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Abstract—Cancer is a disease characterized by the continuous
acquisition of random mutations by cells, which are subsequently
subjected to selection forces that favour the survival of some cells
over others. The result of this evolutionary process called clonal
evolution is a genetically heterogeneous mass known as a tumor,
and identifying its composition is crucial not only for gaining
further understanding of the disease, but also for designing
effective therapies tailored to the particularities of the whole
tumor. Thus, the clonal deconvolution problem tries to identify
the different cell subpopulations that form the tumor and the
phylogenetic tree that describes the evolutionary process that led
to it from a series of biopsies that are an admixture of those
subpopulations. This problem has been tackled from different
perspectives, but as far as we know, metaheuristics have not been
explored. In this article, we propose an Iterated Local Search
(ILS) approach as a first metaheuristic approximation to solve
this problem. Preliminary results on simulated data show that our
method outperforms two well-established heuristic algorithms
when running time is constrained. Moreover, the algorithm has
the advantage that it is a flexible approach in which assumptions
on the tumor development mode are not directly implemented,
and it can therefore be easily adapted to accommodate new
discoveries made on the evolution mechanisms in cancer.

Index Terms—Optimization, Metaheuristics, Heuristic meth-
ods, Biology and genetics, Local search

I. INTRODUCTION

Tumors grow through the accumulation of somatic muta-
tions that provide them with fitness advantage. This accumula-
tion can be described by the clonal evolution theory, according
to which selection forces such as oxygen availability, physical
forces of the microenvironment or therapy act by favouring
the growth or survival of certain cell populations or clones
over others [1]. As a result, tumors present themselves as
genetically heterogeneous masses composed of clones that har-
bour different mutational profiles that shape their capacities,
including growth rate, immunogenicity, response to treatment
and ability to metastatize. This characteristic of the tumors
is known as intra-tumor heterogeneity (ITH) and its study is
essential not only for better understanding cancer development
but also for the clinical practice, by aiding in the design of
therapies adapted to the particularities of the tumor clones.

The fact that clones are not independent from each other, but
rather are evolutionarily related, allows us to model the tumor
history through a phylogenetic tree. Such a tree is composed
of vertices or nodes that represent tumor clones and edges

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Borja Calvo
Intelligent Systems group
University of the Basque Country UPV/EHU
Donostia-San Sebastian, Spain
borja.calvo@ehu.es

Charles Lawrie
Molecular Oncology group
Biodonostia
Donostia-San Sebastian, Spain
charles.lawrie @biodonostia.org

that represent ancestral relationships, and is usually rooted in
the cell where the first mutation of the tumor arose, i.e., the
most recent common ancestor of all the tumor clones. All
these nodes represent clones that have arisen at some point
in the evolution of the tumor. Some of those may be extinct,
i.e., not present anymore in the tumor. The rest are potentially
observable, but not all of them are necessarily observed in
every biopsy.

Inferring such a tree, however, is rather different from the
classic phylogenetic tree reconstruction problem [2]. In the
classical problem, we infer a phylogeny from a collection of
organisms which we observe individually; here, instead, we
do not directly observe the clones, but mixtures of them, as
detailed below.

For getting the input data for our problem, the procedure
is to biopsy a series of samples from the tumor under study
and to sequence them to obtain the set of existing mutations
together with their estimated frequency or variant allele fre-
quency (VAF) in each sample — i.e., which percentage of the
sample contains each mutation. Most of the time, however,
each of these samples does not contain a single clone, but is
rather an admixture of clones [3]. Hence, if we aim to identify
the clones present in a tumor, we must take into account the
fact that these VAFs we observe are not direct estimates of the
clone frequencies, but the result of a pool of them. What is
more, additional bias exists in these measurements, including
the ones introduced by sampling and the sequencing process
itself.

This whole fact is indeed the origin of the problem dealt
with in this work, as the evolutionary reconstruction is
bounded to the deconvolution of the mixtures of clones. In
essence, the problem we need to tackle is the identification
of the clonal structure of the tumor, including the number
of clones, their mutational composition and the phylogenetic
tree leading to that clone mosaic, having as an input the
estimated frequency of a number of mutations in a number of
samples of the tumor. While several names have been given
to this problem in the literature, we will refer to it as clonal
deconvolution problem (CDP) (Fig. 1).

During the last few years, several efforts have been made
to address the CDP. A large number of probabilistic (mainly
Bayesian) models have been proposed as they are a natural
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Fig. 1. Tllustration of the clonal deconvolution problem. The toy tumor on a) has 5 clones, each of them represented with a different color, and has evolved as
depicted in b). The input for the CDP is shown in panel c). Three samples are biopsied from the tumor, but the clones present in each sample are unknown.
Instead, the information we get is the set of the identified mutations (M1-Ms), together with their variant fractions in each sample. These are detailed in the
matrix on the right. One possible solution to the CDP is shown in d), and consists of a phylogenetic tree that explains the ancestral relationships between
the clones and the mutational composition of each clone. Several factors interfere with the resolution of the problem. Among them, it is worth noting that,
in this specific example, the sampling does not capture any purple clone and hence, none of the possible phylogenies constructed from these data, including

the one shown in d), could contain this clone.

approximation to the problem that provides an inherent way
of dealing with noisy data and modelling uncertainty [4], [5],
[6], [7], [8]. Still, they run into too large computing times for
practical purposes, especially as the problem size increases.
This has only become of special relevance recently, as the
lowering of DNA sequencing costs has allowed more tumor
samples to be sequenced and in much more detail, which
in turn has enabled the detection of larger numbers of low
frequency mutations.

At the same time, the combinatorial nature of the problem
opens the door to the use of optimization techniques to solve
the problem. Here, most of the proposed approaches fall into
the exact [9], [10] or heuristic [9], [11] categories. Whereas
exhaustive methods provide the best results, they suffer from
the same limitations as probabilistic modelling and are only
suitable for problems with a limited sample size and number
of mutations. Regarding the heuristic methods, while they are
able to produce good enough solutions quickly, they have
the limitation that they are created with problem-specific
knowledge. For solving the CDP, these algorithms impose
restrictions based on assumptions about the mechanisms be-
hind tumor evolution. Commonly used evolution models are,
however, being questioned by recent evidence in favour of new
ones [12], and there is not an easy way of introducing these
latest models into heuristic algorithms without redesigning
them completely. Moreover, the way most of the existing
methods have to cope with large amounts of mutations is by
assuming that those mutations with similar VAFs appeared for
the first time in the same clone, and hence they first cluster

together those mutations and treat them as a single mutation
[13], [14], [15]. However, this simplification may not always
be true, as two ancestrally unrelated clones can each harbour
a mutation with similar allele frequencies, which is indeed
especially common in low frequency variants. Thus, these
mutations would incorrectly be grouped together in the same
clone by these approaches.

Hence, a need exists to develop algorithms that are able
to produce solutions for big problem sizes without the need
to make constraining assumptions on allele frequencies, and
that are flexible enough to allow for changes in their for-
mulation as new knowledge on tumorigenesis is achieved.
Under this scenario, metaheuristics are an approach worthy of
study. However, these types of algorithms have largely been
overlooked in this field.

Here, we base our work on an existing formulation of the
CDP and introduce an Iterated Local Search (ILS) algorithm
as a first metaheuristic approximation to the problem. This
is a flexible approach that can equally work under different
uncertainty conditions and tumor evolution models. Moreover,
experiments on simulated data show competitive results when
compared to other established algorithms.

The remainder of the paper is organized as follows: the
formulation of the CDP is introduced in Section II. Section
IIT describes the algorithm we have implemented. The exper-
imental setup is presented in Section IV and the results are
reported and discussed in Section V. Finally, the conclusions
and future research lines are presented in Section VI.



II. PROBLEM FORMULATION

In order to solve the CDP, hypotheses about the mutation
acquisition process that leads to the tumor development are
to be made. Although one of the main advantages of our
approach is the flexibility, in this work we will pay attention
to the classical evolution models that are used in most of the
previous works. Thus, we assume tumors have monoclonal
origin, i.e., they arise from a single cell or mutation, and attach
to the perfect phylogeny model or infinite sites assumption
(ISA), which states that a given mutation arises at most once
in the same tumor, and that a mutation can not be lost. This
model, although fairly restrictive, has widely been adopted
by several authors [16], [14], [13] and hence stands as a
reasonable starting point. Its main implications are two. First,
if two cells share a given mutation, then they have to be part
of the same clone or they are part of clones ancestrally related.
Secondly, if a cell in a clone acquires a given mutation, then
that mutation has to be also present in all its descendants, as
mutations cannot disappear.

Our algorithm tries to solve the problem based on the Vari-
ant Allele Frequency Factorization Problem (VAFFP) formu-
lation introduced in [14]. The intuition behind this formulation
is that the mutation frequencies we observe in a series of
tumor samples are the result of the combination of the tumor
clonal structure and the clone proportions captured in each
sample. This formulation can be expressed by means of a
matrix decomposition procedure.

Let us suppose that we have m samples from a given tumor
and we sequence them. Now, let n be the set of the mutations
identified in at least one sample of the tumor. We can now
construct an m X n VAF matrix F, where f;; is the frequency
of mutation j in sample <.

The tree that describes the development of the tumor can be
defined by a rooted, directed clone tree T' with n vertices. In
this tree, each vertex corresponds to a clone and is identified by
exactly one mutation, meaning that the clone is the first to con-
tain that mutation. This implies that, under this formulation,
we can interchangeably talk about clones or mutations as there
is a one-to-one correspondence between them. In this tree, the
edges connect clones with a direct ancestral relationship. For
the tree to be in line with the ISA model, for each two directly
connected vertices v; — v, v, contains all the mutations of its
parent v; (no mutation loss) and it has an additional mutation
only present in itself and its descendants (mutations arise only
once).

Alternatively, we can represent this tree by an n X n binary
clone genotype B matrix [17], in which each b;. row represents
the mutations present in vertex (clone) v;. ISA restrictions
on the tree translate into the B matrix as follows: for any
mutation j , let Z; be the indices of the clones containing that
mutation. That is, Z; = {i/b;; = 1}. Then, for every pair of
columns j, k, either Z; and Z;, are disjoint or one contains the
other. Note that, assuming a monoclonal origin for the tumor,
the matrix will have a column with all ones corresponding
to this founding mutation, as that initial mutation is in all the
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Fig. 2. The VAFFP problem formulation. This problem looks for the

decomposition of a F' matrix into a clone frequency matrix U and a clone
genotype matrix B. Two possible solutions for the ' matrix above are shown
in panels a) and b). Both solutions have four clones in common (M7, Ma,
Mas, M5) and differ in a single one (My4): while the solution in a) places it
as a direct descendant of M3, in the solution in b) its parent node is Ma.

clones. We should note that, given a valid B matrix, any matrix
obtained by a permutation of the rows (clones) and/or columns
(mutations) leads to an equivalent matrix that represents the
same evolutionary process. This property implies that any
relabelling of the mutations and/or clones does not alter the
tree structure, and implies that, for a tree 7', we have n! - n!
equivalent matrices.

In order to derive the mutation frequency matrix F' from a
matrix B, we need information about the proportion of each
clone in each sample. This information is captured in the clone
frequency matrix U, which is an m x n matrix where u;; is
the fraction of clone j in sample i'. Subsequently, as shown
by [14], we have that:

F=U-B (1)

As wu;; is a proportion, it follows that, first, its values
have to be non-negative and secondly, rows, which represent
clone proportions in each sample, must sum up to one. These
conditions form what is known as the sum rule [14].

Thus, we can state the CDP as follows: given an m xn VAF
F' matrix, find a pair of matrices B and U that produce the
observed F' matrix by (1) (Fig. 2). Note that, in an error-free
VAF scenario, i.e., when the I’ matrix does not contain errors,
the exact I’ matrix can be found; however, when errors exist,
the problem is relaxed to find the F’ matrix that minimizes
some distance to the observed F' matrix. This problem has
been shown to be NP-complete [14].

Note that, regarding the relabelling issue, from all the permutations of the
columns (mutations) we can restrict to that in the F’ matrix. Note also that the
relabelling of the rows (clones) has to be taken into account in the U matrix
in order to get the original F' matrix.



III. ALGORITHM

In this work we propose an ILS algorithm to solve the
CDP. The algorithm performs the search in the space of
trees that fulfill the ISA. Loosely speaking, the search starts
from a random valid tree. Then, neighbouring solutions (trees)
are evaluated and the search continues with a solution that
improves the current solution. If there is no option to move
to an improving solution, a perturbation is performed and the
search continues from there. The process goes on until any
of the two stop criteria is met. As the evaluation function is
lower-bounded at 0, the first criterion is to reach to an optimal
solution. The second criterion is based on the budget of the
algorithm in terms of a maximum number of evaluations.

Given a tree 7" and the F' matrix, we first get one of the B
matrices that represent 7" and calculate the necessarily unique
U matrix using (1). This is straightforward as B is always an
invertible matrix [14]. We next obtain the U’ matrix from U
by enforcing it to meet the aforementioned requirements: all
negative values are coerced to 0 and rows are normalized to
sum up to 1. It is shown that, for the U matrix to be valid, it is
sufficient that it adheres to that criteria [14]. We then calculate
the F’ matrix with the U’ matrix and the B matrix using (1)
again. Finally, we calculate the objective function value as the
mean absolute error between F' and F’:

m n
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Algorithm 1 and Algorithm 2 respectively describe how the
evaluation of a solution and the obtention of a B matrix for
a given tree are computed. It is worth mentioning that the
pseudocode in Algorithm 2 describes the calculation of a B
matrix in which clones have been labelled so that clone ¢ is
the first containing mutation ¢, and that it is ordered so that
row ¢ represents clone ¢ and column ¢ represents mutation .

The neighbourhood of a solution is defined as the collection
of all trees reachable within one subtree prune and regraft
(SPR) operation on that tree [18], which consists of cutting
(or pruning) one edge in the tree and attaching (or regrafting)
the resulting subtree to another node in the remaining tree.
Note that this simple movement in the tree implies updating
a number of rows and columns in the corresponding B
matrix (Fig. 3). The pseuodocode for the obtention of the
neighbourhood is shown in Algorithm 3.

As for the selection of neighbour solutions, we employ
two strategies to conduct the local search: to explore the
entire neighbourhood and move to the best improving solution
(greedy approach) or to continue with the first improving
solution (first-improvement approach).

When getting trapped in local optima, the search continues
with a solution obtained through the perturbation of that local
optimum. Specifically, we perturb the solution by making a
number of random SPR changes in the solution tree.

IV. EXPERIMENTS

As a first approach to assess our proposal against well
established algorithms, we will work on error-free simulated
data. In this section we will first describe how the data are
generated and, then, the experimental design will be presented.

A. Simulated data

Each problem instance consists of a matrix F' of mutation
frequencies in a set of samples. This matrix is built using a
pair of matrices B and U representing an evolution tree that
fulfils the ISA and the relative frequencies of the clones in the
samples, respectively. These matrices are generated as follows.

Given a number n of mutations, we create a tree by first
assigning a random mutation to the root node. Then, for each
of the remaining mutations, we create a new node, assign the
mutation to it and randomly set the node as a child of an
existing node in the tree. In order to meet the ISA model, each
of the newly added nodes inherits all the mutations present
in its parent node. For the U matrix, we create each row
(proportions of each clone in a sample) by randomly sampling
an exponential probability density distribution with the rate
parameter set to 3. As typically not all clones are present in
all samples, 20% of the elements in each row are randomly
selected and forced to 0. Finally, clone proportions of each
row are normalized so as they sum up to one. Finally, the F’
matrix is calculated using (1).

In total, we simulated 800 random instances. These com-
prise 4 different numbers of mutations (n € {10, 25, 50,100})
and 4 sample sizes (m € {4,6,8,10}), with the aim of
assessing the behaviour of the algorithms with increasing sizes
for the problem. For each combination, 50 instances were
generated and the algorithms were run once for each instance.

B. Evaluation

We compared the performance of our algorithm to two other
well established heuristic algorithms: CITUP [9] and LICHeE
[13]. Evaluation was done by assessing how well the tools
were able to reconstruct the original variant allele frequencies,
in terms of the objective function value (2). In all cases, the
running time of the algorithms was bounded to 2 hours and in
the case of our algorithm, the maximum number of evaluations
was limited to 10 - n?.

The only parameter to tune in the ILS algorithm is the size
of the perturbation. We performed some preliminary parameter
tuning experiments, in which we found no big differences for
different sizes (results not shown), so we set it to 0.2 - n.

Regarding the other two algorithms, there are several con-
siderations to keep in mind. First of all, both can report more
than one solution. For the current evaluation, the solution with
minimum mean absolute error was chosen. Moreover, the two
algorithms inherently cluster mutations with similar VAFs into
a same clone. As our data simulation scheme does not perform
any clustering but assigns a unique mutation to each clone,
we tried to tune the parameters of the algorithms in order
to minimize this clustering and hence make a fair evaluation.
This worked for LICHeE, but posed problems with CITUP,
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Fig. 3. An example of the SPR operation. Panel a) shows the starting tree and an associated B matrix. Three possible SPR operations are allowed for the
subtree rooted at M2 (in blue): it can be regrafted as a child node of clone My, as shown in panel b); of clone M5 as in c) or attached to clone Mg as in d).
In all cases, the elements associated to that moving subtree are updated in the B matrix. As aforementioned, these B matrices are just one of all the possible
matrices for each tree. Note that the complete neighbourhood of the tree in a) is obtained by repeating this operation on the rest of possible subtrees.

Algorithm 3: Get neighbourhood

Algorithm 1: Evaluate Input T'ree
Input T'ree, F' Output Neighbourhood
Output error Initialize empty vector Neighbourhood
B := Calculate B(T'ree) for each node in nodes(Tree) do
U:=F.-B1 Set new_parents to nodes(1'ree) not in parent
for each u;; in U do node of node and not in descendant nodes of
| wj; = max(0, u;;) node
end for each new_parent in new_parents do
for each v, in U’ do Build new_tree by setting parent of the subtree
| ) := normalize(u) rooted at node to new_parent //SPR move
end " " Add new_tree to vector Neighbourhood
F! = U/ - B end
error := mean absolute error(F, F’) end

where only default parameters worked in our instances. One
last particularity about LICHeE should be mentioned. When
this algorithm does not find a valid solution, it drops mutations

Algorithm 2: Calculate B

Input Tree and outputs a solution with fewer mutations than those in the
Output B F matrix. For assessing such cases, we decided to compute
n := size(Tree) the mean absolute error in the subset of mutations contained
Initialize identity matrix B,, in the output solution. Note that, although with this way of
foriin 1 : n do proceeding we alter the terms in the computation of the metric,
for j in the indeces of the descendant nodes of as the error is a mean value the scale is kept and the results
node ¢ do are comparable. Similarly, results obtained for instances of
| Bji:=1 different sizes are also comparable.
end
end V. RESULTS AND DISCUSSION

Fig. 4 and Table I summarize the performance of the four
algorithms in the 800 instances of the problem described
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Fig. 4. Results for CITUP, LICHeE, ILS greedy and ILS first-improvement. On top, aggregated error summaries per tool are shown. Below we can see these
results broken down by number of clones and by number of samples. ILS outperforms the other two algorithms in all the configurations. Results do not vary
much for different numbers of samples; the number of mutations, in contrast, has a different effect on the performance depending on the approach. In the
specific case of ILS, while it reaches optimal solutions for n = 10, it does not for larger mutation numbers.

TABLE 1
OBJECTIVE FUNCTION MEDIAN VALUES OF THE SOLUTIONS OF EACH ALGORITHM, FOR A SERIES OF n MUTATIONS AND m SAMPLES

ILS greedy | ILS first-improvement | CITUP | LICHeE
m =4 1.47e-17 1.40e-17 0.0123 0.201
n=10 m=06 1.58e-17 1.58e-17 0.0163 0.209
m =28 1.95e-17 1.89%e-17 0.0185 0.206
m =10 2.05e-17 2.05e-17 0.0184 0.232
m =4 0.00680 0.00297 0.0222 0.0721
n =25 m=06 0.00467 0.00224 0.0252 0.0826
m =38 0.00954 0.00714 0.0277 0.103
m = 10 0.00716 0.00508 0.0290 0.116
m =4 0.00782 0.00532 0.0191 0.0378
n =50 m=06 0.00753 0.00565 0.0207 0.0392
m =8 0.0104 0.00771 0.0215 0.0443
m = 10 0.00991 0.00757 0.0220 0.0441
m =4 0.00741 0.00471 0.0124 0.0167
n=100 L™= 6 0.00812 0.00498 0.0138 0.0202
m =8 0.00758 0.00572 0.0141 0.0254
m = 10 0.00723 0.00563 0.0137 0.0233




above. In the figure there are three boxplots. The top one shows
the overview of the results obtained by the four algorithms
(our proposal with first-improvement and greedy selections,
CITUP and LICHeE) in all the instances. The other two
boxplots summarize the results obtained grouped by number
of clones and number of samples. Similarly, the table contains
the median result obtained in the 50 instances generated for
each combination of number of clones (n) and samples (m).

The first thing we can see in the results is that there are no
0 error solutions. As we are working with error-free simulated
data, the optimal solution should have no error, but given that
the computation of the error implies getting the inverse of the
B matrix, this leads to numerical errors that are reflected in the
evaluation function. Particularly, for the n = 10 instances the
errors are below 10716, suggesting that indeed those solutions
are optimal. Paying attention to the results obtained by the
four algorithms, we can see that our proposal systematically
outperforms the other two algorithms used in the comparison,
with CITUP being the one that gets closer to the performance
of our ILS approach. Most likely, the differences between our
proposal and the other two algorithms are not so much due
to the optimization algorithm itself but due to the required
simplification of clustering mutations with similar frequencies.
This is an important point, as one of the goals of using
metaheuristics is to have the flexibility and scalability needed
to avoid such simplifications.

With respect to the effect of the number of samples, we can
see in the results that it is negligible. However, we have to
bear in mind that we generate all the samples completely at
random, that is, assuming that the distribution of the clones
in the tumor is homogeneous, but in real-life data this may
not be true. It is under such circumstances where analyzing
the effect of having a more thorough sampling would be of
interest.

Finally, we can also see that there is not a clear effect in the
obtained results for the increasing number of mutations, except
for our approach and between n = 10 and the rest. There are
different factors that can shed light on this observation. First
of all, having more mutations increases (at least in our case)
the search space, but also provides more flexibility to find
good solutions. In other words, it is not evident what effect
the number of mutations has on the shape of the landscape. As
for the other two algorithms, we should remember that they
cope with an increasing number of mutations using clustering,
so the increment in the size of the problem is to some extent
masked with that strategy. Also, related to the clustering, we
should not forget that the experimentation is preliminary and
the way the instances have been generated (in particular, the
frequencies associated to the mutations) can be related with
the penalization (or lack of) due to the clustering, similarly to
the implications of having a homogeneous tumor or not. In any
case, in the future a more extensive and realistic evaluation of
the algorithm will be needed in order to properly characterize
its behaviour under different circumstances.

VI. CONCLUSIONS AND FUTURE WORK

Solving the CDP is a challenging task that has been tack-
led from several methodological perspectives. In this work,
we have to the best of our knowledge, explored it from a
metaheuristic perspective for the first time. Preliminary results
on error-free simulated data show that, although the proposed
algorithm is very simple, the approach already outperforms
other existing heuristic tools when running time is bounded,
highlighting the potential of the method. Moreover, the good
performance of our algorithms with respect to the other
approaches is most likely due to the simplification (clustering
mutations) required by them in order to cope with an increas-
ing number of mutations.

Beyond this direct observation, we believe that the use
of metaheuristics is promising due to several reasons. First,
there is increasing evidence that the ISA model is frequently
violated. Recent studies have shown that mutation loss over
time and parallel evolution, i.e., the independent acquisition
of a same mutation by two clones, are common in certain
cancer types [12]. Hence, models allowing such scenarios and,
thus, better reflecting the underlying tumor evolutionary mech-
anisms need to be developed [15], [19]. Whereas specialized
or heuristic algorithms fail to easily adapt to such scenarios,
the work we have presented is a rather general framework that
can work under these new assumptions with minimal changes.
This is because the way the evolutionary mode is introduced
into our algorithm is through the restrictions on the B matrix
and the neighbourhood structure, and not into the algorithm
itself. Thus, modifying these two elements of the approach
may be enough to accommodate these new models.

Furthermore, the algorithm has also the advantage that
it does not explicitly model the error associated with the
clone frequencies. Indeed, the same objective function is valid
whether we deal with error-free data or not.

In short, we have proposed a novel approach to the CDP
which works in the current scenario and is flexible and
scalable enough to cope with new knowledge about cancer
evolution and bigger problem sizes. However, the work has to
be improved in several ways. Regarding the algorithm, other
more sophisticated methods should be explored, as the simple
experimentation conducted in this work already shows that our
approach is not able to reach optimal solutions except for very
small problem sizes.

Another point for future work is the evaluation function. In
this work we have focused on the error, but there are other
possible features of the solution that could be interesting to
explore, such as topology-related measures.

Finally, as we have already said, the experimentation con-
ducted in this work is very limited, as this is a preliminary
work. Future developments should be compared in more
complex scenarios (both simulated and real) against a broader
representation of the state-of-the-art and analyzed not only
from the error perspective but also from other points of view.
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