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Abstract—Subset selection is a popular topic in recent years
and a number of subset selection methods have been pro-
posed. Among those methods, hypervolume subset selection is
widely used. Greedy hypervolume subset selection algorithms can
achieve good approximations to the optimal subset. However,
when the candidate set is large (e.g., an unbounded external
archive with a large number of solutions), the algorithm is
very time-consuming. In this paper, we propose a new lazy
greedy algorithm exploiting the submodular property of the
hypervolume indicator. The core idea is to avoid unnecessary
hypervolume contribution calculation when finding the solution
with the largest contribution. Experimental results show that the
proposed algorithm is hundreds of times faster than the original
greedy inclusion algorithm and several times faster than the
fastest known greedy inclusion algorithm on many test problems.

Index Terms—Hypervolume subset selection problem (HSSP),
unbounded external archive, hypervolume contribution, submod-
ularity, greedy inclusion algorithms

I. INTRODUCTION

Multi-objective optimization aims to optimize some po-

tentially conflicting objectives simultaneously. In the past

few decades, evolutionary multi-objective optimization (EMO)

algorithms have shown promising performance in solving this

kind of problem. Subset selection is a hot topic in the EMO

area. It is involved in many phases of EMO algorithms.

(i) In each generation, we need to select a pre-specified

number of solutions from the current and offspring populations

for the next generation. (ii) After the execution of EMO

algorithms, the final population is usually presented to the

decision-maker. However, if the decision-maker does not want

to examine all solutions in the final population, we need to

choose only a small number of representative solutions for the

decision-makers. (iii) Since many good solutions are discarded

during the execution of EMO algorithms [1], we can use an

unbounded external archive (UEA) to store all non-dominated

solutions examined during the execution of EMO algorithms.
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In this case, we need to select a subset of the UEA as the final

result after their termination [2]–[4].

Many subset selection methods have been proposed based

on different selection criteria such as hypervolume-based

subset selection [5]–[8], ε-indicator-based subset selection [9]

and distance-based subset selection [3]. Among these criteria,

the hypervolume indicator has been widely used for subset

selection [5]–[8]. The hypervolume subset selection problem

(HSSP) [5] is to select a pre-specified number of solutions

from a given candidate solution set to maximize the hypervol-

ume of the selected solutions.

At present, the HSSP can only be efficiently solved in

two dimensions. When the dimension is higher than two, the

search for the exact optimal subset of the HSSP is NP-hard

[10]. Some algorithms have been proposed to approximately

solve the HSSP. They can be categorized into the following

three classes: (i) hypervolume-based greedy inclusion, (ii)

hypervolume-based greedy removal, and (iii) hypervolume-

based genetic selection. These algorithms can achieve good

approximations to the optimal subset.

However, when the candidate solution set is huge (e.g.,

tens of thousands of non-dominated solutions in a UEA)

and/or the dimension is high (e.g., 10-objective problem), even

greedy algorithms need long computation time. Some efficient

algorithms (e.g., IHSO* [11] and IWFG [12]) were proposed

to quickly determine the solution with the least hypervolume

contribution in each iteration of greedy removal algorithms.

Guerreiro et al. [8] proposed an algorithm for efficiently

updating the hypervolume contribution of each solution, which

can reduce the runtime of greedy algorithms for the HSSP in

up to four dimensions to polynomial time. Jiang et al. [13] also

proposed an efficient mechanism for hypervolume contribution

updating in any dimension to decrease the total runtime of a

hypervolume-based EMO algorithm.

In this paper, we propose a new greedy inclusion algorithm,

which is applicable to large candidate solution sets with

many objectives. This algorithm exploits the submodularity

[14] of the hypervolume indicator to reduce the unnecessary

calculation of hypervolume contributions. Experimental results

show that the proposed idea greatly improves the efficiency of

greedy subset selection from large candidate solution sets of

many-objective problems.

The rest of the paper is organized as follows. Section II de-
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scribes the hypervolume indicator, hypervolume contribution

and some related state-of-the-art algorithms. In section III, we

describe our proposed algorithm in detail. Then in section

IV, we show our experimental results where the proposed

algorithm is compared with some state-of-the-art algorithms.

Finally, we draw some conclusions in section V.

II. BACKGROUND

A. Hypervolume indicator and hypervolume contribution

The hypervolume indicator [15], [16] is a widely used

metric to evaluate the diversity and convergence of a solution

set. It is defined as the size of the objective space which is

covered by a set of non-dominated solutions and bounded by

a reference set R. Formally, the hypervolume of a solution set

S is defined as follows:

HV (S) :=

∫
Rd

As(x)dx, (1)

where d is the number of dimension and As is the attainment

function of S with respect to the reference set R and can be

written as

As(x) =

{
1 if ∃ s ∈ S, r ∈ R : f(s) ≤ x ≤ r,

0 otherwise.
(2)

Calculating the hypervolume of a solution set is a #P-hard

problem [17]. A number of algorithms have been proposed

to quickly calculate the exact hypervolume such as Hyper-

volume by Slicing Objectives (HSO) [18], [19], Hypervolume

by Overmars and Yap (HOY) [20]–[22], and Walking Fish

Group (WFG) [23]. Among those algorithms, WFG has been

generally accepted as the fastest one. The hypervolume con-

tribution is defined based on the hypervolume indicator. The

hypervolume contribution of a point p to a set S is

HV C(p, S) = HV (S ∪ {p})−HV (S). (3)

Fig. 1 illustrates the hypervolume of a solution set and the

hypervolume contribution of a solution to the solution set in

two dimensions. The grey region is the hypervolume of the

solution set S = {a, b, c, d, e} and the yellow region is the

hypervolume contribution of a solution p to S.

Note that calculating the hypervolume contribution based

on its definition in (3) requires hypervolume calculation twice,

which is not very efficient. Bringmann and Friedrich [24] and

Bradstreet et al. [25] proposed a new calculation method to re-

duce the amount of calculation. The hypervolume contribution

is calculated as

HV C(p, S) = HV ({p})−HV (S′), (4)

where

S′ = {limit(s, p)|s ∈ S}, (5)

limit((s1, ..., sd), (p1, ..., pd))

= (worse(s1, p1), ..., worse(sd, pd)).
(6)

In this formulation worse (si, pi) takes the larger value.

Compared to the straightforward calculation method in (3),

this method is much more efficient. The hypervolume of one

O

a

b

c

d

e

r

HV(S)

p

M
in

im
iz

e 

Minimize 

Fig. 1. The hypervolume of the solution set S = {a, b, c, d, e} and the
hypervolume contribution of p to the solution set S for a two-objective
minimization problem.

solution (i.e., HV ({p})) can be easily calculated. We can also

apply the previous mentioned HSO [18], [19], HOY [20]–

[22] and WFG [23] to calculate the hypervolume of a reduced

solution set S′ (i.e., HV (S′)).
Let us take Fig. 2 as an example. Suppose we want to

calculate the hypervolume contribution of solution p to a

solution set S = {a, b, c, d, e}. First, for each solution in

S, we replace each of its objective values with the corre-

sponding value from solution p if the value of p is larger

(i.e., we calculate limit(a, p), ..., limit(e, p)). This leads to

S′ = {a′, b, c, d′, e′}. After the replacement, e′ is dominated

by d′. Thus e′ can be removed from S′ since e′ has no

contribution to the hypervolume of S′. Then, we calculate

the hypervolume of S′ (i.e., the area of the gray region in

Fig. 2) and subtract it from the hypervolume of solution p.

The remaining yellow part is the hypervolume contribution of

solution p.
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Fig. 2. Illustration of the efficient hypervolume contribution computation
method.



B. Hypervolume subset selection problem

The hypervolume subset selection problem (HSSP) [5] is to

select a pre-specified number (say k) of solutions from a given

candidate solution set Sall to maximize the hypervolume of

the selected solutions (i.e., to select a subset S of size k from

Sall to maximize the hypervolume of S). Its formal definition

is as follows.

Given an n-point set Sall and an integer k ∈
{0, 1, . . . , |Sall|}, maximize HV (S) subject to S ⊂ Sall and

|S| ≤ k.

For two-objective problems, HSSP can be solved with time

complexity of O(nk+nlogn) and O((n−k)k+nlogn) [8]. For

multi-objective problems with three or more objectives, HSSP

is an NP-hard problem [10], it is impractical to try to find

the exact optimal solution set when the size of the candidate

set is large and/or the dimensionality of the objective space is

high. In practice, some greedy heuristic algorithms and genetic

algorithms are employed to obtain an approximated optimal

solution set.

C. Hypervolume-based greedy inclusion

Hypervolume-based greedy inclusion selects solutions from

Sall one by one. In each iteration, the solution that has the

largest hypervolume contribution to the selected solution set

is selected until the required number of solutions are selected.

The pseudocode of greedy inclusion is shown in Algorithm 1.

The hypervolume-based greedy inclusion algorithm provides

a (1−1/e)-approximation (e is the natural constant) to HSSP,

which means the ratio of the hypervolume of the obtained

solution set to the hypervolume of the optimal solution set is

not less than (1− 1/e) [14].

Algorithm 1 Greedy Inclusion Hypervolume Subset Selection

Input: Sall (A set of non-dominated solutions), k (Solution

subset size)

Output: S (The selected subset from Sall)

1: if |Sall| < k then
2: S = Sall

3: else
4: S = ∅
5: while |S| < k do
6: for each si in Sall \ S do
7: calculate the hypervolume contribution of si to S
8: end for
9: p = solution in Sall \S with the largest hypervolume

contribution

10: S = S ∪ {p}
11: end while
12: end if

D. Hypervolume-based greedy removal

In contrast to greedy inclusion algorithms, hypervolume-

based greedy removal algorithms discard one solution with

the least hypervolume contribution to the current solution

set in each iteration. To quickly identify the solution with

the least hypervolume contribution, Incremental Hypervolume

by Slicing Objectives (IHSO*) [11] and Incremental WFG

(IWFG) [12] were proposed. These methods can be used

in the greedy removal algorithm. Some experimental results

show that these methods can greatly accelerate greedy removal

algorithms.

Unlike greedy inclusion, greedy removal has no approx-

imation guarantee. It can obtain an arbitrary bad solution

subset [26]. However, in practice, it usually leads to good

approximations.

When the required set size k is close to the size of Sall (i.e.,

when the number of solutions to be removed is small), greedy

removal algorithms are faster than greedy inclusion algorithms.

However, when k is relatively small in comparison with the

size of Sall, greedy removal algorithms are not efficient since

it needs to remove a large number of solutions.

E. Hypervolume contribution update

Hypervolume-based greedy inclusion/removal algorithms

can be accelerated by updating hypervolume contributions

instead of recalculating them in each iteration (i.e., by utilizing

the calculation results in the previous iteration instead of

calculating hypervolume contributions in each iteration in-

dependently). Guerreiro et al. [9] proposed an algorithm to

update the hypervolume contributions efficiently in three and

four dimensions. Using their algorithm, the time complexity of

hypervolume-based greedy removal in three and four dimen-

sions can be reduced to O(n(n−k)+nlogn) and O(n2(n−k))
respectively.

In a hypervolume-based EMO algorithm called FV-MOEA

proposed by Jiang et al. [13], an efficient hypervolume con-

tribution update method applicable to any dimension was pro-

posed. The main idea of their method is that the hypervolume

contribution of a solution is only associated with a small

number of its neighboring solutions rather than all solutions in

the solution set. Let us suppose that one solution sj have just

been removed from the solution set S, the main process of the

hypervolume contribution update method in [13] is shown in

Algorithm 2.

Algorithm 2 Hypervolume Contribution Update

Input: HV C (The hypervolume contribution of each solu-

tion in S), sj (The newly removed solution)

Output: HV C (The updated hypervolume contribution of

each solution in S)

1: for each sk ∈ S do
2: w = worse(sk, sj)
3: W = limit(S − {sk}, w)
4: HV C(sk) = HV C(sk) +HV ({w})−HV (W )
5: end for

The worse and limit operations in Algorithm 2 are the

same as those in Section II-A. Let us explain the basic idea

of Algorithm 2 using Fig. 3. When we have a solution set

S = {a, b, c, d, e} in Fig. 3, the hypervolume contribution

of solution c is the blue area. When solution b is removed,



the hypervolume contribution of c is updated as follows.

The worse solution w in line 2 of Algorithm 2 has the

maximum objective values of solutions b and c. In line 3,

firstly the limit operator changes solutions a, d and e to

a′, d′ and e′. Next, the dominated solution e′ is removed.

Then the solution set W = {a′, d′} is obtained. In line 4,

the hypervolume contribution of c is updated by adding the

term HV ({w})−HV (W ) to its original value (i.e., the blue

region in Fig. 3). The added term is the joint hypervolume

contribution of solutions b and c (i.e., the yellow region in

Fig. 3). In this way, the hypervolume contribution of each

solution is updated.

Since the limit process reduces the number of non-

dominated solutions, this updated method greatly improves

the speed of hypervolume-based greedy removal algorithms.

Algorithm 2 in [13] is the fastest known algorithm to update

the hypervolume contribution in any dimension.
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Fig. 3. Illustration of the hypervolume contribution update method in FV-
MOEA. In this figure, it is assumed that point b has just been removed and
the hypervolume contribution of point c is to be updated.

III. LAZY GREEDY SUBSET SELECTION ALGORITHM

A. Algorithm proposal

In each iteration of hypervolume-based greedy inclusion

algorithms, we only need to identify the solution with the

largest hypervolume contribution. However, we usually cal-

culate the hypervolume contributions of all solutions. Since it

is time-consuming to calculate the hypervolume contribution

of each solution, such an algorithm is not efficient. The main

idea of the proposed algorithm is to exploit the submodular

property of the hypervolume indicator [27]. The definition of

a submodular function [14] is as follows.

Given a finite nonempty set N , a real-valued function z(S)
defined on the set of all subsets of N that satisfies

z(S ∪ {k})− z(S) ≤ z(R ∪ {k})− z{R},
R ⊂ S ⊂ N, k ∈ N − S

is called a submodular function.

The hypervolume indicator is a submodular function [27].

It means that the hypervolume contribution of a solution to

the selected solution subset S never increases as the number

of solutions in S increases in a greedy inclusion manner.

Hence, instead of recomputing the hypervolume contribution

of every candidate solution in each iteration, we can utilize the

following lazy evaluation mechanism. We use a list C to store

the candidate (i.e., unselected) solutions and their tentative

HVC (hypervolume contribution) values. The tentative HVC

value of each solution is initialized with its hypervolume (i.e.,

its hypervolume contribution when no solution is selected).

The tentative HVC value of each solution is the upper bound of

its true hypervolume contribution. For finding the solution with

the largest hypervolume contribution from the list, we pick the

most promising solution with the largest tentative HVC value,

and recalculate its hypervolume contribution to the current

solution subset S. If the recalculated hypervolume contribution

of this solution is still the largest in the list, we do not have to

calculate the hypervolume contributions of the other solutions.

This is because the hypervolume contribution of each solution

never increases through the execution of greedy inclusion. In

this case (i.e., if the recalculated hypervolume contribution of

the most promising solution is still the largest in the list),

we move this solution from the list to the selected solution

subset S. If the recalculated hypervolume contribution of this

solution is not the largest in the list, its tentative HVC value is

updated with the recalculated value. Then the most promising

solution with the largest tentative HVC value in the list is

examined (i.e., its hypervolume contribution is recalculated).

This procedure is iterated until the recalculated hypervolume

contribution is the largest in the list.

In many cases, the recalculation of the hypervolume con-

tribution of each solution results in the same value as or a

slightly smaller value than its tentative HVC value in the list

since the inclusion of a single solution to the solution subset S
changes the hypervolume contributions of only its neighbors

in the objective space. Thus, the solution with the largest

hypervolume contribution is often found without examining

all solutions in the list. By applying this lazy evaluation

mechanism, we can avoid a lot of unnecessary calculations

in hypervolume-based greedy inclusion algorithms.

Since we always need to find the largest tentative HVC

value in C, the priority queue implemented by the maximum

heap is used to accelerate the procedure. The details of the

proposed a lazy greedy inclusion hypervolume-based subset

selection (LGI-HSS) algorithm are shown in Algorithm 3.

The idea of the lazy evaluation was proposed by Minoux

[28] to accelerate the greedy algorithm for maximizing sub-

modular functions. Then, it was applied to some specific areas

such as influence maximization problems [29]. Minoux [28]

proved that if the function is non-decreasing submodular and

the greedy solution is unique, the solution produced by the

lazy greedy algorithm and the original greedy algorithm is

identical. Since it is proved that the hypervolume indicator

is non-decreasing submodular [27], the LGI-HSS algorithm



will obtain the same subset as the original greedy inclusion

algorithm if they use the same tie-break mechanism.

Algorithm 3 Lazy Greedy Inclusion Hypervolume Subset

Selection (LGI-HSS)

Input: Sall (A set of non-dominated solutions), k (Solution

subset size)

Output: S (The selected subset from Sall)

1: if |Sall| < k then
2: S = Sall

3: else
4: S = ∅, C = ∅
5: for each si in Sall do
6: insert (si, HV ({si})) into C
7: end for
8: while |S| < k do
9: while C �= ∅ do

10: cmax = solution with the largest HVC in C
11: update the HVC of cmax to S
12: if cmax has the largest HVC in C then
13: S = S ∪ {cmax}
14: C = C \ {cmax}
15: break
16: end if
17: end while
18: end while
19: end if

B. An illustrative example

Let us explain the proposed algorithm using a simple exam-

ple. Fig. 4 shows the changes of the hypervolume contribution

in list C. The values in the parentheses are the stored HVC

value of each solution to the selected subset. For illustration

purposes, the solutions in the list are sorted by the stored

HVC values. However, in the actual implementation of the

algorithm, the sorting is not necessarily needed (especially

when the number of candidate solutions is very large). This is

because our algorithm only needs to find the most promising

candidate solution with the largest HVC value in the list.

Fig. 4 (i) shows the initial list C including five solutions a,

b, c, d and e. The current solution subset is empty. In Fig. 4 (i),

solution a has the largest HVC value. Since the initial HVC

value of each solution is the true hypervolume contribution to

the current empty solution subset S, no recalculation is needed.

Solution a is moved from the list to the solution subset.

In Fig. 4 (ii), solution b has the largest HVC value in the list

after solution a is moved. Thus, the hypervolume contribution

of b is to be recalculated. We assume that the recalculated

HVC value is 4 as shown in Fig. 4 (iii).

Fig. 4 (iii) shows the list after the recalculation. Since the

updated HVC value of b is not the largest, we need to choose

solution e which has the largest HVC value in the list and

recalculate its hypervolume contribution. We assume that the

recalculated HVC value is 6 as shown in Fig. 4 (iv).

Fig. 4 (iv) shows the list after the recalculation. Since the

recalculated HVC value of solution e is still the largest in the

list, solution e is moved from the list to the solution subset

S. Fig. 4 (v) shows the list after the removal of e. Solution c
with the largest HVC value is examined.

In this example, when we select the second solution from

the remaining four candidates (b, c, d and e), we evaluate

the hypervolume contributions of only the two solutions (b
and e). In the standard greedy inclusion algorithm, all four

candidates are examined. In this manner, the proposed algo-

rithm decreases the computation time of the standard greedy

inclusion algorithm.

a(10) b(9) e(8) c(6) d(5)

b(9) e(8) c(6) d(5)

e(8) c(6) d(5) b(4)

e(6) c(6) d(5) b(4)

c(6) d(5) b(4)

Fig. 4. Illustration of the proposed algorithm. The values in the parentheses
are the stored tentative HVC values.

IV. EXPERIMENTS

A. Algorithms for comparison

The proposed LGI-HSS algorithm is compared with the

following two algorithms:

1) Standard greedy inclusion hypervolume subset selection

(GI-HSS): This is the greedy inclusion algorithm de-

scribed in Section II-C. When calculating the hypervol-

ume contribution, the effective method(i.e., formula (4)-

(6)) described in Section II-A is employed.

2) Greedy inclusion hypervolume subset selection with

hypervolume contribution updating (UGI-HSS): The hy-

pervolume contribution updating method proposed in

FV-MOEA [13] (Algorithm 2) is used. Since Algorithm

2 is for greedy removal, it is changed for greedy in-

clusion here. It is the fastest known greedy inclusion

algorithm applicable to any dimension.

Since our main focus is the selection of a solution subset

from an unbounded external archive (i.e., since the number

of solutions to be selected is much smaller than the number

of candidate solutions: k << n in HSSP), greedy removal is

not efficient. Hence, some algorithms only suitable for greedy

removal (e.g., greedy removal using IHSO* [11] or IWFG [12]

to identify the least contribution solution) are not compared in

this paper.



B. Test Problems and Candidate Solutions

To examine the performance of three subset selection al-

gorithms, we choose three representative test problems with

different Pareto front (PF) shapes:

1) Spherical front: Solutions on the true PF of the DTLZ2

test problem [30].

2) Discontinuous front: Solutions on the true PF of the

DTLZ7 test problem [30].

3) Inverted spherical front: Solutions on the true PF of the

Inverted DTLZ2 (I-DTLZ2) problem [31].

For each test problem, we use three problem instances with

5, 8 and 10 objectives (i.e., solution subset selection is per-

formed in five-, eight- and ten-dimensional objective spaces).

Four different settings of the candidate solution set size are

examined: 5000, 10000, 15000 and 20000. We first uniformly

generate 100,000 solutions on the PF. In each run of a solution

subset selection algorithm, a required number of candidate

solutions (i.e., 5000, 10000, 15000 or 20000 solutions) are ran-

domly selected from the generated 100,000 solutions for each

problem instance. Computational experiments are performed

five times for each setting of the candidate solution set size for

each problem instance. The number of solutions to be selected

is specified as 100. Thus our problem is to select 100 solutions

from 5000, 10000, 15000 or 20000 candidate solutions to

maximize the hypervolume of the selected solution.

C. Experimental settings

In each subset selection algorithm, the reference

point for hypervolume (contribution) calculation is set

to (1.1, 1.1, ..., 1.1) for all test problems independent of the

number of objectives. We use the WFG algorithm [23] for

hypervolume calculation in each solution subset selection

algorithm. The code of the WFG algorithm is available from

http://www.wfg.csse.uwa.edu.au/hypervolume/#code.

All subset selection algorithms are coded by MatlabR2018a.

The computation time of each run is measured on an Intel Core

i5-7200U CPU with 4GB of RAM, running in Windows 10.

D. Experimental results

The results of the average computation time of each al-

gorithm on the DTLZ2, DTLZ7 and I-DTLZ2 test problems

are summarized in Figs. 5-7, respectively. Compared with the

standard GI-HSS algorithm, we can see that our LGI-HSS

algorithm can reduce the computation time by 91% to 99%. By

the increase in the number of objectives (i.e., by the increase

in the dimensionality of the objective space), the advantage of

LGI-HSS over the other algorithms becomes larger. Among

the three test problems in Figs. 5-7, all the three algorithms

are fast on the I-DTLZ2 problem and slow on the DTLZ2

problem.

Even when we compare our LGI-HSS algorithm with the

fastest known greedy inclusion algorithm UDI-HSS , LGI-HSS

is much faster. On DTLZ2 in Fig. 5, LGI-HSS spent 74% to

96% less computation time than UGI-HSS. On DTLZ7 in Fig.

6, LGI-HSS spent 47% to 76% less computation time than

UGI-HSS. On the five-objective I-DTLZ2 problem instance

in Fig. 7 (a), there is no large difference in the average

computation time between the two algorithms (the average

computation time of LGI-HSS is less than that of UGI-HSS by

34%-58%). However, by increasing the number of objectives

in Fig. 7, the difference in the average computation time

between the two algorithms becomes larger for I-DTLZ2.

From Figs. 5-7, we can also observe that the average

computation time of each algorithm did not severely increase

when the number of objectives increases (i.e., when the

dimensionality of the objective space increases) for DTLZ7

in Fig. 6 and I-DTLZ2 in Fig. 7. In some cases, the average

computation time of LGI-HSS decreased when the number of

objectives increases (e.g., on I-DTLZ2 by LGI-HSS in Fig. 7).

This issue needs to be further addressed in our future study.

V. CONCLUDING REMARKS

In this paper, we proposed an efficient greedy inclusion

algorithm (LGI-HSS) to select a small number of solutions

from a large candidate solution set for hypervolume maxi-

mization. The proposed LGI-HSS algorithm is based on the

submodular property of the hypervolume indicator. The core

idea of LGI-HSS is to use the submodular property to avoid

unnecessary hypervolume contribution calculation. The same

solution subset selection result is obtained by LGI-HSS as

the standard greedy inclusion algorithm since our algorithm

does not change the basic framework of greedy inclusion. Our

experimental results on three test problems (DTLZ2, DTLZ7

and Inverted DTLZ2) with 5, 8 and 10 objectives showed that

the proposed LGI-HSS algorithm is much more efficient than

the standard greedy inclusion algorithm and the state-of-the-art

fast greedy inclusion algorithm.

Our experimental results clearly showed that the idea of

lazy evaluation based on the submodular property drastically

decreased the computation time of hypervolume-based greedy

subset selection. One interesting future research topic is to

examine the applicability of this idea to other performance

indicators. In this research direction, the relation between the

submodularity and the Pareto compliance may need to be

clearly explained. Another interesting research direction is to

examine the relation between the efficiency of hypervolume-

based subset selection algorithms and the properties of multi-

objective optimization problems. It needs to be further ex-

plained why the increase in the number of objectives did

not increase the computation time of some subset selection

algorithms for some problems whereas it severely increased

for other problems.
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