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Abstract—The parameter tuning process is one of the main
tasks in the development of metaheuristics. The appropriate
parameter can assist in finding good solutions to combinatorial
optimization problems. However, finding a good parameter set-
ting is a hard task. It involves understanding how the relationship
between parameters connects to the problem scenario. This
article proposes a method to automatically tune parameters
of metaheuristics, called the Bayesian Network Tuning (BNT).
Our goal is to develop an efficient method in terms of solution
quality and computational time, which can find configurations
that support metaheuristics in solving optimization problems. In
order to evaluate this method, a Biased Random-Key Genetic
Algorithm (BRKGA) was implemented to solve the Bin Packing
Problem. The BRKGA was tuned with our method and other
tuning methods found in the literature. A comparison of the
results shows that the proposed method found good solutions
and was competitive in relation to the other tuning methods.

Index Terms—Heuristics methods, Parameter tuning, Bayesian
Network

I. INTRODUCTION

The proper choice of parameter setting is an important
step in the development of optimization algorithms that are
generally designed to be flexible and robust for different
problem scenarios. But, some metaheuristic algorithms have
a set of parameters on which they are extremely dependent.
Usually, these parameters are not robust and require a specific
configuration according to the problem or even an instance of
the problem under analysis.

Selecting optimal parameter settings is often done manually
or heuristically by tweaking parameters at runtime, but without
the proper experimentation to support or confirm the intuitive
choice. An inappropriate selection of parameters can result in
various drawbacks, like stagnation on the local optimum and a
long search time. The task of finding these appropriate settings
to a metaheuristic is called parameter tuning [1], [2].

Many strategies have been proposed in the literature to
find the best parameters of a metaheuristic. A simple strategy
is brute force. This strategy performs the same number of
experiments for each configuration of a solution space. Only
part of the information is stored, using a single vector with
the performance estimation of each candidate configuration
at different instances, whose size corresponds to the total
number of configurations. Therefore, it is very intuitive to
solve parameter tuning problems, but can be very costly in
most cases.

Parameter tuning automation has several implications, such
as the reduction in computational time and the possibility of
finding better results more often than when the algorithm is
executed with manual tuning.

The search for best parameters has led to several studies to
find algorithmic alternatives in order to automate this process.
These tuning strategies may be grouped according to when the
parameters are adjusted:

• offline tuning: metaheuristic parameters such as chro-
mosome size, crossover and mutation rates in a genetic
algorithm are set up before initializing the algorithm and
remain immutable during the search process.

• online tuning: metaheuristic parameters are configured
adaptively during the search process of the algorithm.

The offline tuning has a high computational cost, but
because it is applied to each instance or instance group of
a problem, quality solutions can be guaranteed. The online
tuning strategy is intended to generally solve a single, typically
large and complex instance of a problem [3]. Both strategies
are attractive. However, this article focuses on scenarios where
a large number of instances of a problem are evaluated, so that
the acquired data can be compared with the results of other
parameter tuning algorithms in the literature. Thus, an offline
strategy was adopted in our research.

Metaheuristics for parameter tuning offers the advantage
of robustness when applied over unknown scenarios. The
approach of metaheuristics for parameter adjustments is appro-
priate to avoid information specialization, since metaheuristics
are independent of the target algorithm (other metaheuristic or
algorithm that is tuned).

An offline metaheuristic tuning framework has a standard
strategy in which the parameter domains and starting values
are passed to the configurator, which, in turn, passes different
parameter settings to run in the target algorithm. A set of
instances are tested by the target algorithm in order to return
the cost solution to the configurator, to calculate the cost of
the data and update the settings, as shown in Fig. 1.

The quality of solution cost is important for analyzing
tuning performance. It is usually measured by the objective
function of the problem, while the quality of the algorithm
is determined by a metric defined by the configurator (tuning
method).
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Fig. 1. Metaheuristic tuning framework [2].

Related work of offline parameter tuning includes iRace
presented by López-Ibáñez et al. [4] based on race methods,
with support for numeric and symbolic parameters. It uses a
Model-Based run method along with Friedman’s test to select
good settings. If the test value exceeds a significance level,
then the null hypothesis is rejected, so there is evidence that
at least one candidate configuration performs better. Eiben
and Nannen [5] present the REVAC (Relevance Estimation
and Value Calibration of Evolutionary Algorithm Parameters).
This method tries to show the relevance of each parameter
using Shannon’s entropy from information theory and a prob-
ability distribution is formed based on the parameter values.
The method then tries to estimate the best parameters based
on this distribution and on maximizing Shannon’s entropy.
Adenso-Dı́az and Laguna [6] present the Calibra. It uses an
orthogonal matrix from Taguchi L9(34) for sampling values.
This matrix is based on a factorial model [7], which tries
to faithfully represent, through little data, a whole set of
significant information in a space of solutions. It is a strategy
using continuous numerical parameters along with a method
of estimating the relevance of each, also through Shannon’s
entropy. ParamILS was proposed by Hutter et al. [2], being a
modified version of the ILS for parameter tuning. This algo-
rithm uses the neighborhood information of the configuration
found in the current iteration, to improve the solutions. This
neighborhood considers the variation of only one parameter at
a time. Roman et al. [8] propose an approach using Bayesian
Optimization. The algorithm uses Mallow models and kernel
function (Matern 5/2). At each iteration, this function is
applied to the configuration population to create probabilistic
models. Barbosa and Senne [1] propose the Heuristic Oriented
Racing Algorithm (HORA). It uses Design of Experiments
along with a running method that employs a non-standard test.

Many offline tuning methods try to find good parameters in
an acceptable runtime. An analysis of the problem context and
the target algorithm can indicate possible relationships of the
parameters with the scenario under study. This can assist in the
search for good parameters. However, performing this analysis
can be a complex task and demand a lot of effort on the part
of the algorithm designer, when elaborating metaheuristics for
different problem scenarios. Thus, several researchers have
proposed different techniques for parameter tuning, developing
new metaheuristics, or adapting classic strategies. Among the
different techniques covered in the literature, we highlight the
Estimation Distribution Algorithms (EDAs) [9]–[11].

EDAs are approaches that manage to create a statistical
model of the problem scenario automatically, taking into
account the relationships between the elements involved (pa-
rameters, strategies, among others) in the treated context. They
use statistical models to represent a set of instances. For our
research, BOA (Bayesian Optimization Algorithm) [12] was
the EDA chosen. The benefits of its application are great,
especially the treatment between symbolic parameters. It is
important to note that the technique used by BOA, which
creates Bayesian networks to find the best solution, is different
from Bayesian optimization techniques (use Gaussians) [13].

This article proposes an efficient offline parameter tuning
method using Bayesian Networks, taking into account the
computational time and the solution quality, in order to de-
velop a method to assist metaheuristics in solving optimization
problems. This method was called BNT (Bayesian Network
Tuning), since BOA is used for parameter tuning. The contri-
bution of this research results in the reduction of computational
cost in relation to the number of iterations necessary for the
execution by the target metaheuristic and in a more detailed
statistical analysis of the scenario which takes into account
additional information from the generated stochastic models.

To evaluate the BNT, we use it to tune a Biased Random-
Key Genetic Algorithm (BRKGA) [14] designed to solve
the Bin-Packing Problem (BPP) [15]. Different groups of
instances of BPP are tested to analyze the results. The
validation of the BNT method consists in the comparison
with other tuning methods found in the literature, such as
Calibra, ParamILS and iRace. A statistical analysis shows the
robustness of the BNT.

This article is organized as follows. In Section II we
present the proposed method for offline parameter tuning using
Bayesian Networks. Section III details the BRKGA method
and its parameters. Section IV presents a validation test for
the proposed method using a BRKGA for solving the Bin
Packing problem, highlighting how BNT is applied to tuning
the parameters of the BRKGA and the computational results.
Section V concludes this article.

II. BAYESIAN NETWORK TUNING

In order to establish relations of complex dependencies be-
tween parameters we proposed the Bayesian Network Tuning
(BNT), which use Bayesian Networks for parameter tuning.
Considering that each node of a Bayesian Network represents
a parameter and each edge represents a connection between
parameters, we can define a BNT solution as a parameter
configuration that has the maximum joint probability distri-
bution function in relation to the network. Algorithm 1 shows
a pseudo-code of the BNT.

A scenario problem (Sc) consists in the description of the
parameters of the target algorithm, the number of training
instances, and the type of seed (fixed or random). In addition
to the problem scenario, the BNT input data has the number of
iterations (T ), the size of the promising population (Pc) and
the size of the population (Pb). Although these parameters
need to be set by users, this process is not complex and some



Algorithm 1 Bayesian Network Tuning
Input: number of iterations T , size of promising population
|Pc|, size population |Pb|.

Output: parameter settings θ, Bayesian Network graph Ω.
1: procedure BNT(T , |Pc|, |Pb|)
2: Read scenario problem Sc
3: Construct population Pb

4: Calculate cost φ for each solution
5: while T 6= 0 do
6: Order population by solution cost
7: Select the most promising solutions (Pc)
8: Ω = CREATEBAYESIANNETWORK(Pc, Sc)
9: Generate new solutions from Ω

10: Update population Pb

11: Set T = T − 1
12: end while
13: return tuple (θ,Ω).
14: end procedure

default values can be used to run the BNT. We recommend to
set T = 5 × number of tuning parameters, Pb = 10 × number
of tuning parameters, and Pc = 0.3 × Pb. Users can also set
a maximum runtime for the BNT.

In Algorithm 1, the BNT initially creates a population of
solutions Pb. These solutions are generated by selecting a
value for the parameters at random, within a set of possibilities
described in Sc. After creating the initial population, the
solutions are sorted by cost φ. This cost is based on the
objective functions found by the target algorithm with the
value parameters of a solution. The most promising solutions
(Pc) are selected, for |Pc| < |Pb|. We consider that solutions
with minimum cost are promising. The Bayesian Network
construction process (Algorithm 2) begins with the |Pc| so-
lutions selected. After building the Ω network, the next steps
of BNT are to generate new solutions based on sampling the
probability distribution of its topology and update the worst
solutions of the population Pb with 0.3× |Pb| new solutions.
The BNT ends when it reaches the maximum number of
iterations (T ).

We use a metric to create the Bayesian Network that evalu-
ates the structure of the dependencies between the parameters
that best fits the data for a given problem to add new edges
to the network. It is considered a complex problem to find the
best network structure for a set of parameters whose runtime
can vary proportionally according to the number of available
parameters in the problem. Among the existing metrics we can
highlight the K2 metric [16]. One of the advantages of this
metric is that it does not depend on a priori information of the
data to build the network, i.e. there is no information initially
about which dependencies exist between the parameters.

The K2 metric performs a greedy search between the data
and creates a gain matrix with the given values. The edges
that have the highest score are added to the network. This
strategy makes it possible to analyze the joint probability of
the network, calculating on each generation a priori knowl-

Algorithm 2 Create Bayesian Network
Input: population Pc, scenario problem Sc
Output: Bayesian Network graph Ω

1: procedure CREATEBAYESIANNETWORK(Pc, Sc)
2: Set Ψ = max number of edges
3: Set np = number of parameters of Sc
4: while Ψ 6= 0 do
5: for k ← 1, ..., np do
6: Compute all gains of add edge in Ω using K2
7: end for
8: Set ψ = get edge with maximum gain
9: if not ψ ∈ Ω then

10: Add new edge in Ω
11: Set Ψ = Ψ− 1
12: else
13: Set Ψ = 0
14: end if
15: end while
16: return Ω
17: end procedure

edge about the structure and conditional probabilities of the
network. An example of a gain matrix can be seen in Figure
2. Each row and column defines a parameter. Value (score) in
Line 1 and Column 2, for example, represents the gain that
adds an edge between the two selected parameters. The quality
of each edge directly influences the estimation of values. This
metric returns a cost to know which edges are to be inserted
into the network.

Fig. 2. Example of gain matrix to four parameters

The Bayesian network is constructed during the tuning
process. In Algorithm 2, we set the maximum number of edges
(Ψ) that are added in each iteration of the BNT. The value used
was 3 × number of parameters. The gain matrix is generated
using the K2 metric and a new edge with maximum gain (ψ)
is inserted in the Ω network, if and only if this edge does not
exist on Ω. This algorithm stops when the maximum number
of edges are added or when a new edge is not added in Ω.

The generation of new solutions in an iteration of the BNT
begins by defining the order in which the nodes (parameters)
are explored in the Ω network. In the BNT the exploration
begins at the first independent node found and continues
following the order of the parameters defined in the Sc
scenario.

Figure 3 shows an example of a population with four
solutions (vectors), four parameters (Xi), and the Ω network
structure. This information is used to calculate the probabilities
of each parameter in relation to the discrete values defined



in the Sc scenario. The main function of the Ω network is
to guide what values new solutions may have considering
the probability scenario and the population. The conditional
probabilities for all parameters and values are calculated. The
parameter values are inferred in new solutions from these
probabilities.

Fig. 3. Example of generation of new solutions

In the example shown in Fig. 3, X1 is an independent node
and assumes a value of 0 or 1. Thus, we calculate the probabil-
ities of X1: P (X1 = 0) = 0.75 and P (X1 = 1) = 0.25. The
next step is to generate a vector of accumulated probabilities,
V ecP (X1) = [0.75, (0.75 + 0.25)] = [0.75, 1.00]. Therefore,
the value of X1 in a new solution is defined from a random
number in the range [0, 1]. For example, a random value of
0.8 indicates that X1 assumes 1 in the new solution. The
algorithm continues from parameter X2, which depends on
the value of X1. The probability of X2 is P (X2|X1). If X1

in the new solution is 1, then X2 considers P (X2|X1 = 1),
and the process is repeated. We observe that X3 and X4 can
assume values that are not in the population. In this case, we
add a perturbation to increase the diversity in which at least
one occurrence of the missing value is added to the probability
vector.

The accumulated probabilities are calculated once for each
iteration of the BNT and used to generate new solutions. BNT
tends to conserve the values with higher probabilities in the
new solutions, and the probability of these values are extracted
from the best solutions of the population.

To simplify the use of BNT, we proposed an Application
Programming Interface (API) for BNT. The API is imple-
mented in C++ and is portable. The user only needs to inform
the target algorithm and the training instances. The API is
open source and can be downloaded from https://github.com/
MarceloBRN/BayesianNetworkTuning.

III. BIASED RANDOM-KEY GENETIC ALGORITHM

The Biased Random-Key Genetic Algorithm (BRKGA) [14]
is a class of algorithms that uses the evolutionary elements
of genetic algorithms to solve combinatorial optimization
problems in which solutions can be represented as permutation
vectors. A random-key is a random real number in continuous
interval [0,1].

In order to perform operations with these vectors, a solution
of the optimization problem is mapped to a vector of random-
keys. In addition, there is a decoder that has the function of

re-mapping the vector of random-keys to find solution. The
decoding process of BRKGA sorts by elements of key vectors
to generate a permutation corresponding to the indexes of
ordered elements.

After the creation of the population with P random-key vec-
tors of size n, the Darwinian principles of elitism are applied.
The most adapted individuals in the population are more likely
to survive in next iterations, in addition to perpetuating their
genetic material for future generations.

In each generation, the individuals of the population are
divided into elite (Pe) and non-elite vectors (P̄e). All elite
vectors are copied to the next generation population. Thus Pm

mutants vectors, with randomly generated keys, are introduced
into the population. Finally, |P | − |Pe| − |Pm| offspring
vectors are added. These offspring vectors are generated by the
combination of one parent of the elite and one parent of the
non-elite vectors which are randomly chosen. Each offspring
vector is created by the parameterized uniform crossover [17].

The crossover scheme chooses two vectors, b (elite) and
c (non-elite), to be parents of a (offspring), where the ith

component of the offspring vector a[i] receives the ith key
b[i] with probability ρe > 0.5 and c[i] with probability 1−ρe.
The set of offspring will most likely inherit the features of
the keys of the elite parent. An important factor is that this
behavior is independent of the optimization problem.

The BRKGA parameters can assume quantitative values of
many different levels and ranges. The offline tuning method
must perform a parameter setup for each training instances.
Therefore, it is computationally costly to work with real
numbers.

The first thing to do is to infer a set of values for each
parameter. Prasetyo et al. [18] suggest ranges of values for
BRKGA parameters, as shown in Table I. For our research, at
this stage a uniform distribution was applied in the intervals
to discretize the parameters.

TABLE I
PARAMETERS AND RECOMMENDED VALUES OF BRKGA

Parameter Description Recommended value
P size of population k ∗ n|k ∈ {1, ..., 5}
Pe size of elite population 0.10P ≤ Pe ≤ 0.25P
Pm size of mutant population 0.10P ≤ Pm ≤ 0.30P
ρe elite allele inheritance probability 0.50 < ρe ≤ 0.80

IV. STUDY CASE OF BNT

To validate the efficiency of the proposed BNT method in
relation to other tuning methods in the literature, we analysed
one optimization problem to be solved by a metaheuristic. In
this research, the problem selected was the Bin Packing Prob-
lem (BPP) [15] and the metaheuristic chosen to be calibrated
was the BRKGA. In this section we present a description of
the BPP and an explanation of how BRKGA is applied to BPP,
because it is important for understanding the analysis of the
tuning method results as well as for assessing the impact of
tuned parameters on BRKGA performance.



A. Bin Packing Problem

The Bin Packing Problem (BPP) is a combinatorial NP-
hard problem [19]. Several recent studies can be found in the
literature with BPP and its variants [15], [20]–[22]. This article
discusses the one-dimensional (1D) version.

The BPP 1D consists of distributing a list of items with
associated weights in a set of bins in order to minimize the
number of bins used. Bins have a fixed capacity and all items
need to be packed without violating the capacity constraint.

Regardless of the BPP objective function, there are some
classic approaches to finding BPP solutions. Among the most
known, we can mention: First Fit and Best Fit. The First Fit
method analyzes the bins in ascending order and places the
item in the first free bin that has enough space to allocate it.
A new bin is added only if the item does not fit in any of the
existing bins. The Best Fit technique checks bins in ascending
order and places the item in the bin that is free and has the
smallest possible space to allocate it. A new bin is added if
the item does not fit into any of the available bins [23].

Figure 4 illustrates the behavior of the two approaches
for handling an item vector. The value at each position of
the vector represents the weight of each item. The optimal
solution occupies a maximum of 3 containers. It can be seen
that in Containers 2 and 3, First Fit and Best Fit allocated
items in different ways. This example shows that the allocation
methodology can influence the search for an optimal solution.
After some empirical tests we decided to use the First Fit
strategy in the BRKGA. Although, this configuration could
also be a parameter of the tuning method.

Fig. 4. Illustration of First Fit and Best Fit Strategies for a set of items

Since BPP 1D is a classic problem, several methodologies
(exact and heuristic methods) was proposed to solve it [19],
[24]–[28]. For BRKGA, some algorithms was presented about
variants of BPP [29]–[31].

B. BRKGA design to BPP 1D

One of the challenges of solving BPP 1D is determining in
which order items arrive to be allocated to bins. The main idea
is to help the BRKGA in determining the item order. It can
be established that each BRKGA vector is represented by a

continuous number vector, whose vector size (n) corresponds
to the number of items to be allocated in the bins.

To determine the order of arrival of the items, it is necessary
to apply the decoder that will handle the inherent information
of the random-key vector.

The decoder chosen for evaluation is based on the increasing
ordering of the elements of this vector, with the detail that the
order of indices must accompany this ordering, as shown in
Fig. 5. The ordering of the indexes will determine the order
of arrival of the items to the bins.

Fig. 5. BRKGA vector design for problem

In an instance of BPP 1D, items are usually arranged in a
fixed sequential manner (not necessarily the order of arrival).
The indexes found by the decoder correspond to the indexes
of this sequence. For the example in Fig. 5 the sequence is
{3, 2, 1, 6, 4, 5}.

After finding the order of arrival, we use the First Fit
strategy to allocate the items. The fitness of a solution of the
BRKGA is the number of used bins plus the lowest occupancy
rate of the bins.

In addition to the recommended parameters of the BRKGA
(P , Pe, Pm, and ρe), the maximum number of generations
(ngen) was also tuned in this research.

C. Description of Experiments

We compare our BNT with three classical tuning methods:
Calibra [6], ParamILS [2], and iRace [32]. All tests were per-
formed in the same execution environment on a computer with
AMD Ryzen 7 3700X 3.60GHz configuration with 16GB of
RAM, using Windows 10. Calibra only runs on the Windows
Operating System. Therefore, we decided to use Windows in
all the computational tests, so that there was no differentiation
between the execution environments.

As shown in Table I, each parameter of the BRKGA has a
range of recommended values. Since ParamILS and BNT work
with discrete sets, these quantitative ranges were divided into
values based on a uniform distribution, as shown below:

• size population P = n ∗ k|k ∈ {1, 2, 3, 4, 5}
• elite set Pe ∈ {0.10, 0.125, 0.15, 0.175, 0.20, 0.225, 0.25}
• mutants set Pm ∈ {0.10, 0.125, 0.15, 0.175, 0.20, 0.225,

0.25, 0.275, 0.30};
• ρe ∈ {0.50, 0.525, 0.55, 0.575, 0.60, 0.625, 0.65, 0.675,

0.70, 0.725, 0.75, 0.775, 0.80};
• generations ngen ∈ {200, 250, 300, 350, 400, 450, 500};



where the value of k indicates a factor that multiplies the
number of items in BPP instance (n). The result of this
multiplication determines the population size of the tuned
BRKGA. For example, if the number of items is 100 and
the factor is 3, then the population will have 300 individuals.

The test instances were divided into Falkenauer (160 in-
stances) [33], Hard28 (28 instances) [34], Scholl (1210 in-
stances) [35], Schwerin (200 instances) [36] and Waescher
(17 instances) [37]. In total, 1615 instances available in the
literature1 were tested. The optimal solutions of these instances
were proven in [38]

Training time took an average of 12 hours for each tuning
method. Cross-validation was used with a partition of 500
training instances that were randomly selected out of the set of
1615 instances. The set of test instances included all instances.

After each tuning process to find the best parameters con-
figuration, 50 runs were made on the 1615 test instances for
each of these configurations.

Another important issue to be considered is that in addition
to the tuning methods running at the same computational time,
a fixed deterministic seed was used in the tests to generate
random numbers in each run. For example, for the first test, the
seed was 1 for all instances; for the second test, the seed was
2, and so on. This scheme aims to capture possible information
of similarity of behavior.

Table II shows the values of the BRKGA parameters found
by the tuning methods. The best settings of iRace and BNT
have a larger population size (k) compared to the settings
of Calibra and ParamILS. However, the maximum number
of generations (ngen) obtained by BNT was the lowest. The
other parameters were similar, except for Calibra, which found
a small elite partition (Pe) and did not privilege information
from elite parents. (ρe = 0.5).

TABLE II
VALUES OF THE PARAMETERS FOUND BY THE TUNING METHODS

k Pe Pm ρe ngen

Calibra 2 0.120 0.250 0.500 238
ParamILS 3 0.200 0.300 0.625 450

iRace 5 0.232 0.288 0.617 359
BNT 5 0.250 0.250 0.650 200

The average value of the objective function found in the 50
runs of the BRKGA was calculated. The standard deviation
and mean of objective function were similar to all versions
of BRKGA. In other words, the BRKGAs exhibited a well-
defined behavior to solve the BPP and was always able to
find good solutions with the parameters provided by the tuning
methods.

Table III presents the average objective function for the
five instance groups and Figure 6 shows the box-plot with
the average solutions of all instances. Table IV reports the
number of times the optimal solution was found at least once
during the 50 runs by the tuned BRKGA (values on the left)
and the total number of instances (values on the right). We

1http://www.dcc.fc.up.pt/ fdabrandao/research/arcflow/results/

observe that the solutions found by the BRKGAs were equal
to or close to the global optimum found in the literature. The
BRKGA with parameters found by ParamILS performed worse
than the other BRKGAs for the instances of set Falkenauer
and the BRKGA with parameters found by Calibra performed
worse than the other BRKGAs for the instances of set Hard28.
The BRKGAs configured with parameters found by BNT and
iRace managed to find a greater amount of optimal solutions.
These results show the robustness of the tuned BRKGAs.

TABLE III
BEST SOLUTIONS FOUND BY THE BRKGAS

Optimal BRKGA
solution Calibra ParamILS iRace BNT

Falkenauer 132.800 132.800 132.806 132.800 132.800
Hard28 70.786 71.214 71.179 71.179 71.179
Scholl 81.972 81.972 81.972 81.972 81.972

Schwerin 19.960 19.960 19.960 19.960 19.960
Waescher 17.412 17.471 17.471 17.471 17.471

Fig. 6. Box-plot for the average solutions found by the BRKGAs

TABLE IV
NUMBER OF OPTIMAL SOLUTIONS FOUND BY BRKGAS

BRKGA
Calibra ParamILS iRace BNT

Falkenauer 160/160 159/160 160/160 160/160
Hard28 6/28 7/28 7/28 7/28
Scholl 1210/1210 1210/1210 1210/1210 1210/1210

Schwerin 200/200 200/200 200/200 200/200
Waescher 16/17 16/17 16/17 16/17

Total 1592/1615 1592/1615 1593/1615 1593/1615

Tables V and VI present the computational time results of
the BRKGA configured with parameter values found by the
tuning methods. A stop criterion was used to interrupt the
BRKGA when it found the optimal solution of instances in
which these values are known in the literature. We observe
that the BNT results were very competitive with iRace at
runtime. Although BRKGA with BNT parameters had a longer
computational time in all groups, Table VI shows it was more
stable to find optimal solutions when compared to the other
methods because the standard deviation was the smallest.

However, it is necessary to confirm whether there is any
statistical relevance in this information. To find this relevance,
a normality test must first be applied to verify that the distri-
bution of the values found by each group of instances follows



TABLE V
AVERAGE RUNTIME OF THE BRKGAS (IN SECONDS)

BRKGA
Calibra ParamILS iRace BNT

Falkenauer 0.351 0.376 0.354 0.445
Hard28 29.619 23.558 40.776 43.687
Scholl 0.059 0.066 0.085 0.087

Schwerin 0.021 0.031 0.052 0.054
Waescher 3.588 3.687 2.731 1.451

TABLE VI
STANDARD DEVIATION OF RUNTIME OF THE BRKGAS

BRKGA
Calibra ParamILS iRace BNT

Falkenauer 0.008 0.009 0.008 0.003
Hard28 0.246 0.296 0.361 0.148
Scholl 0.001 0.002 0.002 0.001

Schwerin 0.001 0.001 0.002 0.001
Waescher 0.005 0.011 0.057 0.006

the pattern of the normal distribution. Thus, the Shapiro-
Wilk normality test [39] was applied to objective function
and runtime samples. From this, Table VII was generated. If
the p-value was less than 0.05, then the normal distribution
hypothesis was rejected.

TABLE VII
SHAPIRO-WILK’S TEST FOR DATA PROVIDED BY TUNING METHODS

BRKGA
Calibra ParamILS iRace BNT

Falkenauer < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Hard28 < 5.7× 10−6 < 2.1× 10−5 < 7.9× 10−6 < 3.1× 10−6

Scholl < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Schwerin < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

Waescher 0.566 0.688 0.868 0.769

As can be seen, only the data from the Waescher group
indicated that they were arranged in a normal distribution.
However, as the majority rejected the null hypothesis, a non-
parametric test was chosen to analyze the degree of statistical
significance among result sets. In this case, the chosen test
was the Friedman Test with Nemenyi Post-hoc tests [40].
This test does not require the data distribution to be normal.
Results are shown in Table VIII. This test also makes use
of null hypothesis analysis for p-value less than 0.05. The
Friedman test is applied to the sample sets to see if there are
any difference between the samples. If the values are less than
0.05, the Nemenyi Post-hoc is applied to find out in which
pairs the difference occurred. After applying the Friedman
test for each group, the values were less than 0.05. Thus,
the Nemenyi Post-hoc test can be applied to compare pairs
of tuning methods.

The Nemenyi Post-hoc test works with two hypotheses. The
first indicates rejection of the null hypothesis and shows only
if the samples are different. The second hypothesis indicates
which sample is statistically relevant. In Table VIII, results
implied that the BNT were statistically relevant in relation to
Calibra and ParamILS, except for the Waescher group. The
values of BNT and iRace were less than 0.05, indicating that
BNT was equivalent to iRace, except for the Hard28 group.

TABLE VIII
NEMENYI POST-HOC TEST FOR DATA PROVIDED BY TUNING METHODS

BRKGA
BNT vs Calibra BNT vs ParamILS BNT vs iRace

Falkenauer 0 < 2.12× 10−12 < 5.52× 10−3

Hard28 < 4.40× 10−7 < 1.36× 10−13 0.468
Scholl 0 0 0

Schwerin 0 0 < 1.29× 10−13

Waescher 0.067 0.997 0.712

An important feature of our proposed method is the
Bayesian network generated by the BNT. In Figure 7, we
can see the statistical dependence between parameters of the
BRKGA to solve the BPP. We observed in this network that
the parameter Pe is an independent parameter, but its value
affects all other parameters. The ngen and ρe parameters can
be modified without impacting others. The k factor is directly
influenced by the Pm parameter. The use of information on
conditional probabilities makes it possible to observe how a
value of one parameter affects the values of other parameters
(global perspective), otherwise the parameter tuning becomes
a task of local tuning (local perspective). A mapping of
dependencies between parameters based on the best solutions
helps the BNT to have a more detailed view of the parameter
search space.

Fig. 7. Bayesian Network result of BNT

V. CONCLUSION

As can be seen in the results, the use of a Bayesian Network
for the proposal of an offline tuning method, proved to be
quite competitive in relation to some existing tuning methods
in the literature. The tests demonstrated BNT’s performance
had statistical significance.

One of the great advantages of using our proposed BNT
method is related to the reduction in number of iterations of
the BRKGA, since the models induce patterns (information) to
find the best solutions in the search space. Another advantage
is that it has managed to establish the dependency between
variables in the search for good solutions. These dependencies
are very useful to assist the evolution of the algorithm over
large numbers of parameters. ParamILS, for example, tends to
have a slower evolution for very large parameter sets, since
only one position of the vector is changed per stage. BNT, on
the other hand, guides the search for solutions, showing that
changing one parameter can affect the occurrence of a certain
value in another parameter.



In future studies, new adjustments are needed to consolidate
the BNT. For example, local search can be added to assist the
Bayesian Network. New computational tests can be applied:
tuning of very large number of parameters, set fixed number of
generations or call of objective function for the tuned method,
use different training time and distinct training instance sets,
perform a comparison with other tuning methods, like EVOCA
[41], and apply the BNT in other metaheuristics. We also plan
to apply the BNT for unconstrained continuous optimization
as well as other combinatorial optimization problems.
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[11] J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Towards a
new evolutionary computation: advances on estimation of distribution
algorithms, vol. 192. Springer, 2006.

[12] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “Boa: The bayesian
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