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Abstract—Clustering is a widely used unsupervised learning
technique. However, as the size and complexity of data increases,
the performance of clustering algorithms diminishes, as well
as the interpretability of the clustering partition. Genetic pro-
gramming has been used to perform feature construction on
data to increase clustering performance. However, existing work
has not focused on encouraging simpler constructed features. In
this paper, existing techniques are further developed to include
parsimony pressure—a method to encourage evolution towards
simpler solutions. With simpler solutions, the constructed fea-
tures become easier to understand and interpret. The results
of experiments using the proposed method show that parsimony
pressure is an effective method for producing significantly simpler
constructed features without any reduction on the performance
of k-means++ clustering. Evolved individuals are also analysed to
demonstrate the effect of parsimony pressure on interpretability,
showing the power of parsimony pressure for avoiding redun-
dancies in individuals, and thus increasing the interpretability.

Index Terms—Clustering, Genetic Programming, Feature Con-
struction, Parsimony Pressure, Feature Selection, k-means.

I. INTRODUCTION

Clustering is an important unsupervised machine learning
technique that can be used to understand the structure of un-
labelled data by partitioning the instances into separate groups,
or clusters [1]. A clustering algorithm seeks to find a cluster
partition, whereby instances in the same cluster are similar,
and instances in different clusters are different. However, as
the dimensionality and complexity of data increases, clustering
techniques become less effective and efficient, and the results
become difficult to interpret [2]. This problem is related to
the “curse of dimensionality”, where data becomes more and
more sparse as the dimensionality increases. [3].

To address the problem of clustering complex data, dimen-
sionality reduction techniques can be used to reduce the num-
ber of features (attributes) of the data. Feature manipulation
is a powerful method in this regard, and can either work
by eliminating redundant features (feature selection), or by
constructing new, higher-level constructed features from the
original feature set (feature construction (FC)) [4]. Feature ma-
nipulation can help to reduce noise in the data, and highlight
higher-level interactions between features. For this reason,
there is often a desire to be able to interpret the constructed
features themselves to better understand the data [5]. When

used for clustering, understanding the constructed features
can also complement the partition produced by the clustering
algorithm. By understanding which features are important to
find a good partition and which are not, the meaning of the
clusters can become better understood.

Genetic programming (GP) is a technique that has show
promising use for FC [6], [7]. GP is an evolutionary computa-
tion method that generates solutions in the form of simple
computer programs, known as individuals. GP starts with
a population of random individuals, which are then refined
generation by generation to produce high-quality solutions.
As GP individuals are dynamic in size, a common problem
encountered is bloat. Bloat occurs when individuals continue
to grow in size through the evolutionary process without any
significant change to their fitness, causing individuals to de-
velop redundant elements [8]. This results in individuals being
larger and more complex than is required by the problem.

Various bloat-control techniques have been proposed, such
as depth limiting [9] or parsimony pressure [10]. Depth lim-
iting ensures individuals do not grow beyond a certain depth,
while parsimony pressure works by penalising individuals
in the evolution process based on a a measure of size or
complexity.

Existing GP-based FC has placed little focus on the simplic-
ity and interpretability of results, instead emphasising perfor-
mance. Understanding the constructed features can therefore
become difficult—potentially even impossible—with the large
size of individuals generated by existing GP-based FC meth-
ods. To address this, we will explore incorporating the use of
parsimony pressure into existing GP-based FC for clustering
methods in this work. We will:

• Propose a revised GP algorithm for FC in clustering that
uses parsimony pressure to encourage the evolutionary
process towards smaller individuals;

• Evaluate the proposed method against existing GP for FC
methods, as well as against a clustering baseline using no
feature manipulation; and

• Analyse selected GP individuals to better understand
the complexity of individuals when not using parsimony
pressure, and the impact the parsimony pressure has when
applied.
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II. BACKGROUND

A. Genetic Programming

GP works by starting with a population of randomly gener-
ated individuals. A new generation is then selected based on a
selection operator which considers their fitness as determined
by the fitness function. This new generation has genetic oper-
ators applied, producing the next generation. This repeats for
a set amount of generations, or until an acceptable individual
is found.

The most common representation of a GP individual is a
tree-like computer program [9]. This representation is not fixed
in size, as its depth can be increased or decreased through
genetic operations. As GP traditionally considers only the
fitness of an individual, an individual could continually grow
without any change in fitness, or be generated unnecessarily
large and have no reason to become smaller—resulting in
bloat.

Parsimony pressure is a technique that penalises larger
programs. In doing so, parsimony pressure drives the evolution
process towards smaller solutions. The parsimony pressure
algorithm that this work will use is lexicographic parsimony
pressure [11]. This pressure works by assigning the individuals
in each generation a rank based on their fitness. Then, for the
purposes of any comparisons between any individuals in that
generation—for example in tournament selection—individuals
of differing ranks are compared by rank, while individuals
of the same rank are compared by a measure of complexity
(i.e. tree depth, total nodes). This allows the complexity to
be factored into the selection, penalising selecting complex
representations and favouring simpler solutions.

An important component of lexicographic parsimony pres-
sure is the algorithm chosen to assign the fitness rankings. How
the rankings are assigned determines how “aggressive” the
parsimony pressure is. The least aggressive of these is simply
assigning the same rank to all individuals with the exact same
fitness. This algorithm leads the parsimony pressure to simply
act as a “tie breaker”, and only considers the complexity of
an individual when comparing two individuals with the same
fitness.

There are other ranking methods such as direct-bucketing
and ratio-bucketing which divide the population more aggres-
sively into fewer ranks [11]. Direct-bucketing works by divid-
ing the population into b roughly-equally sized ranks, while
ratio-bucketing works by assigning the lowest performing 1/r
individuals to the lowest rank, then the lowest performing 1/r
of the remaining population to the second-lowest rank etc.
until all individuals have been assigned a rank.

B. Feature Construction

FC is a technique used to reduce the dimensionality of data
by selecting and combining features of the original data to
create a smaller set of constructed features [4]. This is a
highly useful technique, as reducing the dimensionality of
data can allow machine learning and Artificial Intelligence
(AI) algorithms to perform more efficiently and effectively.
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Fig. 1. An example of a GP individual representing a single constructed
feature.

Additionally, the lower the dimensionality of the data, the more
understandable the results can potentially be.

Using GP for FC has been explored for both supervised
and unsupervised techniques [6], [12]. The tree-based structure
of GP makes it a strong candidate for representing con-
structed features. A constructed feature can be represented as
a tree where the leaves are features of the original data and
ephemeral random constants (ERCs)1, while the internal nodes
are mathematical and logical functions. From this, we can feed
the original data in to the tree and produce a single numerical
value representing a feature constructed from the original data.
An example of this can be seen in Fig. 1. In this example, the
individual can be expressed as f1

(f3+f9) where f1, f3, and
f9 are original features of the data. This represents a single
constructed feature comprised of three of the original features.

The quality of a given set of constructed features is de-
pendent on the problem that they are being applied to. In the
case of FC for clustering, partitions produced using the set of
constructed features can be compared with partitions produced
using all of the original features. Other ways the quality can
be measured include the number of constructed features, or the
size of the subset of original features used. Just as reducing
the dimensionality of the data can help make the data more
understandable, so too can having simpler constructed features.

C. Clustering

Clustering is an important technique for understanding the
structure of data. Clustering algorithms work by assigning
each instance of a dataset to a cluster. As clustering is an
unsupervised learning task, evaluating a clustering solution
is more subjective than in supervised contexts, as ground-
truth labels are unavailable. Hence, there are many different
measures to evaluate clustering performance. These can be
divided into two categories: internal and external measures.

Internal measures evaluate a partition by assessing the struc-
ture of clusters. They can consider aspects such as similarity
within a cluster and/or dissimilarity between clusters. These
measures are subjective, and can evaluate a partition according
to a number of different criteria.

External measures test a given partition against a ground-
truth partition. External measures are an effective way of
objectively evaluating a partition (e.g. for benchmarking),

1ERCs are values that are randomly initialised when inserted into the tree
and then remain constant thereafter.



however they can only be used when ground-truth labels are
available.

A plethora of clustering algorithms have been proposed in
the literature. In this work, we use the popular clustering al-
gorithm, k-means; specifically the more powerful k-means++
variant [13]. k-means++ is an efficient and simple algorithm
for producing cluster partitions. The key difference between
k-means and k-means++ is in the initialisation of clusters. In
normal k-means, the initial centroids are selected at random.
k-means++, however, attempts to select initial centroids that
are well-separated. This leads to performance which is at least
as good as k-means, and often better. Beyond this, the two
algorithms are functionally identical, and operate as follows
once the initial centroids have been chosen:

• Each instance of the data is assigned to the nearest
centroid according to a distance measure, forming the
clusters;

• The mean of each cluster is computed;
• The means of the clusters are set as centroids for the next

iteration.

This repeats for a preset amount of iterations or until the
centroids stabilise and no longer change between iterations.

D. Related Work

There has been limited work in the area of GP-based FC
in unsupervised learning. The research that this paper signif-
icantly extends [12] showed promising results in using GP-
based FC for clustering. Two representations were proposed:
a multi-tree and vector-based approach [12]. In the multi-tree
approach, each GP individual is a set of trees, which each
represent a constructed feature. In the vector-based approach,
each individual is a single tree that uses concatenation and
pairwise set operators to produce a single vector of constructed
features. The work in [12] showed promising results using the
different representations with a few different fitness functions,
and will serve as a foundation for the method this work
proposes.

While there has presently been no work on reducing the
complexity of constructed features in GP-based FC for clus-
tering, there has been research into using bloat control with
GP for symbolic regression [14], [15]. Even though this is
not directly FC, in symbolic regression FC is performed
implicitly by selecting a combination of features and functions
to produce a solution. The results in [14] demonstrate that
bloat control techniques—including parsimony pressure—can
be used to significantly reduce the complexity of GP-based
FC individuals while still retaining high-quality solutions.

III. PROPOSED METHOD

Existing GP methods for FC in clustering do not consider
the interpretability of constructed features in their evolutionary
process. This work proposes a revised approach that includes
the use of lexicographic parsimony pressure to encourage
smaller—and therefore more interpretable—individuals.

f1 +

f0 -

min f6

× ÷

f0 f2 f4 f2

f2 ÷

f8 ÷

f3 f9

-

f7 f3

(a) (b) (c) (d) (e)

Fig. 2. An example of a set of five constructed features represented as a multi-
tree GP individual. Trees (a) and (c) are performing simple feature selection,
while (b), (d) and (e) represent higher-level constructed features.

A. Representation

We use the multi-tree representation presented in [12],
where each tree corresponds to a single constructed feature.
This representation was selected over the vector-tree repre-
sentation due to its syntax and semantics being more closely
related, allowing for more meaningful crossover. An example
of the multi-tree representation is provided in Fig. 2. The func-
tion set used contains basic arithmetic operators (+,−,×,÷),
max and min functions, and an if function. Every operator
other than the if function takes two floating point numbers
as inputs and produces a single floating point output. The
÷ is protected division, which protects against division-by-
zero errors by simply returning 1 whenever an operation is
attempted with 0 as the divisor. The if function takes three
floating point numbers as input. If the first input is positive, the
second input is returned; otherwise the third input is returned.

Using a multi-tree approach requires special evolutionary
operators to be designed. Mutation is done simply by per-
forming standard mutation on a randomly selected tree of the
individual. For crossover, as in [12], random index crossover
(RIC) is used. Using RIC, when two individuals are selected
for crossover, a single random tree is selected from each
individual, and standard crossover is applied to these two
trees. RIC is a less aggressive form of multi-tree crossover
compared to others (e.g. crossover between all pairs of trees).
This leads to smaller changes across generations, potentially
requiring more generations to reach a given level of fitness.
However, due to its less destructive nature, RIC can perform
finer optimisations between individuals.

B. Parsimony Pressure

The parsimony pressure is introduced to the algorithm
through the selection operator. Selection of individuals is done
with t-tournament selection using lexicographic parsimony
pressure. Before selection, all individuals are assigned a fitness
rank. This ranking is assigned simply by fitness, where all
individuals with exactly the same fitness are in the same rank.
Then, t individuals are selected at random from the current
population. From these individuals, only those with the highest
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Fig. 3. The selection process with lexicographic parsimony pressure.

ranking are considered. If there is more than one individual
of that ranking, the least complex is selected. This is repeated
until the new generation is full. A diagram illustrating this
process can be seen in Fig. 3

This form of parsimony pressure is an elegant and effective
way of introducing penalisation for overly-complex individuals
through tie-breaking. A large advantage of lexicographic par-
simony pressure is its low computational cost. As individuals’
complexity is only considered when tie-breaking between
individuals, complexity only needs to be calculated when
required, as opposed to computing it for the whole population
each generation. In GP, individuals can vary in size vastly,
but produce an identical result. Without the lexicographic
parsimony pressure, deciding between such individuals is done
arbitrarily. It is hoped that this simple change will lead to
a significant change in the complexity of the highest-quality
individuals produced by the evolutionary process.

C. Fitness Function

The fitness function used is the silhouette score. The sil-
houette score is an internal measure that accounts for both the
similarity of instances within the same cluster, and the dis-
similarity between instances in different clusters.This makes it
an effective single measure for assessing cluster quality while
considering both of these two important criteria.

The silhouette score of a clustering is the mean of the
silhouette coefficient of each instance [16]. The silhouette
coefficient of each instance is comprised of two functions:
a(i), the distance from the instance i to all instances within
the same cluster, and b(i), the distance from i to all instances
in the nearest other cluster. Given instance i, where Ci is
the cluster containing i, and d(i, j) is the distance between
instances i and j, a(i) and b(i) are defined as:

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j) (1)

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j) (2)

The silhouette coefficient of an instance can then be defined
as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3)

Eq. (3) will produce a value in the range [−1, 1], where 1
is a perfect dense, well-separated clustering, while −1 would
indicate a random partition of overlapping clusters. Therefore,
this is a measure we seek to maximise.

The distance function, d(i, j), is chosen to be Euclidean
distance between the instances in the original feature space,
as opposed to the constructed feature space. When using the
constructed feature space, it was found that the GP tended
towards extremely simplistic partitions that yielded perfect
silhouette scores, but had little to no relation to the actual
ground truth partitions. By using the original feature space,
elements of the original structure is preserved, and GP is
encouraged towards sensible solutions.

The fitness of an n-tree individual is calculated as follows:
• Each instance of the dataset is evaluated by the individual,

producing a new dataset with each instance having n
features;

• k-means++ is run with the new dataset, producing a
partition;

• The silhouette score of the partition is calculated, giving
the fitness of the individual.

IV. EXPERIMENT DESIGN

The proposed method was tested on a range of synthetic
datasets, using k-means++ as the clustering algorithm. To
compare, a method without parsimony pressure [12] was also
tested to act as a baseline without any complexity control.
This method is functionally identical to the proposed method,
except that a normal t-tournament selection is used without
any parsimony pressure. Additionally, k-means++ using all of
the original features is also used as a baseline. Due to GP
and k-means++ being non-deterministic, each method will be
run 30 times with 30 different random seeds. The mean of
each measure is then computed for each method. The GP
parameters used for both GP methods for all datasets are
presented in Table I. These are standard GP parameters as
used in previous work [12].

The complexity of individuals is measured by the total
number of nodes. This is a measure we seek to minimise,
so individuals with a lower value will be favoured. Although
this measure is not sensitive to the complexity of individual
operations in the individual, it is suitable for favouring smaller
individuals where less operations are used in total. Early tests
found that this measure was the most effective in reducing
complexity across total nodes and unique features. For ex-
ample, using unique features as the complexity measure had



TABLE I
GP PARAMETER SETTINGS

Parameter Value

Generations 100
Pop. Size 1024
Initial Pop. Half-and-half
Mutation Rate 20%
Crossover Rate 80%
Elitism Top-10
Tournament Size 7
Min. Tree Depth 1
Max. Tree Depth 8

little to no effect on the total nodes compared to GP without
parsimony pressure, while the reduction in unique features was
not significantly different to when using total nodes as the
complexity measure.

One challenge posed by the multi-tree representation is that
the number of trees, n, needs to be decided a priori, and
must be sufficiently high enough to be able to capture the
complexity of the data, while also remaining as low as possible
to ensure the best reduction of dimensionality. To remedy this,
a heuristic is used to determine n based on the parameters of
the data. Let D be the number of dimensions of the data, and
C be the number of clusters. The heuristic is:

n = min{D
r
,
C

r
} (4)

This heuristic ensures that as the total number clusters in a
dataset grows, n can increase to adequately capture the number
of features needed to separate the data. By also accounting for
the number of original features, the dimensionality of the data
will be always be at least reduced by a ratio of r.

For the experiments, r was set as 2, as this was found to
provide a good balance in initial tests between performance
and the total number of constructed features.

A. Datasets

It is much easier to fairly compare clustering algorithms
when ground-truth labels are available. However, it is chal-
lenging to source high-dimensional high-cluster real-world
datasets with reliable labels. Due to this, our experiments use
synthetic data from the GA package HAWKS [17]. HAWKS
generates datasets with clusters of dynamic shapes and sizes,
evolving datasets towards a predefined silhouette score. Using
synthesised data with ground-truth labels allows for clustering
methods to be objectively evaluated and compared to each
other.

The datasets used in our experiments contain 10, 20, 50,
100, 500, or 1000 dimensions, with 10, 20, or 40 clusters.
All datasets contained 500 instances. By using datasets with a
large range of dimensionalities, we are able to gain a stronger
understanding of the performance of the method on higher
dimensional data where feature construction can have a more
notable effect. In addition to a range of dimensions, the range

of clusters allowed the method to be tested on another measure
of data complexity and clustering difficulty.

B. Cluster Quality Evaluation Measures

We evaluated each method’s performance on the datasets
through a selection of measures. Two measures are used to
evaluate clustering performance. We used silhouette score
(previously defined in Section III-C) as an internal clustering
measure, and as the measure that is optimised by the evolu-
tionary process.

The Adjusted Rand Index (ARI) is used as an external
measure, to evaluate methods’ performance against ground
truth cluster labelling [18]. As ARI is an external measure,
it is not a suitable measure to be used during evolution where
we want to find a clustering without knowing the labels.
Therefore, we use ARI to evaluate the best individual found
after the evolutionary process is complete, to compare and
contrast the GP methods.

Let m be the total number of instances, C be a cluster
partition given by a clustering algorithm, and G be the ground
truth partition. First, a contingency table is calculated where
each entry mij is the total number of instances shared by Ci

and Gj . Let the sum of each row and column be denoted ai
and bi, respectively. ARI can then be calculated as:

ARI =

∑
ij

(
mij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
m
2

)
1
2 [
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
m
2

)
(5)

Eq. (5) calculates the frequency of similarity between the
two partitions, adjusting for chance groupings. The value will
be in [0, 1], where 1 is a perfect partition with every instance
in the correct cluster, and 0 is an exactly wrong partition.

C. Complexity Evaluation Measures

Two measures are used to evaluate the complexity of a
GP solution. These are the total nodes (the summation of the
nodes contained in each tree of the individual) and the unique
features (the size of the subset of original features used in the
constructed features).

The number of total nodes can serve as a measure of
the general size of an individual, and it is hoped that the
proposed method will be able to produce significantly smaller
individuals with similar clustering performance. The number
of unique features indicates the size of the subset of original
features is used in the individual. The smaller this subset is, the
fewer features are being considered to produce the result. This
results in a more simple and interpretable set of constructed
features.

V. RESULTS

A. Proposed Method Against k-means++ With All Features

The results in Table II compare the performance of the
proposed GP for FC method with parsimony pressure against
the performance of k-means++ using all the original features
(AF). For each dataset and method, the mean Adjusted Rand
Index (ARI) and mean Silhouette Score (SIL) are presented



TABLE II
k-MEANS++ PERFORMANCE ON SYNTHETIC DATA: ALL FEATURES (AF)

AGAINST GP WITH PARSIMONY PRESSURE (GP-PP).

ARI SIL

10d-10c AF 0.773 0.398
GP-PP 0.956+ 0.584+

10d-20c AF 0.812 0.451
GP-PP 0.981+ 0.586+

10d-40c AF 0.847 0.397
GP-PP 0.849 0.395

20d-10c AF 0.932 0.469
GP-PP 0.999+ 0.533+

20d-20c AF 0.895 0.448
GP-PP 0.998+ 0.541+

20d-40c AF 0.799 0.305
GP-PP 0.872+ 0.325+

50d-10c AF 0.732 0.338
GP-PP 0.984+ 0.487+

50d-20c AF 0.742 0.298
GP-PP 0.982+ 0.455+

50d-40c AF 0.858 0.224
GP-PP 0.876+ 0.230+

100d-10c AF 0.825 0.314
GP-PP 0.988+ 0.431+

100d-20c AF 0.776 0.230
GP-PP 0.956+ 0.303+

100d-40c AF 0.841 0.136
GP-PP 0.736− 0.117−

500d-10c AF 0.867 0.169
GP-PP 0.956+ 0.218+

500d-20c AF 0.784 0.118
GP-PP 0.752 0.105−

500d-40c AF 0.861 0.097
GP-PP 0.403− 0.014−

1000d-10c AF 0.894 0.122
GP-PP 0.915+ 0.149+

1000d-20c AF 0.758 0.079
GP-PP 0.709 0.068−

1000d-40c AF 0.821 0.081
GP-PP 0.308− -0.003−

from 30 experiments. Mann-Whitney significance testing was
performed with a 95% confidence interval. A “+” indicates
the GP-based FC performing significantly better than AF
in a measure, while a “−” indicates a significantly worse
performance. No symbol indicates no significant difference
was found. Both measures should be maximized.

On all datasets except 10d-40c (10 dimensions, 40 clusters),
100d-40c, 500d-20c, 500d-40c, 1000d-20c and 1000d-40c,
the proposed method performs significantly better than the
k-means++ baseline by both measures. Of these datasets
where performance does not improve, ARI performance is
significantly lower for 100d-40c and 500d-40c and 1000d,40c.
Silhouette performance is significantly worse for 100d-40c,
500d-20c and 500d-40, c1000d-20c and 1000d-40c.

Across twelve of the eighteen datasets tested, there was
a significant improvement in clustering performance by both
measures, while performance was significantly worse by ei-
ther measure on only five datasets. This demonstrates the
effectiveness of the proposed method at increasing clustering
performance through FC in most cases tested. The results show
the value of the GP-based FC with parsimony pressure in
improving clustering performance.

On all of the 10-cluster datasets, performance is increased,

TABLE III
k-MEANS++ PERFORMANCE ON SYNTHETIC DATA: GP BASELINE
(GP-NOPP) AGAINST GP WITH PARSIMONY PRESSURE (GP-PP)

ARI SIL Nodes Unq. Fts

10d-10c GP-NoPP 0.953 0.601 977 10.0
GP-PP 0.956 0.594 350+ 9.80+

10d-20c GP-NoPP 0.979 0.533 680 9.97
GP-PP 0.981 0.532 400+ 9.80

10d-40c GP-NoPP 0.851 0.408 700 9.80
GP-PP 0.849 0.404 350 9.93

20d-10c GP-NoPP 0.999 0.552 152 13.4
GP-PP 0.999 0.554 60.8+ 11.4

20d-20c GP-NoPP 0.997 0.493 245 17.0
GP-PP 0.998 0.477 75.0+ 16.0

20d-40c GP-NoPP 0.856 0.300 532 18.3
GP-PP 0.872 0.310 280 17.7

50d-10c GP-NoPP 0.988 0.535 949 41.5
GP-PP 0.984 0.533 227+ 32.0+

50d-20c GP-NoPP 0.979 0.432 583 43.0
GP-PP 0.982 0.426 313+ 38.1+

100d-10c GP-NoPP 0.979 0.517 2399 95.7
GP-PP 0.988+ 0.531+ 167+ 36.5+

100d-20c GP-NoPP 0.957 0.352 933 76.3
GP-PP 0.956 0.349 400+ 64+

100d-40c GP-NoPP 0.738 0.145 775 80.1
GP-PP 0.736 0.144 462+ 72+

500d-10c GP-NoPP 0.950 0.477 761 216
GP-PP 0.956 0.466 342+ 121+

500d-20c GP-NoPP 0.758 0.243 820 235
GP-PP 0.752 0.240 563+ 169+

500d-40c GP-NoPP 0.406 0.071 654 208
GP-PP 0.403 0.070 277+ 115+

50d-40c GP-NoPP 0.874 0.208 615 44.7
GP-PP 0.876 0.204 293+ 41.0+

1000d-10c GP-NoPP 0.920 0.452 1181 375
GP-PP 0.915 0.463 406+ 143+

1000d-20c GP-NoPP 0.671 0.234 955 337
GP-PP 0.709 0.240 634 255

1000d-40c GP-NoPP 0.294 0.058 608 244
GP-PP 0.308 0.059 296+ 139+

while on the high-dimensional data (100, 500, 1000), high
cluster (20, 40) data, performance across both measures was
always worse with the exception of 100d-20c. This could
potentially be due to the fact that there are too few constructed
features to adequately capture the underlying complexity of the
data and the amount of ground-truth partitions.

B. Proposed Method Against GP Baseline

The results in Table III compare the baseline GP-based
FC for clustering method without parsimony pressure (GP-
NoPP) [12] against the proposed method using parsimony
pressure (GP-PP). Each GP-PP result is labeled with either
a “+” or “−” if is better or worse by a statistically significant
margin than GP-NoPP according to a Mann-Whitney test
with a 95% confidence interval. No symbol indicates that no
significant difference was found. As in Table II, ARI and SIL
are measures we seek to maximise, while total nodes (Nodes)
and the number of unique features (Unq. Fts) are measures we
seek to minimise.

The GP method with parsimony pressure produced individu-
als with significantly higher clustering performance according
to both the Silhouette and ARI measures for the 100d-10c



dataset. For all other datasets, there was no significant dif-
ference in clustering performance. As the parsimony pressure
never causes a performance decrease, the value of the proposed
method for reducing complexity with no performance trade
off is apparent. This also highlights that the poor performance
observed on some datasets by GP-PP against AF in Table II
is not a result of the introduction of parsimony pressure, but
rather the GP method.

On fourteen of the eighteen datasets, the GP method with
parsimony pressure produced individuals with significantly
fewer total nodes than the GP baseline. This result highlights
the effectiveness of this method at producing smaller, and thus
more interpretable, individuals in most cases tested.

For all high dimensional datasets (50d, 100d, 500d, 1000d)
except 1000d-20c, GP-PP produce individuals that use sig-
nificantly fewer unique features than GP-NoPP. This result
highlights the effect of the proposed method on reducing
unique features where it is most valuable; a set of constructed
features with fewer features to consider is intuitively easier to
interpret and understand when the original set is large.

Of the datasets with lower dimensionality (10d, 20d), only
on one dataset (10d-10c) was there a reduction in the number
of unique features. As these datasets already consist of a small
set of features, reducing the number of unique features used is
more difficult—and also less likely to benefit interpretability.

These results clearly demonstrate the effectiveness of the
proposed method at encouraging simpler individuals. The
parsimony performance is demonstrated as being very effective
in reducing the total number nodes, especially in the 100d-
10c dataset where the mean total nodes was 167 compared to
2399 without parsimony pressure. Being able to understand
and interpret an individual of only 167 nodes is intuitively a
significantly easier task than understanding and interpreting
one of 2399. Clustering performance remained similar to
the baseline while producing significantly smaller individuals
across all datasets.

VI. EVOLVED PROGRAM ANALYSIS

When using GP, it is useful to analyse some individuals pro-
duced by the evolutionary process. As two GP methods (with
and without parsimony pressure) have been compared, we can
analyse individuals produced by each of the methods on the
same dataset to understand the difference and effectiveness of
the proposed method more clearly.

We will analyse the smallest individuals produced by both
GP methods from 30 runs on the 1000d-10c dataset. This was
a high-dimensional dataset, on which the GP methods had a
significantly better clustering performance than the all-features
baseline, and the GP-PP method was able to significantly
reduce the complexity of individuals produced.

Fig. 4 shows the smallest individual produced for the
1000d-10c dataset from 30 independent runs using parsimony
pressure. This individual represents the following a set of
5 constructed features: f378, f48, f995, (f891 × (f945 ÷
f84))× f273 and min{max{f715, f268}, f523}. Of these,
the first three are essentially performing basic feature selection,

f378 f48 f995 ×

× f273

f891 ÷

f945 f84

min

max f523

f715 f268

(a) (b) (c) (d) (e)

Fig. 4. Smallest individual produced for 1000d-10c dataset across 30 runs
with parsimony pressure. In terms of clustering performance, this individual
achieved an ARI of 0.964, and a silhouette score of 0.524.

while the last two are higher-level constructed features. This
individual demonstrates the flexibility and power of GP-
based FC, as simple FS is used when sufficient along with
constructed features. In total, this individual is comprised of
15 nodes and ten unique features, compared to a mean of
405 and 142, respectively. This is a good example of a high
performing (ARI of 0.964 against 0.894 AF baseline), simple
individual on a high-dimensional dataset.

Fig. 4 is a good demonstration of the dimensionality reduc-
tion that can be achieved by the GP for FC technique. Using
only 1% of the original features, and with some relatively
simple mathematical equations, k-means++ performance is
increased significantly with a 99.5% reduction in dimen-
sionality. Additionally, this is achieved using less than half
the total nodes of the smallest solution produced when not
using parsimony pressure. This results in a notably more
interpretable set of constructed features.

In contrast, Fig. 5 presents the smallest individual produced
by GP without parsimony pressure. In total, this individual
has total size of 38—over twice as large as the smallest with
parsimony pressure—and uses 11 unique features. Analysing
tree (a) of this individual, we can observe some redundancy.
The right most sub-tree of (a) corresponds to the equation
min{f164,min{f164, f980}}. This is mathematically equiv-
alent to the simpler min{f164, f980}, resulting in two redun-
dant nodes. With examples of redundancy even in the smaller
solution produced for this dataset, the value of introducing
parsimony pressure is clear. Additionally, there are original
features that are used across multiple different trees. For
example, f205 is present in both (d) and (e), and f104 is
present in both (c) and (e). This does not occur in the smallest
individual from GP with parsimony pressure in Fig. 4, where
each original feature is used only once.

VII. CONCLUSION

This work has shown that lexicographic parsimony pressure
is a very effective method for encouraging simpler constructed
features in GP-based FC for k-means++ clustering. The pro-
posed method was able to produce similar results in clustering
performance to existing methods, while significantly reducing
the total nodes in the individuals and the size of the subset
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f164 f980
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× f164
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Fig. 5. Smallest individual produced for 1000d-10c dataset across 30 runs without parsimony pressure. In terms of clustering performance this individual
achieved an ARI of 0.968 and a silhouette of 0.502.

of original features used across most of the synthetic datasets
tested.

The method was shown to be very effective at producing
more interpretable sets of constructed features that can allow
for a deeper understanding of the feature interactions, and the
partitions they produce.

Individuals were simpler both in size and in the number
of unique original features used. An especially promising
finding was the fact that in the vast majority of the higher
dimensionality data tested, there was a significant decrease in
the unique features used. This is valuable, as the fewer features
used, the easier the feature interactions in the constructed
feature set are to understand.

Individuals produced with and without parsimony pressure
from the same dataset were analyzed, and the effect of the
parsimony pressure was highlighted. It was seen that without
parsimony pressure, there was redundancy in the GP individ-
uals, even in relatively small examples.

A. Future Work

Further research could investigate more aggressive ranking
methods for lexicographic parsimony pressure. It is possible
that this could lead to a further complexity reduction than
the relatively passive tie-breaking method used in this work.
Additionally, alternative forms of parsimony pressure can
be investigated, such as parametric parsimony pressure [10].
Further research could explore this method on a range of
clustering algorithms, as this work has focused solely on k-
means++. Further heuristics for determining the amount of
trees per individual could be designed, potentially to address
the performance issues with high-dimensional high-cluster
data.
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