
Cooperative-Coevolution-CMA-ES with Two-Stage
Grouping

Dani Irawan∗, Boris Naujoks†
Institute for Data Science, Engineering, and Analytics

TH Köln, Germany
∗Bdani.irawan@th-koeln.de 0000-0002-4213-941X

†boris.naujoks@th-koeln.de

Michael Emmerich
Leiden Institute of Advanced Computer Science

Universiteit Leiden, The Netherlands
m.t.m.emmerich@liacs.leidenuniv.nl

Abstract—The Cooperative Coevolution (CC) framework is
the state of the art for solving large scale global optimization
(LSGO) problems. A particular challenge in using CC lies in
the decomposition of variables and resource allocation. In this
work, the decomposition phase of the framework is performed
in two stages to address both variable interaction and efficient
resource allocation. The algorithm starts with differential analysis
followed by differential grouping. The differential analysis allows
efficient resource allocation while the differential grouping will
detect variable interactions. The differential grouping will act
on a small number of variables and will not consume as much
computational budget as a single-stage grouping. While not all
variable interactions will be detected, separable variables will
be recognized hence specialized solvers for separable problems
can be employed on these subproblems. In this work, the two-
stage grouping CC (TSCC) is paired with a hybrid algorithm
where sep-CMA-ES is used to solve the separable subproblem
and CMA-ES is used to solve the non-separable subproblems, the
algorithm is referred as TSCC-CMAES. A comparison between
TSCC and CC with groups based on either differential analysis
or differential grouping is carried out. In general, TSCC could
outperform the two single-stage grouping methods. Additionally,
the TSCC-CMAES shows a competitive advantage on a number
of more complex problems against state-of-the-art algorithms and
it is shown that the effect of the population size and group size
is crucial in achieving these results.

Index Terms—cooperative coevolution, large scale optimization

I. INTRODUCTION

Evolutionary algorithms (EA) have been successfully used
in solving large scale global optimization (LSGO) problems
in the Cooperative Coevolution (CC) framework [1]. The
framework employs a divide-and-conquer approach on the
large scale problem, solving it as several subproblems. Each
subproblem considers a subset of the optimization variables
that are grouped by using one or more decomposition schemes.
Throughout this paper, ”grouping” refers to these decomposi-
tion schemes. Algorithms based on the CC framework rely
heavily on the way the groups are generated [2].

Many studies state that the decomposition phase should tie
tightly-interacting variables into the same subproblem while
keeping the interactions weak among distinct subcomponents

This work is funded by the European Commission’s H2020 programme,
UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-
2016, under Grant Agreement No. 722734

[3]. Bad grouping may deteriorate some algorithms’ perfor-
mance [4]. There are many alternative grouping schemes
which are designed to detect and group interacting variables.
Some methods directly evaluate the objective function to check
interactions such as differential grouping (DG) [5] and its
successor: DG2 [6], recursive DG (RDG) [2], and the latest
version of RDG: RDG3 [7]. Some other methods learn the
correlations between the variables instead of interactions, e.g.
model complexity control (MCC) [8], maximum variance de-
composition (MaVD), and minimum variance decomposition
(MiVD) [9].

Recent studies [10]–[12] focuses on resource allocation.
The sensitivity analysis budget-allocation CC (SACC) and
contribution based CC (CBCC) algorithms can start with
any grouping method. The groups contributions are used to
determine how much computational budget are allocated to
optimize the group. In CBCC [10], the group to be optimized
is chosen based on how much improvement the group provided
at previous iterations. In [11], on the other hand, the variables’
contributions are assessed only at the start of the optimization.
Alternatively, the contributions of the variables can directly be
used for grouping. In the multilevel optimization framework
based on variables effect (MOFBVE) [12] variables with sim-
ilar contributions are grouped together by clustering methods;
then the budget for the groups are set based on their overall
contributions.

In this work, a two-stage grouping similar to multi-level CC
(MLCC) [13] is used. In MLCC, the variables are grouped
randomly and a second stage grouping is conducted after-
wards. Here, the variables are first grouped based on their
contributions and further grouped based on their interactions
within the subgroups. This will allow us to detect all separable
variables. By knowing the separable variables, the hybrid
solver approach introduced in [14] can be used. In [14],
the self-adaptive neighborhood-search differential evolution
(SaNSDE) [15] and artificial bee colony [16] algorithms
are used for the non-separable and separable subproblems,
respectively. In this work, the covariance matrix adaptation
evolution strategy (CMA-ES) [17] and separable CMA-ES
(sep-CMA-ES) [18] are used instead.

The remainder of this article is organized as follows: Section
II explains the CC framework and the base grouping methods

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

https://orcid.org/0000-0002-4213-941X

that we will combine. Sections III and IV explain how the
grouping methods are combined and how it affects the de-
composition and optimization. Section V contains the details
of what tests are conducted and the parameters used in the
tests. Finally, Sections VI and VII interpret and analyze the
results from the experiments.

II. COOPERATIVE COEVOLUTION

The CC framework has two major steps. The first step is the
decomposition of the problem into several subproblems and
the other is the optimization of the subproblems themselves.

The first step is intended as a scalability agent for op-
timization algorithms. Often, algorithms struggle to solve
LSGO problems due to the curse of dimensionality, i.e., by
dividing the LSGO problems into a set of smaller subproblems
S, it is expected that the algorithms, which are previously
unusable, can become practical again. The decomposition can
be performed automatically. Such automatic decomposition
methods are described in subsections II-A and II-B.

The second step, after grouping, is optimization. Coopera-
tive coevolution partitions the components of the optimization
variable vector x into |S| subvectors and each subvector xs

defines a subproblem (s is one of the subproblem in S). Each
subvector will be optimized separately (coevolution). However,
each subvector only has a subset of the variables needed to
compute the objective value. It is impossible to evaluate the
objective function with only xs, the whole vector x must be
filled. To address this, a context vector (CV) is introduced.
The CV contains all the variables needed to evaluate the
objective function. The optimization subproblems are then
constructed as optimizing xs while all other variables x−s are
filled with the CV (cooperation) and kept constant. After xs

is optimized with respect to the current CV, the CV is updated
with the optimized xs (see Fig. 1). When all variables in the
context vector have been updated, a cycle is complete. The
CC framework usually runs over several cycles.

Fig. 1. Optimizing the subproblems and updating the context vector.

A. Differential Grouping

Differential grouping [5] and its variants, e.g., DG2 [6],
RDG [2], RDG3 [7], and global DG (GDG) [19] are devised
to capture variable interactions to exploit additive separability
in the objective function. A function is partially separable iff:

arg min
x

f(x) = (arg min
x1

f(x1, . . .), . . . , arg min
xd

f(. . . , xd))

(1)

Further, a function is additively separable iff:

f(x) =

|S|∑
s=1

fs(xs), |S| > 1 (2)

Where f(x) is the original objective function, and each fs(.)
is one of |S| non-separable subfunctions. The variables for
each fs(.) are then grouped together. Each variable group is
solved as a separate subproblem. The variable groups form a
partition of the set of all variables.

If the non-separable subfunctions have overlapped variables,
DG would not be able to detect it at all, while in DG2,
RDG, and GDG, the subfunctions would be considered as
non-separable and all variables will be grouped together [6]. In
this case, grouping variables for all overlapping subfunctions
together is considered as the correct grouping (also known as
ideal grouping); however, this could mean that no decompo-
sition is conducted at all. The recent addition to the family,
RDG3, ensures decomposition by limiting the group sizes.

Another drawback of using DG is that it requires a lot of
function evaluations, e.g., the number of function evaluations
required by the DG2 algorithm follows Eq. 3.

FEDG2 =
d2 + d+ 2

2
(3)

This corresponds to 500501 function evaluations for prob-
lems with 1000 variables. The recursive variants of the DG
method are more efficient and able to reduce the number to
O(d log(d)) [7].

B. Differential Analysis

In solving LSGO problems, often the number of function
evaluations is limited. The optimization process may have
to be terminated before it converges to the global optimum.
Therefore, to achieve a result as close to the global optimum as
possible, more effort should be allocated to optimize variables
with larger impacts on the objective value. To know the
extent of the variables’ influence, sensitivity analysis (SA) is
performed. Several well known SA methods are available, e.g.,
Sobol variance decomposition [20], regression analysis (e.g.,
[21]), and differential analysis (DA, also known as Morris
method) [22], [23]. Among these methods, DA is an efficient
method to learn the variables’ influences on the objective value
as used in [11] and [12]. Sobol method requires many more
function evaluations (in the order of 500d, d is the number
of variables) [23] while regression analysis often requires its
model to follow a structure (parametric) or expensive to build
a reliable large scale model. In this work, the DA will be used
for SA. Furthermore, SA will be used for both grouping and
budget allocation.

For DA, each variable in the search space is divided into p
intervals. A grid jump ∆ > 0 is then chosen from a multiple
of 1/(p − 1). Elementary effect (EE) for each variable can
then be calculated using Eq. 4

EEj(x) =
f(x1, . . . , xj−1, xj + ∆, . . .)− f(x)

∆
, j = 1, ..., d

(4)

where x is a random point in the search space such that x +
∆ is still within the search space. By taking r samples of
x, several EEj can be sampled and its distribution can be
obtained. Campolongo, et al. [23] proposed to use the mean of
the absolute value of EEj , the µ∗, for ranking the importance
of each variable and it is used in this work. The variables are
then sorted the highest rank (largest µ∗) to the lowest (smallest
µ∗) and divided into levels based on the rank. For example,
the variables can be grouped into two levels by taking the
top-ranked half as the first group, and the lower-ranked half
as another group. The function evaluation required to do DA
scales linearly with d following Eq. 5.

FEDA = r ∗ (d+ 1) (5)

The benefit of using sensitivity analysis for grouping is
in resource allocation. The variable importance measures are
crucial in solving LSGO problems with a limited budget.
More budget should be allocated to optimize the variables with
higher impacts on the objective function. As the importance
values are already calculated, the computational resources can
be allocated proportional to the importance values.

Eq. 6 is an example where the variables have imbalanced
effects. A small perturbation on x1 has much larger effects on
f(x) compared to a perturbation on x3 (104 times larger).

f(x) = 106x1 + 104x2 + 102x3 (6)

III. TWO-STAGE, CONTRIBUTION-FIRST GROUPING

The two grouping schemes in Sec. II-A and II-B have
their strengths and weaknesses. Considering them, a two-stage
grouping scheme is proposed in this work and, applied in
the CC framework, we call it two-stage CC (TSCC) and the
procedure is shown in Algorithm 1.

The DA should be the primary grouping scheme because it
is cheaper than the DG and its computational cost grows much
slower. The DA allows us to recognize the more important
variables and focus the optimization effort on higher-ranked
variables. This also will ascertain that the main problem will
be decomposed into specified group sizes.

Algorithm 1 G = TSCC(func,nLevel,nV ar)
1: G = {}
2: µ∗ = Morris(func) // execute differential analysis
3: R = order the variables based on µ∗

4: k = nV ar/nLevel // group size
5: for i in 1:nLevel do
6: A = 1 : k
7: C = RA // fill group with current highest-ranked

variables
8: R = R−A // remove variables from R
9: (sepsi, nonsepsi) = DG2(func, Ci) // for each level,

use DG2
10: add sepsi and nonsepsi to Gi

11: end for

To run the TSCC algorithm, it requires several inputs: which
function to be solved func; how many levels should the
Morris method produce nLevel; and how many variables are
to be optimized nV ar. The inputs func and nV ar are defined
in the LSGO problem, while nLevel is a parameter that can
be tuned. The TSCC will give the grouping list G as an
output. In G, each level Gi has one separable variable group
and possibly several non-separable groups (seps and nonseps,
respectively). Only one of seps or nonseps can be empty.

After the first stage grouping, the groups are further grouped
into subgroups based on their interactions by DG. In this work,
DG2 is used for the secondary grouping. As the number of
variables in each group can be controlled, the computational
cost for the DG can also be controlled. For example, a problem
with 1 000 variables can be first divided into 10 groups of 100
variables. By using r = 20, this process took 20 020 function
evaluations (see Eq. 5. Based on Eq. 3, using DG2 on each of
these groups consumes 5 051 function evaluation, so in total
70 530 function evaluations are needed. This is approximately
7 times more efficient than using DG2 on the main problem.

Despite the increased grouping efficiency for the second
stage, the first stage grouping may put non-separable variables
in different groups. Consequently, variable interaction between
variables across different groups will not be detected. Separa-
ble variables, on the other hand, are still properly detected.The
grouping accuracies for the CEC2013 LSGO test problems
are shown in Tab. I. Ackley’s function on f3 and f6 are not
additively separable, hence DG2 unable to properly group it
[6]. It is also interesting to observe the grouping on f12. The
function has weak overlaps and the grouping with DA breaks
most of these overlaps so it ends up with many separable
variable and very small non-separable groups (on average 2.4
variables per group).

IV. GROUPING EFFECT ON COVARIANCE MATRIX

The CMA-ES algorithm draws its population from a mul-
tivariate normal distribution. This distribution is described by
a d-dimensional mean vector and a d × d covariance matrix.
The CMA-ES algorithm adapts the covariance matrix to raise
the probability of obtaining successful offspring [17].

In solving LSGO problems, the covariance matrix has a
large degree of freedom and learning it can dominate the
search cost. Internal computational complexity also scales
quadratically with d [18]. To make CMA-ES viable for LSGO
problems, Tong, et al. [24] uses model complexity control
(MCC) framework in MCC-CMA-ES. In MCC-CMA-ES, the
variables are grouped based on their correlation and then drops
the correlation between variables of different groups to zero.
A special case of MCC-CMA-ES is the sep-CMA-ES [18]
which restricts the covariance matrix to be diagonal.

This work is similar to MCC-CMA-ES in that it reduces
the degree of freedom by ignoring inter-group dependence;
however, the CC framework is used instead of the MCC
framework. Instead of grouping based on correlation as in
MCC-CMA-ES, this work uses a differential-based grouping
scheme. In other words, it is assumed that the variables

TABLE I
GROUPING ACCURACY OF TSCC. FIRST ENTRY (BEFORE ”/”) OF EACH CELL IS THE OBTAINED GROUPING; THE SECOND ENTRY IS THE CORRECT VALUE.

Function Separable Non-separable Non-sep. group Function Separable Non-separable Non-sep. group
f1 1000 / 1000 0 / 0 0 / 0 f9 2 / 0 998 / 1000 37 / 20
f2 1000 / 1000 0 / 0 0 / 0 f10 1 / 0 999 / 1000 28 / 20
f3 0 / 1000 1000 / 0 4 / 0 f11 1 / 0 999 / 1000 39 / 20
f4 700 / 700 300 / 300 9 / 7 f12 554 / 0 446 / 1000 189 / 1
f5 705 / 700 295 / 300 11 / 7 f13 1/0 904/905 23/1
f6 1 / 700 999 / 300 10 / 7 f14 2/0 903/905 24/1
f7 700 / 700 300 / 300 9 / 7 f15 0 / 0 1000 / 1000 4 / 1
f8 189 / 0 811 / 1000 27 / 20

are independent if they do not interact and/or have different
levels of contribution. If only interaction is considered, the
covariance matrix will have the same form as the design
structure matrix (DSM). A DSM is a binary matrix that
indicates if variables interact (1s) or do not interact (0s) [6].
An example of DSM is shown in Fig. 2, while Fig. 3 and 4
show the interaction matrix learned by the SACC and TSCC.

Fig. 2. Design structure matrix for f4 from CEC2013 benchmark problems,
ordered by group. Light color indicates interaction.

Fig. 3. Group matrix for imbalanced CEC2013 f4 problem learned by SACC
(left) and TSCC (right). The variables are ordered by group. Dark color
indicates the pair of variables are grouped together.

The base CMA-ES algorithm will learn the dependencies
(covariances) between all pairs of variables. Grouping will
reduce the model complexity because the algorithm only
considers dependencies between variables in the same group.
Covariances between variables in different groups are not
computed/learned. The less complex interaction models are
indicated by sparse points in Fig. 3 and 4. When further
grouped using DG, the model is further simplified and will
resemble the DSM as shown by the right-plot of both figures.

Fig. 4. Group matrix for balanced (equal weights) CEC2013 f4 problem
learned by SACC (left) and TSCC (right). The variables are ordered by group.
Dark color indicates the pair of variables are grouped together.

The TSCC grouping may produce the ideal grouping when the
problem has imbalanced subproblems as shown in Fig. 3.

V. NUMERICAL EXPERIMENT

To assess the performance of TSCC, the grouping scheme
is tested on the CEC2013 benchmark problems [25]. In this
work, the following algorithms are tested:

1) CC-DG2-CMAES: CC decomposed by DG2. CMA-ES
used on non-separable subproblems and sep-CMA-ES
for separable subproblems.

2) SACC-CMAES: SA-based CC with CMA-ES solver.
3) TSCC-CMAES: Two-stage grouping CC. CMA-ES used

on non-separable subproblems and sep-CMA-ES for
separable subproblems.

4) sep-CMA-ES: sep-CMA-ES without decomposition.
5) CCDG2: CC with DG2 solved by SaNSDE.
6) SACC-DE: SACC with SaNSDE solver.
7) TSCC-DE: Two-stage grouping CC solved by SaNSDE.
The algorithms are chosen to allow comparison between

single-stage grouping with either SA or DG against the two-
stage grouping. The grouping methods are then paired with
CMA-ES and SaNSDE. The two solvers are chosen because
of their prominent use in the field. Additionally, while in
algorithm 4 no decomposition is performed, it has the simplest
covariance model a CMA-ES can have.

For each test problem, 25 repetitions with the same set of
random number seeds are used. This ensures that the result
from DA will always be the same for the same seed. The
groups obtained in SACC-CMAES will be the same as in
SACC-DE. These groups are also the ones that are further
processed by DG2 for TSCC. In this work, the number of

variable levels produced by DA is set at 4 levels for all tests,
similar to the number of levels used in [12]. However, it should
be noted that the grouping used here is slightly different to the
grouping in [12].

In this work, the number of iteration is scaled with respect
to

∑
i∈S µ

∗
i , with S being a variable group. The following

formula is used to determine the portion of the computational
budget being assigned to a group:

Iters =

{
1 + log

∑
i∈S µ

∗
i , if

∑
i∈s µ

∗
i > 1

1, otherwise
(7)

A similar resource allocation scheme is used for CMA-
ES based algorithms. For CMA-ES, the portion calculated
by Eq. 7 is normalized by the total portion and multiplied
by a fixed number n to allow cumulation learning in CMA-
ES. In this work, n = 2000 is used so that the cumulation
is quite long while also ensuring several CC cycles will be
conducted. The solvers are initially configured following the
default setting as suggested in [17] and [18]. The population
size and offspring size are set equal to the number of variables
in the subproblems. For each subproblem, the covariance
matrix, step-size, and evolution path are persistent throughout
each experiment.

The computation budget is set at 3 000 000 function evalu-
ations and data is logged every 100 000 function evaluations.
All codes are written in R and ran on R version 3.6.1.

VI. PERFORMANCE COMPARISON

A. TSCC compared to single-stage grouping

To assess the performance of the proposed grouping scheme,
we start by looking at the convergence plots of several
functions. Fig. 5 shows flat performances at the early stage
for both CC-DG2-CMAES and CC-DG2-DE on all plots. The
flat line is due to the grouping taking approximately 500 000
function evaluations. Afterwards, the CC-DG2-CMAES algo-
rithm starts with large step-size and most offspring are not
feasible as the algorithm adapts to the problem thus the flat
region is longer. On f13 and f14 the CC-DG2-CMAES does
not improve at all due to step-size divergence (see Section
VI-B). SACC and TSCC, on the other hand, use far fewer
function evaluations for grouping and the objective values
improve relatively early. For a more detailed look on the
performances, Tab. II shows comparison of the performances
between the algorithms at 3 000 000 function evaluations.

For DE-based algorithms, in general, TSCC-DE does not
outperform SACC-DE. On fully separable (f1-f3) and fully
non-separable functions (f15), TSCC-DE will produce the
same grouping as SACC. This means the additional computa-
tional cost for the secondary grouping is wasted. Considering
4 primary groups are used, each with 250 members, the TSCC-
DE is lagging by approximately 125 500 function evaluations
and its performances are similar to or worse than SACC-DE
on those functions.

One particularly interesting result is seen on f12: TSCC-DE
performs much worse than SACC-DE. The reason for the large

performance drop is because the function has a single variable-
overlap between subproblems (weak link) and the sensitivity-
analysis based grouping disconnects the overlaps. When DG2
is applied, the final groups consist of many small subgroups
where most subgroups only contain two variables. Liu, et al.
[26] have previously shown that SaNSDE is not efficient in
solving subproblems with very few variables and it explains
the large performance drop in TSCC-DE.

Contrary to the performance drop in DE-based algorithms,
TSCC-CMAES outperforms SACC-CMAES in most cases.
The performance improvement is not from exploitation of the
variable interactions because CMA-ES is rotationally invari-
ant. The performance improvement can be attributed to the
smaller search space after the secondary grouping. Mei, et al.
[27] has shown that CMA-ES generally performs better and
converges faster on smaller groups of variables. The SACC
and TSCC also address the suggestion in [27] to decompose
the problem even when the ideal grouping would require the
problem to be solved without decomposition, e.g. f12-f15.

The SACC-CMAES outperforms TSCC-CMAES in f2 and
f5, but not f9, all of which are constructed by Rastrigin’s
functions. According to [28], [29], the performance of CMA-
ES on Rastrigin’s function increases as its population size
grows. Because on TSCC-CMAES the population size is
scaled to the group size, the population sizes on TSCC-
CMAES will be smaller. On f5, one of the subproblem has
a group size of 700, thus a large population size would be
required to solve it. Compared to f5, the largest group size
in f9 is much smaller: 100. Tests on TSCC-CMAES with 2d
population size and n = 1000 shows an improvement for f5.
With the modified setting, TSCC-CMAES can reach objective
values at the order of 105 on f5.

On f2, the reason for the performance drop is different.
The DG2 did not change the grouping but switch the solver
from CMA-ES to sep-CMA-ES. As the performance of sep-
CMA-ES is not largely different from SACC-CMA-ES, the
performance gain from the switch is not significant. This
means that the function evaluations for DG2 are wasted.

B. TSCC-CMAES compared to sep-CMA-ES

The sep-CMA-ES algorithm is different to the original
CMA-ES as it ignores the off-diagonal component of the co-
variance matrix. This means the mutation step in sep-CMA-ES
considers each variable separately with no inter-dependency
with other variables. This is the simplest covariance matrix
model for CMA-ES. The algorithm has been shown to have
good performance on separable problems and problems with
low degree of non-separability [18].

Surprisingly, sep-CMA-ES is not the best performing al-
gorithm on f1. The sep-CMA-ES is suitable for the problem
(fully separable) and it did not use any function evaluation
for grouping. However, it is greatly outperformed by SACC-
and TSCC-based algorithms. The advantage of the algorithms
that uses SACC and TSCC over sep-CMA-ES is the resource
allocation. While the function did not include any weighting

Fig. 5. Convergence plots for CEC2013 test problems. Convergence plots for some algorithms are not visible due to them having much worse performance.

factor, it is actually an imbalanced problem due to the power
terms so resource allocation is crucial.

The sep-CMA-ES algorithm actually has the best perfor-
mance on f12, probably due to the weak links between
variables, i.e. low degree of non-separability. Interestingly,
the TSCC-CMAES is almost fully separable (large separable
group and small non separable groups), so similar performance
to sep-CMA-ES is expected; however, TSCC-CMAES perfor-
mance is actually the worst for f12. One might presume the
bad performance is due to low grouping accuracy; however,
it should be noted that CC-DG2-CMAES which has ideal
grouping also has poor performance on the problem, while
a completely wrong grouping (sep-CMA-ES considers all
variables to be separable) gives significantly better results
than the ideal grouping. This implies that the problem lies
elsewhere. The performance drop is actually because the
population size is directly tied to the group size so the non-
separable subproblems are solved with CMA-ES with very
small population. While CMA-ES is designed to work even
with small population, larger population has been shown to
significantly improve performance [28], [30], [31]. With 2d
population size and n = 1000 TSCC-CMAES can reach
objective values at the order of 103 on f12.

The results on f13-f15 show the shortcoming of sep-CMA-
ES (and CMA-ES in general) on large scale problems. The
sep-CMA-ES as well as CC-DG2-CMAES fail on f13-f15
because the CMA-ES step-size diverges on all these functions.
The step-size divergence is a common problem for CMA-
ES as also reported in other numerical experiments, e.g. in
[32], [33]. On some problems, the step-size keeps increasing
to infinity and the algorithm cannot find a feasible solution
except the initial samples. Varelas, et al. [33] suggest changing

the default cumulative step-size adaptation to the two-point
step-size adaptation introduced in [34]. However, we tested
another alternative: as the problem normally occurs on large
scale problem, creating small groups of variables may also
be a solution. By increasing the number of levels generated
by the DA from 4 to 10, the performance of TSCC-CMAES
improves by 10 orders of magnitude on f15.

C. Comparison in TACO

We compare the performance of SACC-CMAES and TSCC-
CMAES with benchmark results available online in Toolkit for
Automatic Comparison of Optimizers (TACO) available online
at tacolab.org. The mean ranking of the algorithms for each
test functions are presented in Tab. III.

The table shows that TSCC-CMAES is in general better
than SACC-CMAES and, overall, the TSCC-CMAES per-
forms well on problems based on Rastrigin’s function. How-
ever, it is ranked low on the fully separable Ackley’s function.
Ackley’s function is nearly flat and looks like a needle-in-a-
haystack problem [35]. A guided search in such problem is
likely to fail [36].

VII. CONCLUSION

In this paper, a two-stage cooperative cooperation method
is proposed. The variables are first grouped based on the
result from a DA which requires O(d) function evaluations
and further grouped using DG2. DA inherently allows for effi-
cient computation resource allocation. The two-stage grouping
method is especially powerful when the problem is imbal-
anced; however, interactions between variables are not always
detected. Separable variables, on the other hand, are correctly
identified so solvers for separable problems can be used. In this

TABLE II
PERFORMANCE COMPARISON OF THE ALGORITHMS ON CEC2013 TEST PROBLEMS

CC-DG2-CMAES SACC-CMAES TSCC-CMAES sep-CMA-ES CC-DG2-DE SACC-DE TSCC-DE

f1

median 2.76E+07 4.02E-07 7.36E-18 1.63E-01 8.69E+01 4.09E-12 5.77E-12
mean 2.88E+07 5.18E-07 7.48E-18 1.39E+00 1.01E+03 6.56E-12 1.11E-11
std 6.89E+06 3.93E-07 2.73E-19 5.60E+00 3.69E+03 7.13E-12 1.31E-11

f2

median 9.06E+03 6.48E+02 6.62E+02 5.92E+02 1.23E+04 2.68E+03 2.66E+03
mean 9.03E+03 6.50E+02 6.58E+02 5.93E+02 1.23E+04 2.70E+03 2.71E+03
std 2.85E+02 2.41E+01 2.72E+01 2.64E+01 6.21E+02 1.86E+02 2.26E+02

f3

median 2.16E+01 2.15E+01 2.15E+01 2.16E+01 2.14E+01 2.12E+01 2.12E+01
mean 2.16E+01 2.15E+01 2.15E+01 2.16E+01 2.14E+01 2.12E+01 2.12E+01
std 5.46E-03 1.13E-02 1.13E-02 6.88E-03 1.40E-02 8.91E-03 1.19E-02

f4

median 1.63E+07 2.63E+08 1.65E+06 1.25E+10 5.09E+10 9.15E+09 3.83E+08
mean 2.04E+07 2.70E+08 2.46E+06 1.31E+10 5.48E+10 9.39E+09 4.79E+08
std 1.05E+07 4.28E+07 2.45E+06 2.71E+09 1.94E+10 3.40E+09 3.89E+08

f5

median 9.34E+05 6.43E+05 1.08E+06 4.97E+05 5.22E+06 5.66E+06 5.41E+06
mean 9.03E+05 6.59E+05 1.12E+06 5.01E+05 5.26E+06 5.58E+06 5.35E+06
std 1.15E+05 7.47E+04 1.89E+05 6.64E+04 4.66E+05 6.59E+05 2.83E+05

f6

median 1.06E+06 9.99E+05 9.96E+05 1.06E+06 1.06E+06 1.06E+06 1.06E+06
mean 1.06E+06 1.02E+06 1.00E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06
std 1.07E+03 3.07E+04 2.16E+04 1.46E+03 1.65E+03 1.20E+03 1.18E+03

f7

median 3.14E+05 6.55E+15 1.94E+07 6.01E+06 6.92E+07 1.09E+07 1.24E+08
mean 2.99E+05 6.60E+15 4.95E+12 6.03E+06 6.83E+07 1.47E+07 1.32E+08
std 7.96E+04 5.15E+15 2.48E+13 7.45E+05 2.49E+07 1.02E+07 9.49E+07

f8

median 4.06E+11 4.21E+12 1.10E+09 2.64E+14 4.48E+15 3.79E+13 6.69E+13
mean 5.14E+11 4.31E+12 1.24E+09 2.67E+14 4.67E+15 3.84E+13 5.15E+14
std 3.71E+11 8.34E+11 6.24E+08 7.74E+13 1.50E+15 2.02E+13 2.20E+15

f9

median 5.83E+07 8.85E+07 6.40E+07 3.39E+07 5.00E+08 2.92E+08 2.85E+08
mean 5.84E+07 9.03E+07 6.75E+07 3.23E+07 5.01E+08 2.90E+08 2.71E+08
std 1.24E+07 7.91E+06 1.19E+07 3.83E+06 2.49E+07 3.32E+07 6.35E+07

f10

median 9.44E+07 9.38E+07 9.05E+07 9.41E+07 9.46E+07 9.38E+07 9.43E+07
mean 9.37E+07 9.29E+07 9.06E+07 9.41E+07 9.46E+07 9.38E+07 9.43E+07
std 1.43E+06 1.60E+06 6.10E+04 1.12E+05 2.63E+05 2.20E+05 1.76E+05

f11

median 3.15E+07 3.07E+08 4.03E+08 2.06E+21 8.33E+09 3.47E+08 1.39E+09
mean 3.17E+07 4.98E+16 5.51E+08 2.31E+21 1.01E+10 2.96E+09 1.67E+10
std 1.30E+07 1.25E+17 4.32E+08 1.02E+21 8.79E+09 1.16E+10 2.56E+10

f12

median 1.37E+09 3.00E+03 2.45E+10 1.04E+03 8.00E+03 2.91E+03 5.05E+09
mean 1.68E+09 2.97E+03 3.10E+10 1.04E+03 1.25E+06 2.95E+03 6.32E+09
std 8.56E+08 3.06E+02 2.04E+10 1.22E+01 6.11E+06 2.21E+02 4.34E+09

f13

median 1.06245E+17 5.95E+08 1.72E+09 8.94E+16 1.52E+09 7.21E+08 7.40E+09
mean 1.06245E+17 5.50E+16 1.99E+09 8.97E+16 1.54E+09 3.96E+09 7.06E+09
std 0 1.92E+17 1.38E+09 1.82E+15 3.87E+08 6.61E+09 3.88E+09

f14

median 1.22809E+17 1.18E+10 3.56E+10 4.40E+18 6.76E+09 8.75E+08 4.00E+10
mean 1.22809E+17 2.18E+10 6.29E+10 4.42E+18 8.28E+09 4.60E+10 6.64E+10
std 0 2.94E+10 6.27E+10 1.31E+17 4.45E+09 1.03E+11 7.36E+10

f15

median 1.70625E+17 1.42E+18 1.42E+18 -a 1.70625E+17 1.21E+17 1.32E+17
mean 1.70625E+17 1.74E+18 1.74E+18 -a 1.70625E+17 1.42E+17 1.51E+17
std 0 1.18E+18 1.18E+18 -a 0 7.74E+16 1.03E+17

aThe algorithm never finish successfully.

TABLE III
FINAL-RESULT MEAN-RANK COMPARISON USING THE TACO PLATFORM

Algorithm-Rank
CC-RDG3 DGSC MLSHADE-SPA MOS SACC-CMA-ES SHADEILS TSCC-CMA-ES

F01 3 7 3 3 6 3 3
F02 7 4 1 5 2 6 3
F03 4 5 1 2 7 3 6
F04 1 6 7 4 5 3 2
F05 5 6 4 7 1 3 2
F06 3 7 1 2 6 5 4
F07 1 5 4 3 7 2 6
F08 1 7 6 5 4 3 2
F09 3 6 4 7 2 5 1
F10 4 7 1 2 6 5 3
F11 1 6 3 4 7 2 5
F12 4 5 2 3 6 1 7
F13 1 5 4 3 7 2 6
F14 5 4 2 3 6 1 7
F15 2 4 5 3 7 1 6
Mean 3.000 5.600 3.200 3.733 5.267 3.000 4.200

work, DG2 was used, but faster secondary grouping methods
such as the RDG should be considered if the DSM is not
needed.

The two-stage grouping method can outperform SACC
when paired with CMA-ES. CMA-ES is rotationally invariant
so variable interaction will not be exploited by the two-stage
grouping; instead, TSCC benefit from smaller group sizes
which help CMA-ES to converge more rapidly. Additionally,
because separable variables are recognized, sep-CMA-ES can
be used to solve the separable subproblem. A small test has
proven that population-size and group-size tuning can greatly
improve performance. An adaptive parameters tuning is likely
to improve TSCC-CMAES performance. Lastly, the step-size
divergence that is frequently observed on large-scale CMA-ES
can be prevented by setting small group sizes.

Future work should also consider multiobjective optimiza-
tion problems, where large scale optimization can be defined
not only on the number of decision variables, but also based
on the number of objective functions and disciplines involved.
First works on the topic has been carried out in [37], [38].

REFERENCES

[1] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving from Nature,
Y. Davidor, H.-P. Schwefel, and R. Männer, Eds. Springer Berlin,
1994, pp. 249–257.

[2] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposition
method for large scale continuous optimization,” Transactions on Evo-
lutionary Computation, vol. 22, no. 5, pp. 647–661, 2018.

[3] W. Chen and K. Tang, “Impact of problem decomposition on cooperative
coevolution,” in Congress on Evolutionary Computation. IEEE, 2013,
pp. 733–740.

[4] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” Biosystems, vol. 39, no. 3,
pp. 263 – 278, 1996.

[5] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” Transactions on
Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.

[6] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “Dg2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” Transactions on Evolutionary Computation, vol. 21, no. 6,
pp. 929–942, 2017.

[7] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-
scale optimization problems with overlapping components,” in Congress
on Evolutionary Computation. IEEE, 2019, pp. 326–333.

[8] W. Dong, T. Chen, P. Tiňo, and X. Yao, “Scaling up estimation of
distribution algorithms for continuous optimization,” Transactions on
Evolutionary Computation, vol. 17, no. 6, pp. 797–822, 2013.

[9] J. Liu and K. Tang, “Scaling up covariance matrix adaptation evolution
strategy using cooperative coevolution,” in Intelligent Data Engineering
and Automated Learning, H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee,
T. Weise, B. Li, and X. Yao, Eds. Springer Berlin, 2013, pp. 350–357.

[10] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “Cbcc3 — a
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in 2016 IEEE Congress on Evolution-
ary Computation (CEC), July 2016, pp. 3541–3548.

[11] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Cooperative co-evolution
with sensitivity analysis-based budget assignment strategy for large-scale
global optimization,” Appl. Intell., vol. 47, no. 3, pp. 888–913, 2017.

[12] ——, “Multilevel framework for large-scale global optimization,” Soft
Comput., vol. 21, no. 14, pp. 4111–4140, 2017.

[13] Zhenyu Yang, Ke Tang, and Xin Yao, “Multilevel cooperative coevolu-
tion for large scale optimization,” in World Congress on Computational
Intelligence. IEEE, 2008, pp. 1663–1670.

[14] M. El-Abd, “Hybrid cooperative co-evolution for large scale optimiza-
tion,” in Symposium on Swarm Intelligence. IEEE, 2014, pp. 1–6.

[15] Zhenyu Yang, Ke Tang, and Xin Yao, “Self-adaptive differential evolu-
tion with neighborhood search,” in World Congress on Computational
Intelligence. IEEE, 2008, pp. 1110–1116.

[16] D. Karaboga, “An idea based on honey bee swarm for numerical opti-
mization,” Erciyes University, Engineering Faculty, Tech. Rep., 2005.

[17] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, 2001.

[18] R. Ros and N. Hansen, “A simple modification in cma-es achieving
linear time and space complexity,” in Parallel Problem Solving from
Nature, G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni,
Eds. Springer Berlin, 2008, pp. 296–305.

[19] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” Trans. Math. Softw., vol. 42, no. 2, pp. 13:1–13:24, 2016.

[20] I. Sobol, “Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates,” Math. Comput. Simulat., vol. 55, no. 1,
pp. 271 – 280, 2001.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R.
Stat. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.

[22] M. D. Morris, “Factorial sampling plans for preliminary computational
experiments,” Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

[23] F. Campolongo, J. Cariboni, A. Saltelli, and W. Schoutens, “Enhancing
the morris method,” in Sensitivity Analysis of Model Output, 2005, pp.
369–379.

[24] X. Tong, B. Yuan, and B. Li, “Model complex control cma-es,” Swarm
Evol. Comput., vol. 50, p. 100558, 2019.

[25] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the cec’2013 special session and competition on large-
scale global optimization,” 2013.

[26] H. Liu, Y. Wang, X. Liu, and S. Guan, “Empirical study of effect of
grouping strategies for large scale optimization,” in International Joint
Conference on Neural Networks, 2016, pp. 3433–3439.

[27] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” Trans. Math. Softw., vol. 42, no. 2, pp. 13:1–24, 2016.

[28] N. Hansen and S. Kern, “Evaluating the cma evolution strategy on
multimodal test functions,” in Parallel Problem Solving from Nature,
X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós,
J. A. Bullinaria, J. E. Rowe, P. Tiňo, A. Kabán, and H.-P. Schwefel,
Eds. Springer Berlin, 2004, pp. 282–291.

[29] A. Ahrari and M. Shariat-Panahi, “An improved evolution strategy with
adaptive population size,” Optimization, vol. 64, no. 12, pp. 2567–2586,
2015.

[30] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),” Evol. Comput., vol. 11, no. 1, p. 1–18,
2003.

[31] Y. Jin, M. Olhofer, and B. Sendhoff, “On evolutionary optimization
of large problems using small populations,” in Advances in Natural
Computation, L. Wang, K. Chen, and Y. S. Ong, Eds. Springer Berlin,
2005, pp. 1145–1154.

[32] I. Loshchilov, “A computationally efficient limited memory cma-es for
large scale optimization,” in Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 397–404.

[33] K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A. ElHara, Y. Semet,
R. Kassab, and F. Barbaresco, “A comparative study of large-scale
variants of cma-es,” in Parallel Problem Solving from Nature, A. Auger,
C. M. Fonseca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley,
Eds. Springer Cham, 2018, pp. 3–15.

[34] N. Hansen, “Cma-es with two-point step-size adaptation,” 2008.
[35] A. Auger and N. Hansen, “A restart cma evolution strategy with

increasing population size,” in Congress on Evolutionary Computation,
vol. 2. IEEE, 2005, pp. 1769–1776 Vol. 2.

[36] F. Rothlauf, Optimization Problems. Springer Berlin, 2011, pp. 7–44.
[37] L. M. Antonio and C. A. C. Coello, “Use of cooperative coevolution for

solving large scale multiobjective optimization problems,” in Congress
on Evolutionary Computation. IEEE, 2013, pp. 2758–2765.

[38] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework
for large-scale multiobjective optimization based on problem transfor-
mation,” Trans. on Evol. Comput., vol. 22, no. 2, pp. 260–275, 2017.

