
vladislavleva-5 4 300 2700 Synthetic
vladislavleva-7 3 300 1000 Synthetic
vladislavleva-8 3 50 1089 Synthetic
wineRed 12 1279 320 Real

The GP functions are defined by the binary operations of
addition (+), subtraction (-) and multiplication (x), in addition
to the analytic quotient (AQ), which has the general properties
of division but without discontinuity (see Equation 5). The
terminals are the predictive attributes of the datasets.

Aq(a, b) =
a√

1 + b2
(5)

After a preliminary parameter tuning, the GP was executed
with an initial population of 1,000 individuals evolved for
250 generations, using a tournament selection of size 7. The
probabilities of crossover and mutation were defined as 0.8
and 0.2, respectively. The depth limit of the trees was varied
to show the differences in the number of nodes of the solutions
found and their impact in interpretability.

Considering the non-deterministic character of the results
obtained by GP, all tests presented were executed 30 times,
and the average RMSE and number of tree nodes are reported.

B. Regression with all points

We first analyze the error results of the symbolic regression
and linear regression methods when run with all test points.
This is important for two reasons: first, to show we need more
than a linear regression to solve the problem; second, to assure
the results of the local explanations will not increase the test
error.

Table II shows the mean RMSE followed by their standard
deviations in the training and test sets, respectively. Three
maximum depths of GP trees were considered: 2, 3 and 6, to
show the impact of the complexity of the model to the RMSE.
The linear regression was run without any regularization
and using both L1 and L2. The parameter that defines the
regularization force (alpha) of the methods with L1 and L2
was set at 1.0.

Observe that the results of RMSE of the GP improved as
we increased the depth of the tree. The results of the linear
regression with and without regularization present no statistical
difference for the synthetic datasets. The results of the GP with
depth 6 are the best among all tested methods in all the 10
synthetic datasets.

However, note that synthetic datasets are used to give us a
chance to analyze interpretability. In more complex data, the
GP usually outperforms LR. As we are interested in model



TABLE II
MEAN RMSE OF THE MODELS.

Dataset
TRAINING SET TEST SET

Genetic Programming Linear Regression Genetic Programming Linear Regression
Depth 2 Depth 3 Depth 6 LR L1 L2 Depth 2 Depth 3 Depth 6 LR L1 L2

keijzer-1 0.120 (0.000) 0.090 (0.002) 0.041 (0.012) 0.110 0.110 0.110 0.120 (0.000) 0.080 (0.002) 0.042 (0.012) 0.110 0.110 0.110
Keijzer-4 0.320 (0.000) 0.320 (0.000) 0.272 (0.057) 0.320 0.320 0.320 0.320 (0.000) 0.320 (0.000) 0.272 (0.057) 0.320 0.320 0.320
Keijzer-7 0.990 (0.000) 0.515 (0.075) 0.150 (0.061) 0.410 0.410 0.410 0.960 (0.000) 0.510 (0.074) 0.149 (0.060) 0.380 0.380 0.380
Vladislavleva-1 0.131 (0.005) 0.103 (0.010) 0.055 (0.014) 0.130 0.230 0.130 0.151 (0.004) 0.127 (0.008) 0.096 (0.025) 0.190 0.210 0.190
Vladislavleva-2 0.320 (0.000) 0.319 (0.004) 0.228 (0.057) 0.320 0.320 0.320 0.300 (0.000) 0.300 (0.003) 0.217 (0.053) 0.300 0.300 0.300
Vladislavleva-3 1.090 (0.000) 1.087 (0.005) 0.913 (0.132) 1.090 1.090 1.090 1.010 (0.000) 1.006 (0.005) 0.855 (0.123) 1.000 1.010 1.000
Vladislavleva-4 0.193 (0.005) 0.181 (0.003) 0.158 (0.011) 0.190 0.190 0.190 0.209 (0.004) 0.196 (0.008) 0.166 (0.014) 0.190 0.190 0.190
Vladislavleva-5 0.346 (0.034) 0.290 (0.069) 0.118 (0.075) 0.600 0.610 0.600 0.508 (0.043) 0.443 (0.088) 0.214 (0.113) 0.840 0.840 0.840
Vladislavleva-7 3.372 (0.011) 2.648 (0.385) 1.738 (0.239) 3.670 3.680 3.670 3.763 (0.014) 3.031 (0.423) 2.070 (0.288) 4.050 4.040 4.050
Vladislavleva-8 1.719 (0.002) 1.490 (0.056) 0.764 (0.108) 1.760 1.780 1.760 2.225 (0.020) 2.166 (0.085) 1.537 (0.346) 2.280 2.280 2.280

interpretability, Table III shows the complexity of the functions
obtained by all methods. For the GP, the complexity is given
by the number of nodes present in the trees of the returned
individuals. For the linear regression methods, we report the
number of coefficients different from 0.

Note that, for all datasets, the number of nodes of the GP
trees when with maximum tree depth 2 and 3 are low, but
the RMSE is high when compared to the version run with
maximum tree depth 6. Also observe that the linear regression
with L1, for most cases, returns a constant as the function that
describes the data.

When a maximum tree depth of 6 is used, allowing for
more complex models to be generated, the resulting number of
nodes is high, which would preclude a level of interpretability
suitable for the function to be understandable by a human
being. Thus, from now on, our efforts are focused on locally
approaching the curve obtained by the GP - D6 in order to
have an interpretation of the model produced.

TABLE III
COMPLEXITY OF THE FUNCTIONS FOUND BY THE METHODS.

Dataset Average size of the best individual Non-zero coefficients
GP (D2) GP (D3) GP (D6) LR LR L1 LR L2

keijzer-1 4.9 13.6 67.9 0 0 0
keijzer-4 4.3 6.3 76.4 1 0 1
keijzer-7 7.0 15.0 78.5 1 1 1
vladislavleva-1 7.0 13.5 55.9 2 0 2
vladislavleva-2 3.9 7.2 67.7 1 0 1
vladislavleva-3 4.0 10.0 70.3 2 0 2
vladislavleva-4 6.4 11.1 50.0 5 0 5
vladislavleva-5 7.0 13.4 45.2 3 0 3
vladislavleva-7 7.0 14.8 75.5 2 0 2
vladislavleva-8 7.0 14.5 79.2 2 0 2

C. Quantitative Evaluation of ELA

ELA finds a local explanation to the model predictions
based on the nearest neighbours of the point being predicted.
This section tests the performance of the method and compares
with the performance of the original functions obtained with
all points.

Fig. 2. RMSE variation of the local explanations with different numbers of
neighbors

Influence of the value of k: We first make an analysis of
the impact of the single parameter the proposed method has
on the synthetic datasets, which is the number k of neighbors
in the training set that will be considered in the local linear
regression. We varied the value of k from 2 to 19.

As observed in Figure 2, the smaller the number of
neighbors the smaller the error, but the higher the chances
of overfitting the model to a very small set of points and
generating a “false” explanation. In order to allow for a
better generalization without significantly increasing the error,
a value of k equals to 5 will be used in further experiments, as
it represents a good trade-off between error and generalization.

Results of local approximation: Table IV shows the results
of the RMSE found when comparing the real values of the
training points used as neighbours for the local approximation
by ELA with the predictions found by GP and ELA, and
also compares the values predicted by GP and ELA. Note
that these results consider the average RMSE of the points
used to generate the local approximation for all test points.
For example, in a hypothetical scenario with 10 test points
and k equals 5, we have an average RMSE over 50 different
training points. The rationale behind these results is to evaluate
the impact that local models have in the errors of the training
points. Observe that, for most cases, the real versus GP
and real versus ELA errors are very similar, showing both



functions are not very different in those regions of the space.
On the other hand, it does not make sense to calculate the
errors on the test set, as the predictions are made by the
original model produced by the GP, and only the explanation
uses this local model.

TABLE IV
MEAN RMSE OF NEIGHBORHOOD OF TEST POINTS.

Dataset Real/GP Real/ELA GP/ELA

keijzer-1 0.039 0.057 0.029
keijzer-4 0.181 0.181 0.003
keijzer-7 0.128 0.130 0.006
vladislavleva-1 0.044 0.044 0.008
vladislavleva-2 0.144 0.144 0.005
vladislavleva-3 0.496 0.495 0.014
vladislavleva-4 0.128 0.128 0.000
vladislavleva-5 0.086 0.088 0.008
vladislavleva-7 1.607 1.607 0.045
vladislavleva-8 0.635 0.654 0.145
wineRed 0.610 0.610 0.000

As we can see, the RMSE average results between the
real data and ELA are very close to the ones comparing the
real data with the GP predictions. Additionally, the difference
between the GP and ELA RMSE is considerably lower, in
all cases, than the mean RMSE between GP and the real
data. From that we can conclude that the proposed method
is actually locally describing the behavior of the function
obtained by the GP.

Finally, we show an example of the results found by
ELA for a one-dimensional dataset, keijzer-1, with different
regression methods and using ELA. As previously mentioned,
the function this dataset represents is defined in Equation 4.
As previously reported, the GP returned tree with an average
number of nodes of 65.8 when running with maximum tree
depth 6. The linear regression for the same data set, either
by the common method or using L1 and L2, resulted in the
following line:

LR(T ) = −0.04397 (6)

We chose the following point to explain the prediction
given by the GP: (0.647,−0.129). After selecting its 5 nearest
neighbors, the function found was:

LR(NN) = −0.489x+ 0.183 (7)

Figure 1 shows that the local explanation we generate
approximates well the equation obtained by the symbolic
regression and is much simpler to interpret than the original
function.

D. Qualitative case study: Wine dataset

TABLE V
WINE: COMPLEXITY OF THE FUNCTIONS FOUND BY THE GP METHODS.

Average size of the best individual
GP (D2) GP (D3) GP (D6)

7.0 14.5 52.3

Here we analyze the dataset wineRed. We chose this dataset
for two main reasons. First, it presents a nonlinear relationship
between the attributes and the output. Next, the subject of the
dataset, which describes the characteristics of wines of the red
type and the output the quality, with notes varying between 0
and 10, can be interpreted with a low degree of expertise in
the problem.

The set of attributes used to describe each instance in
wineRed is as follows: fixed acidity, volatile acidity, citric
acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulfates, and alcohol.

Analogously to what was observed in the synthetic datasets,
in WineRed there is a relationship between the growth of the
maximum tree depth of the GP and the complexity of the
model in terms of the average size of the best individual (Table
V) and smaller RMSE averages (Table VI).

Table VII shows an example of explanation found by ELA
in GP (D6), where we show the test point and the value of
the variable to be predicted. In this case, for a wine receiving
note 6, there is an error of 0.223 (6.453 for GP and 6.676 for
ELA). The table lists, apart from the coefficients of the linear
regression produced by ELA, the importance of the attributes
in the analyzed test instance.

A relevant feature that we can highlight at this point is that
the ELA tool provides an additional interpretability feature
that is the importance of attributes for regression of the test
instance.Looking at the values of attribute importance, we can
highlight two: alcohol (75.9%) and fixed acidity (8.8%).

The last lines in Table VII show the range of the values of
the attributes of neighbors considering a maximum range of
10% of variance in the output. By verifying the modifications
of the values of the attributes we can understand how wines
similar to the presented could be manufactured. For example,
the residual sugar attribute could range between 1.6 and 3.3.

Finally, since we have a large set of explanations for dif-
ferent test points, we can also provide an overall explanation
of the model using a graph of stacked areas2, as shown in
the Figure 3, where the x axis represents the output of the
method (in this case, the quality of the wine) and the y axis
the relative importance of that attribute for a wine receiving
that note. In this graph the attributes are sorted following the
same order they are listed in Table VII: the first attribute is
in the lower portion of the graph is fixed acidity in dark blue,
the second is volatile acidity in dark green and so on, up to
alcohol shown in red at the top of the graph area. Looking at
this graph we observe that, regardless of the quality attributed
to a wine, in general the most relevant attributes are alcohol
(red) and total sulfur dioxide (green). The alcohol feature has
an importance above 20% regardless of the quality of the
wine. The Total sulfur dioxide feature is more important for
intermediate quality wines, more than 30%, when compared to
high and low quality wines. In addition, we also observed that
the Fixed acidity and pH features have a behavior opposite
to Total sulfur dioxide, that is, they are more relevant in the

2https://www.chartjs.org/



TABLE VI
WINERED: MEAN RMSE OF THE GP MODELS.

TRAINING SET TEST SET
Depth 2 Depth 3 Depth 6 Depth 2 Depth 3 Depth 6

0.724 (0.037) 0.672 (0.020) 0.647 (0.013) 0.739 (0.035) 0.691 (0.030) 0.667 (0.016)

Fig. 3. Global explanation for attributing quality to a wine. The x-axis represent the note the wine received, the y-axis the relative importance of the feature
when that note is attributed to a wine.

TABLE VII
INFORMATION OF THE REGRESSION METHODS AND ELA FOR THE

WINERED DATASET.

Test point analyzed
= [10.8, 0.29, 0.42, 1.6, 0.084, 19, 27, 0.99545, 3.28, 0.73, 11.9]
Real value = 6.0
Value predicted by GP= 6.453
Value predicted by Local Explanation= 6.676
Coefficients of linear regression
= [-0.09, 0.32, 0.05, -0.17, -0.04, 0.03, -0.01, 0.02, 0.11, 0.18, 0.74]
Intercept= -1.8424176877057139
Importance of attributes
= [8.82, 0.79, 0.17, 2.39, 0.03, 5.46, 1.82, 0.14, 3.24, 1.17, 75.95]
Variation of attributes among neighbors within a maximum range
of 10% of variance (6.4313 - 6.6138):
7.9 <= fixed acidity <= 10.8
0.2 <= volatile acidity <= 0.33
0.35 <= citric acid <= 0.42
1.6 <= residual sugar <= 3.3
0.054 <= chlorides <= 0.084
6.0 <= free sulfur dioxide <= 19.0
15.0 <= total sulfur dioxide <= 27.0
0.99458 <= density <= 0.99545
3.28 <= pH <= 3.32
0.73 <= sulfates <= 0.8
11.8 <= alcohol <= 12.0

qualification of lower and upper wines and less important in
intermediate wines.

Sulfur dioxide is used in wine-production as a preservative
due to its anti-oxidative and anti-microbial properties, but also
as a cleaning agent for barrels and winery facilities. Studies
have shown that wines may have their sensorial attributes
deteriorated (e.g., oxidise) if the concentration of free sulfur
dioxide falls below a particular critical level, specific for
each particular wine. Also, wines with higher pH values may

deteriorate at higher critical levels of free sulfur dioxide [22].
We can also note that the fixed acidity attribute is more im-

portant in the task of assigning notes for low and high quality
wines, losing its importance among intermediate quality wines.

V. CONCLUSIONS AND FUTURE WORK

This work presented ELA, a method capable of generating
interpretable explanations for the results provided by regres-
sion algorithms. Differently from other approaches previously
presented in the literature, the proposed method uses the
neighborhood concept of a certain test point of interest to
carry out a local linear regression and identify how much
each input attribute influences the output. The strategy adopted
also provides ranges by which the attributes can be changed
locally, bringing more information for interpretation. In ad-
dition, a graph-based view of stacked areas is proposed to
provide an overview of the overall behavior of the model.
The experiments showed that the explanations provided have a
strong approximation with the results obtained by the symbolic
regression method in terms of RMSE, besides providing useful
explanations for understanding the results.

As future work we intend to explore the proposed method
in a wider range of real-world data and verify their level of
interpretability with experiments supported by lay users and
also specialists of the domain. Another line of investigation
to improve the method is studying the impact of a variable
neighborhood size, set according to the local density of the
training set. For example, the denser the more neighboring
instances could be used in the approximation. Finally, a
more detailed study of the range allowed for variation of the



attributes can also improve the method, given the user more
accurately information about the variations of attributes values
close to the test point.
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