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Abstract—This work extends current collective intelligence evo-
lutionary algorithms by incorporating a collective-based variation
operator. As part of this work, the proposals are compared with
state-of-the-art reference-point-based MOEAs: NSGA-II and R-
NSGA-II. Another primary objective of the work is to deal
with a real-world multi-objective instance of the facility location
problem. The experimental results validate the proposal. The
new collective intelligence MOEA outperformed NSGA-II and
R-NSGA-II for complex scenarios.

Index Terms—collective intelligence; preferences; reference
points; evolutionary multi-objective optimization algorithms; fa-
cility location

I. INTRODUCTION

Multi-objective optimization problems (MOPs) are prob-
lems in which two or more conflicting objective functions must
be simultaneously optimized. In the general case, optimization
problems and, hence, MOPs, are NP-hard [1]. Therefore, meta-
heuristic and/or stochastic approaches are frequently the only
viable alternative to handle these problems. The application
of evolutionary algorithms to MOPs has prompted the cre-
ation of multi-objective optimization evolutionary algorithms
(MOEAs) [8].

MOEAs result is a set of points that represent different
trade-offs between the objectives. A decision maker (DM)
must identify which of those solutions are the ones that satisfy
her/his preferences and would be realized in practice. This task
can be rather complex and requires in-depth knowledge of the
problem being solved, something that is impossible in many
practical situations.

When MOPs are particularly complex, instead of approxi-
mating the whole set of possible trade-offs, it is convenient
to focus the computational efforts on areas of the search
space that are of actual practical interest. In this case, the use
of a reference point-based approach can aggregate different
strategies to drive the search on relevant areas expressed a
priori or interactively by the decision maker.

The facility location problem [17] is an area of operations
research concerned with the localization and assignment of
available facilities and resources to achieve the organization’s
strategic goals. This area has received significant attention due

to the number of endeavors that must reduce costs and opti-
mize their operations: manufacturing plants, storage facilities,
public transport planning, warehouses, vehicle routing, etc.

Petroleum industry requires an optimal placement and in-
terconnection of extraction and transportation equipment to
increase extraction, pumping, and generation of oil, while
keeping costs and robustness at optimal levels. Offshore plant
operation must balance the competing needs for materials and
the application of machinery in an economic way to maximize
the different aspects related to operational effectiveness. These
circumstances describe a multi-objective optimization and
decision-making problem with many stakeholders looking for
efficient approaches.

Reference points and interactive techniques can be used
to mitigate those inconveniences and support the DM in
reaching a proper specification. These approaches allow the
optimization algorithm to focus on areas of interest and thus
reaching satisfactory solutions at a lower computational cost.
The interlace of the search process and DM preferences
improves the population quality throughout the evolutionary
process and leads to compromise solutions of practical interest.

In real-word optimization problems, it is frequently im-
possible to define a priori reference points or preferences.
Collective intelligence (COIN) methods [18] put forward a
paradigm that allows to elucidate knowledge from groups of
(not necessarily expert) individuals. In this regard, collectively
reference points obtained by the interaction and aggregation
of multiple opinions can be used to produce an accurate and
unbiased representation of preferences and reference points.
Built upon the subjectivity of the crowds and human cognition,
the intelligence of participatory actions addresses dynamic
collective reference points to overcome MOPs difficulties and
guide the exploration of preferred solutions.

In previous works [6], [7], we have addressed the issue
of how to combine collective intelligence and evolutionary
algorithms. In particular, we have incorporated a COIN-based
selection operator into three well-known MOEAs. In these
cases, COIN was used to generate and progressively update
reference points extracted by assembling the suggestions pro-
vided by the collective that were used for selecting the best
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candidate solutions of the MOEA.

In this work, we extend the above results by introducing
a novel COIN-based variation operator. The underlying idea
here is to submit some of the MOEA candidate solutions to
be modified and -hopefully- improved by the collective. The
modified solutions are then re-injected to the population and,
therefore, go through the rest of the steps of the evolutionary
process. This calls for a special problem rendering that allows
members of the collective to interact with and modify the
solutions. In this case, we reformulate the problem in question
in a ‘gamified’ form.

Besides that, the above mentioned proposals have not yet
been compared with other state-of-art reference-point-based
MOEAs. This work also provides a better explanation about
their operation. That way, the three proposed collective in-
telligence MOEAs are compared with one another and with
respect to the preference-based algorithms: R-NSGA-II [11]
and W-HYPE [5].

Experiments with a facility location problem showed the
effectiveness of the proposals as they yield better solutions at
a lower computational cost. As experiments show, the COIN
operator is a competitive advantage as it decreases the number
of required function evaluations in the optimization process
and provides faster analysis of preferred alternatives only.

Similarly, while working in this task it became evident
the lack of adequate performance indicators that take into
account preferences. Therefore, this research presents two
new performance indicators to evaluate the quality of the
approximation set driven by the online collective preferences.

The augmented algorithms implement a collective intelli-
gence operator to bias the search during the optimization phase
and restrict the objective space. Besides the four main oper-
ators based on the theory of evolution: selection, crossover,
mutation and elite-preservation; the COIN operator receives
rational collaborations from the participants to improve the
overall quality of evolutionary population and generate more
appropriated points for DM final choice. There will be pre-
sented two types of operators: evaluation and variation opera-
tors.

The synergy of actions and the heterogeneity inside collec-
tive environments develop creative resolutions based on the
crowds’ subjectivity and cognition. From a larger perspective,
the COIN operator brings a subjective input to the optimization
engine and gives a new collective intelligence component to
work along the random operators from stochastic methods.

The rest of this paper is organized as follows. Section II
covers the theoretical foundations necessary to present the
proposal. Section III explains the novel interactive and col-
lective intelligence MOEA. Subsequently, Section IV presents
the algorithms based on interactive and collective intelligence
techniques. After that, Section V analyse the performance of
the algorithms when faced with a facility location case study.
Finally, conclusive remarks are put forward.

II. FOUNDATIONS

Multi-objective optimization problems (MOPs) simultane-
ously optimize a set of objective functions. Formally posed,
a MOP can be defined as minF (x) = {f1(x), . . . , fk(x)},
where x = 〈x1, . . . , xn〉 ∈ Ω is an n-dimensional vector of
decision variables. The solution of a MOP is a (possibly infi-
nite) Pareto-optimal set PS = {x ∈ Ω| 6 ∃y ∈ Ω : y ≺ x} that
contains all the elements of Ω that not Pareto-dominated (≺)
by any other element. Elements of PS represent different trade-
offs between the objective functions values. The projection of
PS through F () is known as the Pareto-optimal front, PF .

A subset X of Rn is convex if for any two pair of solutions
x1, x2 ∈ X and α ∈ [0, 1], the following condition is true:
αx1 + (1−α)x2 ∈ X . The intersection of all the convex sets
containing a given subset X of Rn is called the convex hull of
X . The convex hull of a set of points is the smallest convex
set that contains the points.

The convex hull of a set of points in n-dimensional space
can be represented as a set of bounding facets and a collection
of vertexes for each facet. Convex hull is a well-known geo-
metric object widely used in various fields such as: collision
detection, shape analysis, pattern recognition, geographical
information systems, image processing, etc.

Let x∗i be the global minimizers of fi(x), ∀i ∈ {1, . . . , k}.
Let F ∗i = F (x∗i ),∀i ∈ {1, . . . , k}; and Φ be a pay-off matrix
k x k whose the ith column is F ∗i − F ∗. The convex hull of
individual minima (CHIM) [9] is the set of points in Rk that
are convex combinations of F ∗i − F ∗:

H =

{
Φβ : β ∈ Rk,

k∑
i=1

βi = 1, βi ≥ 0

}
, (1)

A. Preference-Based Interactive Algorithms

Since the decade of 80’s, there have been several works on
interactive multi-objective methods using reference points and
reference directions as preferences. Those approaches were
applied mainly in the classical multi-objective programming
field. But in the last 15 years they have also emerged in
evolutionary multi-objective area.

The reference point approach [23] concentrates the search
of Pareto non-dominated solutions in the vicinity of a set
of selected preference points. It is based on the achievement
scalarizing function that uses a reference point to capture the
desired values of the objective functions. Let z0 be a reference
point for an n-objective optimization problem of minimizing
F (x) = {f1(x), ..., fk(x)}, the reference point scalarizing
function can be stated as follows:

σ
(
z, z0,λ, ρ

)
= max

i=1,...,k

{
λi(zi − z0i )

}
+ ρ

k∑
i=1

λi
(
zi − z0i

)
,

(2)
where z ∈ Z is one objective vector, z0 =

〈
z01 , ..., z

0
k

〉
is

a reference point vector, σ is a mapping from Rk onto R,
λ = 〈λ1, ..., λk〉 is a scaling coefficients vector, and ρ is an
arbitrary small positive number. Therefore, the achievement
problem can be rebuilt as: min σ

(
z, z0,λ, ρ

)
.



Deb et al. [11] proposed a reference-point-based NSGA-
II procedure (R-NSGA-II) to find a set of solutions in the
neighborhood of the corresponding Pareto optimal. The syn-
chronous R-NSGA-II [14] is a similar approach, but uses three
different scalarizing functions to bias the selection operator.
The Light Beam Search based EMO [10] modified the NSGA-
II crowding operator by the light beam search to incorporate
a priori preferences and produce a set of solutions in the
region of interest. In many-objective optimization problems,
the NSGA-III [12] uses reference points on a hyperplane to
overcome problems with selection pressure for non-dominated
solutions. W-HYPE [5] applied the weighted hypervolume
indicator in an interactive fashion to change the optimization
goal of the algorithm. On the other hand, DF-SMS-EMOA
[21] maps the objectives to desirability functions normalized
in the domain [0, 1], d : Y → [0, 1]. Then, values of
different objectives and units become comparable. Finally,
iMOEA/D [15], an interactive version of the decomposition
based MOEA, asks the DMs to analyze some current solutions
and use their feedback to renew the preferred weight region
in the following optimization.

B. Performance Indicators

Many performance indicators have been proposed to eval-
uate the quality of MOEA outcomes. The performance of
algorithms are usually measured on the following features:
closeness of the approximation set to the Pareto-optimal front;
the diversity and the spread of the points; the volume of the
objective space dominated by the solutions.

In this regard, the hypervolume or S-metric indicator [13]
calculates the volume of the union of hypercubes ai defined by
a non-dominated point mi and a reference point xref defined
as

S(M) = Λ({
⋃
i

ai|mi ∈M})

= Λ(
⋃

m∈M
{x|m ≺ x ≺ xref}) .

(3)

It is a quantitative metric that computes the region space
covered by all non-dominated points. This performance indica-
tor does not require knowledge of the true Pareto-optimal front
on beforehand, which is an advantage for real-world problems.
But the main disadvantage is the computational cost which
grows exponentially on the number of objectives.

The Pareto-optimal front coverage indicator, DS→PF
, is

a proximity indicator that defines the distance between an
achieved approximation set S and their closest counterpart in
the current Pareto-optimal front:

DS→PF
(S) =

1

|S|
∑
x∈S

min
x′∈PS

{d (x,x′)} , (4)

where d is the Euclidean distance between two points. Small
values of DS→PF

indicate proximity to the PF .
Some indicators, like the coverage of two sets [25], map

the percentage of domination from one set to another in the
interval [0, 1]. Other measures try to capture the diversity in

the pool of final solutions. The spread indicator (∆) provides
information related to the uniformity of the distribution of the
obtained approximation set.

C. Collective Intelligence

MOEAs usually confront difficulties with complex, high-
dimension and large problem space. The potential number
of objectives necessary to describe the environment or the
incapacity to comprehend and map all the variables to a correct
fitness function can prevent a solution in a reasonable time and
quality. On the other hand, human beings are used to multi-
objective situations in their everyday lives. Those complex
scenarios that are hard for computer might be easier or natural
for the human mind. Persons are able to improve the multi-
objective algorithms with cognitive and subjective evaluation
to find better solutions.

COIN can contribute to make MOEAs go beyond their cur-
rent reach. Human characteristics such as perception, spatial
reasoning, strategy, weighting factors, among others subjec-
tivities might be introduced into the algorithm to generate
a better pool of answers and enhance the optimization pro-
cess. A group of people can understand conflicting situation
involving multiples objectives and may use their collective
intelligence to trump expert’s abilities. The wisdom arisen
from the diversity of many individuals is able to discover
creative resolutions.

There are plenty of examples that promote the collaboration
of many participants to achieve better outcomes than indi-
vidual efforts. The Amazon Mechanical Turk site outsources
digital tasks that are difficult for computers, but not for
humans, such as: tagging images, writing product descriptions,
identifying performers on music and so on. Foldit is a puzzle
game about protein folding. It uses the human brain’s natural
three-dimensional pattern matching to solve the problem of
protein structure prediction and has already helped to deci-
pher the crystal structure of the Mason-Pfizer monkey virus
retroviral protease [16]. The free and easy-to-use application
VizWiz [4] recruits web volunteers to help blind and visually
impaired people with recorded questions or photos about text
labels, colors or objects. Xprize stimulates prize competitions
on subjects like: life science, energy, climate change and
education; to encourage a global collectivity to invest their
intellectual capital on difficult problems.

Instead of a good spread of solutions along PF , the method
proposed in this work wants to obtain subsets of solutions
close to the collective reference point. In this context, a
small cluster variance means the individuals from the sample
Y = {y1, . . . ,yN} are clustered closely around the population
mean (µ) or the reference point (z0). A low dispersion for a
group of preferred points in PF denotes a better efficiency of
the approach tested. The referential cluster variance indicator
κ is represented as follows:

κ =
1

N

N∑
i=1

(yi − µ)
2 (5)



In cases with more than one collective reference point (zj),
the points are clustered based on the closest distance to one
of the reference points

Cj = {a ∈ Rk : ‖a− zj‖ ≤ ‖a− zi‖,∀i} . (6)

Cluster Cj consists of all points for which zj is the closest.
The referential cluster variance is calculated to each cluster
separately.

There are a few multi-objective evolutionary approaches
designed to work with this geometric concept in the opti-
mization. The convex hull can be applied as a geometric
ranking procedure for non-dominated comparisons [22] or a
mechanism to discover non-dominated solutions by projecting
elements of the CHIM H towards the boundary ∂Z of the
objective space Z through an normal vector N [19].

The convex hull volume method can be extended to measure
the quality of the non-dominated points in the desired region of
interest. The idea behind this is to combine the points around
each reference point to form a convex facet of the PF preferred
area. Thereafter, the volume of the convex hull is calculated
and used as a scalar indicator for the distribution of points in
PF . Small values of the hull volume (Ψ) indicate concentrate
points around the reference points. The quickhull method [2]
uses a divide and conquer approach similar to quicksort. It has
the average case complexity of O(n log n).

III. COLLECTIVE INTELLIGENCE IN EVOLUTIONARY
ALGORITHMS

While some MOEAs techniques construct a partial order
of preferences based on a priori reference points to give a
stronger selection pressure among Pareto-equivalent solutions,
others progressive methods combine simultaneously the pref-
erences information and the search for solutions.

Few MOEAs consider more than one user for reference
point selection or evolutionary interaction. A collective sce-
nario where many users could actively interact and take
part of the decision process throughout the optimization has
yet to be properly addressed. The association of collective
intelligence features to multi-objective optimization field raises
the understanding of preferences from an individual context
to a collective perception. This work presents a collective
intelligence operator to bias the search during the optimization
phase and restrict the objective space.

The main idea underlying this method is to drive the DM’s
search towards relevant regions in Pareto-optimal set and,
also, promote the usage of COIN as a creative search for
new individuals. By means of people’s heterogeneity and
common sense, the COIN operator iteratively refine the search
parameters with rational collaborations to improve the overall
quality of evolutionary population. The suggested approach
decreases the number of function evaluations, accelerate the
convergence and achieve relevant regions of Pareto front at a
lower computational cost.

IV. ALGORITHMS

In [7] the authors extended some classical MOEAs: NSGA-
II [8], SPEA2 [8] and SMS-EMOA [3]. The continuous
evolutionary process of the original methods were transformed
into an interactive one and the collective reference points were
adopted to drive the search towards relevant regions in Pareto-
optimal front. At this time, the main change on the current
version of the algorithms is the incorporation of the collective
intelligence variation operator. Figure 1 illustrates the three
collective intelligence MOEAs.

The new CI-NSGA-II converts the original NSGA-II into an
interactive process. The inner while loop runs a certain number
of times without interruption. Until the first interaction step
with the participants through the COINcontrib() procedure,
the algorithm uses the standard crowding distance in order to
come up with a good spread of the solutions before the COIN
operator (COINselec()) starts focusing on preferred areas of
the search space.

The subroutine COINcontrib() suspends the evolution
progress and submits some individuals from the current ap-
proximation set to the users’ collaboration. Collective intelli-
gence is applied in two different manners: a selection operator
that compares the individuals and chooses the best candidate,
or a variation operator that improves current individuals from
the population. Particularly, in this research, the individuals
received can be analysed in two different ways: a) a pair-
wise comparison allows the selection of the best candidate
between two or more individuals; b) a dynamic game scenario
stimulates the participant’s creativity to improve or produce
new individuals to be placed back in the population. Both
approaches discover online collective reference points with
the support of a genuine collective intelligence of many users.
This approach allows the collective to act as DMs to choose
multiple reference points simultaneously whether they are
feasible (deducible from a solution vector) or infeasible points.

In a collective environment contributions come from dif-
ferent individuals. Assuming the Central Limit Theorem the
inputs have a distribution that is approximately Gaussian.
Therefore, after each collective interaction, the subroutine
EM() gets the users’ collaboration as a Gaussian Mixture
model to emulate the evaluation landscape of all participants’
preferences.

Finally, the procedure RefPointDist() calculates the mini-
mum distance from each point in the population to the nearest
collective reference points in Θ. This way, the point near the
reference point is favoured and stored in the new population.
The COINselec() procedure develops a partial order similar
to the NSGA-II procedure, but replaces the crowding distance
operator by the distance to collective reference points (iref ).
The partial order ≺c between two individuals i and j, for
example, prefers the minor domination rank (irank) if they are
from different fronts or otherwise, the one with lower values
of reference point distance.

The algorithm CI-SMS-EMOA converts the original SMS-
EMOA into an interactive process. The COINcontrib() and



gen				=	max_gen	
block	=	subset_gen	
while	i	<	gen	do	
			while	block	do	
						offs	=	Crossover(pop)	
						offs	=	Muta1on(offs)	
						pop	=	COINselec(pop	+	offs)	
						i++	
			end	while	
			front					=	PF(pop)	
			contrib	=	COINcontrib(front)	
			pop					contrib	
			Θ	=	EM(contrib)	
			pop	=	RefPointDist(pop,	Θ)	
end	while	

gen				=	max_gen	
block	=	subset_gen	
while	i	<	gen	do	
			while	block	do	
						offs	=	Crossover(pop)	
						offs	=	Muta1on(offs)	
						pop	=	COINselec(pop	+	offs)	
						i++	
			end	while	
			front					=	PF(pop)	
			contrib	=	COINcontrib(front)	
			Θ	=	EM(contrib)	
			pop	=	Hyper-RPDist(pop,	Θ,	S)	
end	while	

gen				=	max_gen	
block	=	subset_gen	
while	i	<	gen	do	
			while	block	do	
						arq	=	COINselec(pop	+	arq)	
						offs	=	Crossover(arq)	
						offs	=	Muta1on(offs)	
						pop	=	offs	
						i++	
			end	while	
			front					=	PF(pop)	
			contrib	=	COINcontrib(front)	
			Θ	=	EM(contrib)	
			pop,	arq	=	RPDist(pop,	arq,	Θ)	
end	while	

a)	CI-NSGA-II	 b)	CI-SMS-EMOA	 c)	CI-SPEA2	

Fig. 1: The COIN MOEAs pseudocode: CI-NSGA-II, CI-SMS-EMOA, CI-SPEA2.

EM() subroutines have the same purpose and work as the CI-
NSGA-II. The selection operation, performed by the COIN-
Selec() procedure, prefers individuals with minor domination
rank (irank). If they belong to the same front, the one with the
maximum contribution to the hypervolume of the set and the
closest reference point distance (iref ) is selected and stored
in the new population. The Hyper-RPDist() calculates the
minimum distance to the nearest collective reference points
in Θ and sets the hypervolume values of the point.

SPEA2 implements elitism by keeping an external popula-
tion P̄t of size N . The archive preserves the best solutions
since the beginning of the evolution. In the algorithm CI-
SPEA2, subroutine COINSelec() computes the strength of all
individuals and the non-dominated members are copied to the
archive arq. The k-th nearest data point used to calculate
the original density function was substituted by the collective
reference points Θ. If the archive | arq |≤ N , the algorithm
chooses the nearest individuals to the collective reference point
until the archive size is reached. Otherwise, if | arq |> N , it
removes the more distant ones proportionally to the number
of individuals in each reference point cluster.

The CI-NSGA-II, CI-SMS-EMO and CI-SPEA2 prioritize
the points close to the online collective reference point.
The algorithms consume preference information to explore
satisfactory solutions for DMs.

V. PETROLEUM FIELD FACILITY LOCATION PROBLEM

The location of operational facilities is a strategic goal for
many companies. The petroleum industry must extract oil from
resource areas and allocate offshore platforms in such a way
that optimizes its operational costs and production capacity.
More generally, they transform the management of resources
into a multi-objective problem where it must balanced the
use of facility capacities to operate in an economic way and
maximize the operational performance.

Let µ be the cost of one processing unit, v the productive
capacity of one processing unit linked to one resource area,
M a set of available positions to processing units, N a set of

available positions to resource area and D a distance matrix
(def )nxm, where n ∈ N and m ∈M . The decision variables
are the processing unit cj (j ∈ M ) that assumes 1 if it is
placed at position j or 0 otherwise and σij that assumes 1 if
there is a link between the resource area at position i ∈ N
and the processing unit at position j ∈M .

The problem is to find a good solution for positioning the
processing units according the resource area. It is formally
represented as the two following optimization problems:

min

N∑
i=1

M∑
j=1

σijdij +

M∑
j=1

cjµ , and

max

N∑
i=1

M∑
j=1

σijvj .

(7)

Different constraints from real life and several new inter-
dependencies among the variables will increase the search
complexity of this facility location problem. The situation
described is a candidate for this experiment due to some
reasons: a) as a real-world case example, the objectives and
decision variables are meaningful to the group; b) the problem
interacts with crowd’s cognition and requires a 3D spatial
reasoning to avoid natural obstacles in the scenario; c) the
users’ feedback can be made parallel in synchrony with
the evolution of individuals in an evolutionary algorithm; d)
incentive engines and gamification can be used to retain the
users’ interest on the interaction during the optimization.

In this context, the facility location problem was designed
as a game where players compete among themselves to obtain
points and recognition of success. This is usually intended to
increase engagement of players, create gameful and playful
user experiences, motivate them and set clear objectives to
guide a cooperative or competitive behaviour. The game was
implemented in a web-based platform and is open to all
public.1 The game elements were transformed to preserve the
sensitive details of the industrial partner. Trucks represent the

1http://playcanv.as/p/1ARj738G



Fig. 2: Game and Computational representation of the facility
location problem.

resource areas and the warehouses or barracks symbolize the
processing units with two different types.

There are two options in the game: a) pairwise comparison,
which implements the selection operator; b) free design mode,
which implements the variation operator. In the pairwise
comparison mode, the players must vote on the best candidate
(individual from population) between two or more facility
location scenarios. As votes on the scenarios happen, the
Gaussian Mixture model calculates the collective reference
point to restrict the search to relevant areas in Pareto front. The
players who have chosen the individuals near the collective
reference point receive a higher score. They compete at every
evolution interval for choices around the collective mean.

In the free design mode, some individuals from population
are distributed to the players who have to fix and change their
position arrangement. The dynamic game scenario allows the
creation of objects like trucks or warehouses, changing their
arrangements and rebuilding their connections with straight
lines or zigzag lines. This game mode uses the collaboration
of people to apply rational improvements in the quality of EA
population. Figure 2 shows the dynamic board scene and its
internal representation inside the algorithm.

There are four different scenarios available in the game:
easy, easy obstacles, medium obstacles and hard obstacles.
The first one allows only straight lines to connect objects
and ignores any sort of obstacles. From second to the fourth
scenario, the zigzag lines have to be used to avoid the

obstacles. The level of difficulty increases according to the
number of obstacles in the game scene. The medium and
hard scenarios are complex and simulate aspects of the real
world. The placement of facilities has to consider factors like
competition for shared resources and obstructed paths.

According the test results in previous studies [6], [7], CI-
NSGA-II outperformed the algorithms CI-SMS-EMOA and
CI-SPEA2. Thus, the experiment with a true collectivity
compares the new CI-NSGA-II with the original NSGA-II
and R-NSGA-II. The main goal is to analyse the performance
of CI-NSGA-II facing distinct environments and to identify
when the collective intelligence has a positive influence in the
results.

In this regard, the original NSGA-II runs independently,
whereas the R-NSGA-II uses the ideal point as a fixed ref-
erence point. The CI-NSGA-II receives the collective collab-
oration at specific moments of the optimization process. The
CI-NSGA-II Vote variation interrupts the evolution process and
asks the players to choose the best candidate between two
scenarios. In the CI-NSGA-II Fix variation, the participants
can interactively update and redesign all the elements in
the game scene. The CI-NSGA-II Igni variation accepts the
collective contributions only in the beginning of the evolution
(first generation), then it runs to the end without interference.
The time interval for human collaboration is 30 seconds for
pairwise comparisons and 60 seconds for game scene update.

The experiment was applied in two different computer labs:
a Brazilian professional education center with more than 30
students’ attendance and a private company training room.
Two different methods were used to evaluate performance:
fixed distance and fixed time. In the fixed distance, a mini-
mum distance between the current approximation set S and
the Pareto-optimal front is measured by the front coverage
indicator, DS→PF

. A proximity of DS→PF
= 20 is the criteria

to stop the evolution and compare the algorithms. In the
fixed time, the algorithms run in a time interval previously
defined. Table I presents the results for fixed time and distance
evaluation.

Based on the results, the original R-NSGA-II won in the
Easy and Easy Obstacles scenarios. The problem without
obstacles is so simple that the algorithm took only two seconds
to reach a convergence of DS→PF

= 20. In the case of fixed
time (5”), there was not sufficient time to involve a collective
participation of users, so the CI-NSGA-II was not applicable
(NA).

The CI-NSGA-II Fix and Igni had a better performance
in the Medium Obstacles scenario. Although the R-NSGA-
II required less number of function evaluations to reach the
convergence DS→PF

= 20, the CI-NSGA-II Igni results were
close and obtained the lowest referential cluster variance indi-
cator κ, which means the points are clustered closely around
the collective reference point. CI-NSGA-II Fix dominated the
values of the fixed time evaluation.

The most interesting result appears in the Hard Obstacles
scenario. The CI-NSGA-II Fix succeeded in all three indicators
with the support of the collective intelligence. Considering the



TABLE I: Results of fixed time evaluation.

Easy Easy Obstacles

Algorithms Time:5” Time:70”

DS→PF
Num.Eval. κ Ψ DS→PF

Num.Eval. κ Ψ

NSGA-II 7,1 15.440 16,5 e05 2590,0 16,0 91.680 16,2 e05 2974,8
CI-NSGA-II Vote NA NA NA NA 63,6 19.240 22,4 e05 6632,5
CI-NSGA-II Fix NA NA NA NA 47,0 8.820 5,9 e05 1881,6
CI-NSGA-II Ignition NA NA NA NA 31,6 39.520 0,7 113,0

Medium Obstacles Hard Obstacles

Time:300” Time:900”

NSGA-II 11,2 68.000 18,2 e05 3268,4 57 8.000 17,4 e05 4720,0
CI-NSGA-II Vote 16,5 55.000 22,9 e05 3456,5 76,3 7.640 16,6 e05 4089,8
CI-NSGA-II Fix 1,9 29.580 2,1 e05 1196,5 16,2 8.640 10,1 e05 1109,3
CI-NSGA-II Ignition 7,7 55.480 7,2 e05 1656,7 28,9 23.300 10,8 e05 1298,2

TABLE II: Results of fixed distance evaluation.

Easy Easy Obstacles

Algorithms DS→PF
: 20 DS→PF

: 20

Time Num.Eval. κ Ψ Time Num.Eval. κ Ψ

NSGA-II 3,0 3.440 e05 2896,2 48,6 62.160 18,2 e05 2889,6
CI-NSGA-II Vote 46,0 3.200 16,5 e05 2272,3 196,3 78.520 28,4 451,6
CI-NSGA-II Fix 63,3 1.380 14,0 e05 4101,7 86,1 20.660 4,3 e05 896,9
CI-NSGA-II Ignition 63,0 1.280 14,8 e05 5581,8 106,9 29.680 2,2 10,25

Medium Obstacles Hard Obstacles

NSGA-II 372,4 68.080 17,5 e05 3743,4 2661,9 22.000 18,3 e05 6270,6
CI-NSGA-II Vote 300,0 57.640 25,1 e05 2830,5 3058,7 34.820 17,5 e05 3098,4
CI-NSGA-II Fix 249,5 25.180 2,5 e05 1800,0 823,1 4.600 7,7 e05 1267,3
CI-NSGA-II Ignition 179,6 25.280 1,9 e05 1164,3 1448,8 44.100 15,02 e05 2890,9

fixed distance evaluation, the algorithm required 5 times less
function evaluation and performed 3 times faster than NSGA-
II. In terms of the fixed time evaluation, it managed to find a
convergence 3.5 times better than R-NSGA-II.

Altogether, CI-NSGA-II Fix iteratively refines the search
parameters and adopts players collaborations to achieve more
appropriated points in the final trade-off set. It encourages
the creativity and cognition to produce new solutions. Figure
3 demonstrates how the collective intelligence contributions
in CI-NSGA-II Fix outperform the regular NSGA-II and R-
NSGA-II from the Medium Obstacles scenario onwards (low
values are desired). This concludes that collective intelligence
and reference points enhance the MOEA results when faced
with more complex scenarios.

Figure 3c shows the number of function evaluations for
each scenario. The CI-NSGA-II Fix consistently presented
the lowest values of function evaluations. From a practical
point of view, the arrangement of facilities involves large
sums of capital resources and their economic effects are
long term. This approach may allow a fast analysis of many
manufacturing alternatives enabling the company to take rapid
decisions both in the design and in the operation phases, and to
obtain competitive advantages in costs control. The interactive

MOEA could benefit from human characteristics, such as 3D
spatial reasoning and strategic thinking, to find a handful
of preferred solutions and give the company a competitive
advantage.

VI. FINAL REMARKS

MOEAs can take advantage of decision makers’ preferences
to guide the search through relevant regions of Pareto-optimal
front. Suitable techniques of preference-based and interactive
multi-objective algorithms were pointed out as an alternative
to handle the dynamism not expected by a priori methods.

The presented algorithms apprehend people’s heterogeneity
and common sense to improve the successive stages of evolu-
tion in a direct crowd sourcing fashion. Consequently, instead
of the entire front, it reaches a smaller sub-set of the front
and uses the collective preferences to support decisions upon
multi-objective situations.

The approaches have been tested successfully in a real-
world case study regarding facility location. The continuity
of this research will compare with and possibly extend other
MOEAs, such as MOEA/D [24] and FEMOEA [20].
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Fig. 3: Results of distance and time measurements for each
game scenario.

Two different performance indicators (referential cluster
variance and hull volume) were used with the intention to
measure the proportion of occupied area in PF .

The combination of collective intelligence in MOEAs has
an advantage over traditional iterative approaches because their
results are driven not by one DM, but a group of people that
delimits their collective area of interest and preferences in the
objective space.

There is a particular interest in more complex scenarios
with many constraints and non-explicit objectives hidden in
the problem. It is important to validate if the complexity
of the environment will favor even more the integration of
COIN in MOEAs. Also, as future work, we plan to create
an open platform and others web-scenarios to apply collective
intelligence in different multi-objective real-world problems.
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