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Abstract—The assessment of machine learning algorithms in a
particular task is usually done by means of empirical evaluation
on real world observational data. However, sometimes there
is no previously annotated data available. Synthetic datasets
have gained attention as an alternative for efficient classifier
evaluation, since they are accessible and high parameterizable
for a given learning task. The characterization of such databases
can be done by means of descriptors on the learning object
at hand, e.g., complexity measures, which extract statistical
and geometric characteristics from the data sets, for a given
classification problem, in order to estimate their complexity. Such
complexity measures can be used to guide the production of
synthetic datasets, so it reinforces one or more dataset features.
The present work proposes the use of a many-objective algorithm
for the generation of synthetic data considering four measures of
complexity that will be balanced at the same time. The results
showed that the proposal is able to optimize conflicting objectives,
generating datasets of specific complexities.

Index Terms—Dataset generation, Many-objective optimiza-
tion, Complexity measures

I. INTRODUCTION

Currently, several classification algorithms are being used
in a wide variety of tasks, distributed in many areas, such as
medicine, security, business, and education. Due to the large
heterogeneity of such tasks and the particularities that make a
particular algorithm suit better than others, it is necessary to
analyze the quality of the classifier in terms of classification
performance (accuracy, precision, recall, and others), com-
putational cost interpretability [1]. These empirical analyses
support the specialist in the selection of the most appropriate
classifier for its particular problem.

A common practice to assess the performance of one or
more classifiers is to train and test them in different databases,
most of them publicly available. It has been observed that
such practice may have its limitations [2]. The first is that
the classifier’s performance estimate may be associated with
its own limitation or with the complexity of the data set
itself (for example, unrepresentative or missing data, high-
class imbalance, and others). Testing different algorithms on
the same data sets may seem to overcome this problem, as
the complexity of the data set is shared by all algorithms
considered. However, this can also lead to misleading con-
clusions, as there are complexities in the data set that may
affect the learning algorithms in different ways. The second
limitation is that, even if the obtained results are consistent
when compared with hundreds of real-world data sets, the

results still remain specific to the data sets considered in
the experimental evaluation. Trying to extend the information
obtained from these analyses to a different data set can be
ineffective. In addition, obtaining more real databases, with
different characteristics, to evaluate classifiers in different
aspects, is a complicated and often costly task.

In view of the aspects presented above, synthetic databases
have gained attention as an alternative for efficient classifier
evaluation, since they are accessible and parameterizable [1].
Although synthetic databases are not directly associated with
specific real data sets, they can be used as representations of
large classes of data [2]. Due to the parameterizable nature of
the synthetic bases, it is possible to create a database in which
its features follow, for example, a given Pearson correlation,
making it possible to analyze the behavior of classifiers in this
scenario.

Different strategies have been proposed for the systematic
generation of synthetic databases for classification problems. A
common approach is to sample examples following a specific
distribution [2]. Let us suppose that we want to create a
synthetic database from a normal distribution, with different
mean and variance for the different classes. By modifying
the values of the means and variances, it is possible to build
different databases, with distinct rates of overlapping classes.

Another approach proposes to generate synthetic databases
by modifying the geometric structure of the data [3], which can
be done using complexity measures [3]–[6]. These complexity
measures were introduced by Ho and Basu [7], and have been
adopted in different types of analysis in recent years [8]–[11].
Complexity measures extract statistical and geometric charac-
teristics from the data sets, for a given classification problem,
in order to estimate their complexity. In such scenarios, some
studies have proposed the optimization of different measures
in order to generate synthetic databases with different levels
of complexity. This is usually achieved by the application of
optimization algorithms (single and multi-objective) for the
generation of the synthetic data sets. There are approaches
that create a new synthetic database [3], [4] or that make a
sampling from pre-existing data sets [5], [6], to reach a given
value of one or more measures of complexity.

This work proposes an optimization method for the gen-
eration of new synthetic databases taking into account four
different measures of complexity: Error rate of linear classifier
(L2), the fraction of borderline points (N1), the ratio of
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average intra/inter nearest neighbor (NN) distance (N2) and
the class imbalance ratio (C2). It is worth noting that the
related works, so far, have considered at most three measures
of complexity to be optimized in the generation process. As
major contributions of this work, we point out: i) use of a
many-objective optimization algorithm (MaOA) to generate
synthetic data; ii) proposition of an experimental setup for
the use of MaOA for the complexity-based data generation
problem.

The proposed method was evaluated on the generation of
synthetic datasets composed of 100 instances with 2 and 10
attributes. Results demonstrate that the problem is challenging,
and the proposal is able to optimize conflicting objectives,
generating datasets of specific complexities.

This article is structured as follows: Section II introduces
complexity measures and many-objective optimization, impor-
tant concepts in this work. Section III presents some related
work which consider complexity measures in the generation of
synthetic data. Section IV details the proposed approach. Sec-
tion V presents the experimental methodology used to evaluate
the proposed method. Section VI presents the experimental
results, and Section VII highlights the conclusions and future
work.

II. BACKGROUND

This section introduces fundamental concepts about data
complexity and many-objective optimization, aiming for a
better understanding of the proposed approach.

A. Data Complexity

It is a known fact in the machine learning community that
the performance of a classifier is strongly dependent on the
nature of the data used in the training and evaluation analysis
[1]. Given that, the analysis of data complexity is a task that
has achieved great relevance in understanding the complexity-
performance relationship, how to overcome this dependency,
and how to improve the classifier’s performance.

The work developed by [7] is considered one of the pioneers
in proposing complexity measures (descriptors) to characterize
a given classification problem, in order to estimate its dif-
ficulty. These measures have been used lately for different
purposes, such as characterizing the domain of competence
of different machine learning algorithms [9]; description of
classification problems in meta-learning studies [11]; and
generation of new classification databases [12].

According to the work of [1], the main complexity measures
can be grouped into the following categories:

• Feature-based measures: quantify how informative for the
class separation the available features are;

• Linearity measures: quantify whether the problem classes
are linearly separable;

• Neighborhood measures: quantify the presence and den-
sity of identical and different classes in local neighbor-
hoods, which can be useful in capturing the shape of the
decision boundaries and characterizing class overlap;

• Network measures: extract structural dataset information
by modeling it as a graph;

• Dimensionality measures: quantify the sparcity of the
data based on the number of samples related to the
dimensionality of the data;

• Class imbalance measures: quantifies the ratio between
the number of examples in each class.

Complexity measures are estimated from a given data set
D that contains n pairs of examples (xi, yi), where xi =
(xi1, ..., xim) and yi ∈ 1, ..., nc are the instances and their
respective labels. Each instance xi is defined by m attributes,
and has a yi label associated to one of the nc classes.

B. Many-Objective Optimization

Multi-objective optimization problems having more than
three conflicting objectives are also known as many-objective
(MaO) problems. The MaO tries to find solutions that satisfy
all the conflicting objectives (~f ) at the same time. MaO can
be characterized as the problem of; given a vector of functions
(~f ) whose components represent objective functions to be
optimized, the goal is to find a vector of decision variables
that fulfills the defined constraints and also optimizes ~f at the
same time.

More specifically, consider the search space of solutions
defined as S, and a set of objective functions ~f(~x) :=
[f1(~x), f2(~x), ..., fk(~x)], where ~x = (x1, x2, ..., xn) ∈ Rn is
the vector of parameters in S. The optimization task is to find
a set of solutions Sopt ⊂ S, based on the vector of objective
functions ~f(~x). A general MaO minimization problem can be
defined as:

minimize ~f(~x) := [f1(~x), f2(~x), ..., fk(~x)], (1)

subject to:
gl(~x) ≤ 0 l = 1, 2, ..., p, (2)

hj(~x) = 0 j = 1, 2, ..., q, (3)

where ~x = (x1, x2, ..., xn) ∈ Rn is a vector in the decision
search space; k is the number of objectives and gl(~x) and,
hj(~x) are the objective functions and p+ q is the number of
objectives of the problem.

In a traditional multi-objective optimization problem
(MOP), Pareto dominance is usually used as a base of com-
parison between solutions. Algorithms that use such a strategy
have demonstrated promising results when applied to MOPs
with up to three objectives [13]. Nevertheless, the ability
to find optimal solutions of such methods typically worsens
when applied in a MaOPs scenario, i.e., in a setting more
than three objectives [13], [14]. This can be explained by
the increase of the dimensionality of the search space, as the
probability of a solution to be dominated by other solutions
in the population is reduced [13]. This leads to a dramatical
reduction in performance, making these algorithms to behave
as bad as, or even worse, than random search approaches [13],
[15]



Another aspect intrinsically related to MaOPs is that the
number of non-dominated solutions to approximate the Pareto
front rises exponentially as the number of objective functions
increases. Thus, it is required to have a bigger population to
store the nondominated solutions [16]. A more detailed list of
these limitations can be found in [13], [17].

Due to the aspects cited above, several approaches have
been proposed in the Evolutionary Multi-Objective Opti-
mization (EMO) to overcome the limitations of MOP-based
methods when applied to MaOPs [13]. Among them, we
highlight the Non-dominated Sorting Genetic Algorithm, third
version (NSGA-III). The NSGA-III algorithm was proposed
by Jan and Deb [18], and it consists of an extended version
of the widely used NSGA-II (for MOPs) to handle MaOPs.
The NSGA-III uses a reference point approach, with a non-
dominated sorting mechanism. Besides, it uses a clustering
operator to promote the diversity of the solutions when leading
with MaOPs. This algorithm has demonstrated promising
results when applied in MaOPs.

III. COMPLEXITY-BASED DATASET GENERATION

The task of synthetic data set generation based on complex-
ity measures consists in labeling instances of the classification
problem, trying to satisfy one or more complexity measures.
Figure 1 presents an overview of the process. Initially, a
database without labels (generated or pre-existing) is provided
for the optimization algorithm. The optimization algorithm
aims to find the best combination of label instances (solution)
present in the search space, which satisfies the specified
complexity measures. This task is a traditional combinato-
rial optimization problem [6]. Since the number of possible
combinations grows exponentially as the number of instances
increases, using an exhaustive method, in situations where the
database has a large number of instances, becomes impractical
[6]. Therefore, different studies used heuristics and/or meta-
heuristics to generate synthetic data.

Fig. 1. Complexity-based dataset generation pipeline.

The first work that considered complexity measures in the
generation of synthetic databases was developed by [8]. In this
seminal work, a search heuristic that best met the fraction of
borderline points (N1) complexity measure was used. In [4],
a genetic algorithm (GA) was used, in which each individual
of the population consisted of a vector of classes/labels, with
each class associated with an example from the database. In

this work, GA was used to find the combination of labels that
best satisfied the complexity measure fraction of borderline
points (N1). As an extension of the previous work, Màcia et
al. [3] proposed the use of a multi-objective genetic algorithm
(MOGA) for the labeling of examples in a classification
database. In this work, three measures of complexity were
considered in the labeling process, i.e., the fraction of bor-
derline points (N1), the ratio of average intra/inter nearest
neighbor distance (N2), and the ratio of the maximum Fisher’s
discriminant (F1). It is worth to note that this approach used
the same representation of individuals and genetic operators
that [4].

The authors in [5] proposed the generation of synthetic
databases through MOGA, as well as in [3], but taking into
account other complexity measures. In this case, the following
were considered: volume of the overlapping region (F2), the
nonlinearity of nearest neighbor (NN) classifier (N4), and
the fraction of maximum covering spheres (T1). In addition,
in order to avoid the generation of the entire database, the
authors propose to perform the instance selection based on
known base classification problems. The idea is to select
the subset of examples that optimize a combination of the
values of the complexity measures. In this case, MOGA has
some restrictions to control the number of selected examples,
class proportions, and data duplicity. Although the data sets
produced to cover the space of complexity in a more realistic
way, the algorithm can be considered expensive and has many
parameters to be adjusted.

A recent work, proposed by [6], used the mono-objective
Hill-climbing greedy search algorithm for the generation of
synthetic data. However, the generation process takes into
account an initial database, where the labels of the pairs of
examples are exchanged iteratively. With this, you can change
the structure of the database, but preserving some of its initial
characteristics, such as the number of examples, the classes,
and the data distribution within the classes.

The generation of synthetic databases is relevant and still
has several aspects that need to be further investigated. One of
them is the analysis of different complexity measures in the
optimization process. Another important aspect is to consider
the usage of optimization algorithms with more than three ob-
jective functions. In this case, the problem is considered many-
objective and would need specific optimization algorithms (for
example, the Non-dominated Sort Genetic Algorithm-III) to
produce the desired databases.

The present work proposes the use of a many-objective
algorithm for the generation of synthetic data considering four
measures of complexity that will be balanced at the same
time. Table I summarizes each related work, comparing them
with the one proposed in this paper. The aim is to make our
contributions clear in relation to the previous works.

IV. MANY-OBJECTIVE SYNTHETIC DATA SET GENERATOR

This paper proposes the generation of synthetic data sets by
adopting a MaOA to optimize different complexity measures.



TABLE I
CONTRASTING RELATED WORKS WITH THE PROPOSAL.

Reference Approach #Objectives Objective Function
Màcia et al. (2008) [8] Not informed search heuristic 1 Fraction of borderline points (N1)
Màcia et al. (2008) [4] GA 1 Fraction of borderline points (N1)

Màcia et al. (2009) [3] NSGA II 3
Fraction of borderline points (N1),

Ratio of average intra/inter nearest neighbor distance (N2),
Ratio of the maximum Fisher’s discriminant (F1)

Màcia et al. (2010) [5] NSGA II 3
Volume of overlapping region (F2),
Non linearity of NN classifier (N4),

Fraction of maximum covering spheres (T1)
de Melo et al. (2018) [6] Hill-climbing greedy 1 F1, N1 and Error rate of NN classifier (N3) at a time

Proposal NSGA III 4

Error rate of linear classifier (L2)
Fraction of borderline points (N1)

the ratio of average intra/inter NN distance (N2)
Imbalance ratio (C2)

In the following sections, each step of the generation process
(see the pipeline in Figure 1) is presented and discussed.

A. Instances Generation

The first step in the proposal is to initialize a data set from
scratch, given the number of predictor attributes, instances,
and classes. In this step, the attributes’ values are randomly
sampled from a uniform distribution in the [0, 1] interval. The
class attribute’s values are defined in the next steps according
to the optimization process.

Details about the number of attributes, instances, and classes
adopted in the experiments are provided in Section V.

B. Individual Representation

Let D be a data set with n instances. Each instance xi in D
has a label yi ∈ 1, ..., nc, in which nc is the number of classes.
In our work the class labels are assigned by the MaOA. In this
way, an individual ~I is represented by a vector of length n, in
which each position assumes a class value yi:

~I = (y1, y2, ..., yn). (4)

Hence, each individual represents a possible combination
of class labels for the data set. If we have D with n = 100
instances and nc = 3 possible class labels, the resulting search
space has 3100 possible solutions.

C. Individual Evaluation

As discussed in Section II-B, in a scenario of many-
objectives, each individual ~I is associated with a vector of
fitness values derived from the objective functions in ~f . In
the context of synthetic data generation, ~f is the chosen
set of complexity measures. The choice of the objective
functions considered in the optimization process depends on
the specialist’s demand in terms of complexity. In this work,
specifically, four measures of complexity were chosen for
the definition of objective functions: a measure of linearity,
two neighborhood-based measures, and a measure of class
balance. Each measure is described as follows:

Error rate of linear classifier (L2): Measure L2 calculates
the error rate of the linear SVM classifier. This measure is
calculated using the following equation:

L2 =

∑i=1
n I(h(xi) 6= yi)

n
. (5)

Fraction of borderline points (N1): this measure estimates
the size and complexity of the necessary decision boundary
identifyed the critical points in the database - those very close
to each other, but belonging to different classes. This measure
is calculated using the following equation:

N1 =
1

n

n∑
i=1

I((xi, xj)εMST ∧ yi 6= yj). (6)

where MST is the Prim’s minimum spanning tree algorithm.
Ratio of average intra/inter NN distance (N2): this measure
calculates the ratio between two sums, i) the sum of the
distances between each example and its closest neighbor in the
same class (intra-class), ii) the sum of the distances between
each example and its closest neighbor in another class (inter-
class). This measure is calculated using the following equation:

intra extra =

∑n
i=1 d(xi, NN(xi)εyi)∑n

i=1 d(xi, NN(xi)εyj 6= yi)
. (7)

Imbalance ratio (C2): is an index that measures the classes
imbalance in the data set. Here, the definition proposed by [19]
was adopted, as it can also be applied to multi-class problems.
This index is calculated using the following equation:

C2 = 1− 1

IR
, (8)

where,

IR =
nc − 1

nc

nc∑
i=1

nci
n− nci

. (9)

Each of the complexity measures produces a value in the
[0, 1] range. The simpler the problem, the closer to 0 it is, and
closer to 1 otherwise. For example, if the measure L2 = 0, it
means that the data is completely linearly separable, that is, a



simple classification problem. On the other hand, if L2 = 1,
it means that the data is not linearly separable to the extreme.

To calculate the fitness value of a candidate solution (label
combination), each of the complexity measures is calculated,
taking into account the labeled solution database. The objec-
tive functions defined here are the distance between the value
obtained by each complexity measure, subtracted by the value
of complexity desired by the specialist. Thus, there are four
objective functions (fL2, fN1, fN2, and fC2) to minimize the
distance between the value calculated by the measure and the
expected value. The four objective functions are defined in the
following equations:

fL2 = |target L2− L2| , (10)

fN1 = |target N1−N1| , (11)

fN2 = |target N2−N2| and, (12)

fC2 = |target C2− C2| , (13)

where, target L2, target N1, target N2 and target C2
are target values defined by a specialist.

D. Optimization Process

The MaOA used in this work was the NSGA-III, since it is
suitable for the context of many objective functions (more than
three). As can be seen in the Algorithm 1, NSGA-III follows
the traditional procedure of evolutionary algorithms. The first
step is the creation of an initial population, followed by an
iterative process of selecting the most promising individuals,
and by the application of genetic operators, such as crossover
and mutation. Then, the new individuals are evaluated, and the
Pareto front is updated using the fast nondominated sorting
procedure. The difference between NSGA-III and NSGA-II
is in the last step. It was necessary to replace the NSGA-
II crowding distance operator with a clustering operator. The
clustering operator associates members of the population with
fixed cluster centroid provided by a well-distributed set of
landmarks (Zr). This clustering operator was introduced to
promote the diversity of solutions in MaOPs. Finally, the out-
put of the NSGA-III is a Pareto composed of non-dominated
solutions, that is, incomparable in relation to the four ob-
jectives considered here. Details on NSGA-III operators and
parameters used in this work will be presented in Section V-A.

V. EXPERIMENTAL ENVIRONMENT

In this section, we present the experimental setup and
the methodology used to assess the proposed method. The
simulations were executed on a laptop with an Intel Core i7-
8750H with 4M cache memory, 2.2 GHz clock speed, and
8GB RAM. The programming languages used to implement
the proposed approach were Python™and R; the following
libraries were used: Scikit learn [20] for the machine learning
use, DEAP [21] for the use of the many-objective optimization

Algorithm 1: MOO algorithm.
PARAMETERS:
Zr: reference points

initialize population()

1: while !stop criterion do

selection technique()

genetic operations()

objectives evaluation()

fast nondominated sorting()

clustering operation()
end

TABLE II
PARAMETERS USED TO CREATE AND OPTIMIZE THE DATA SETS.

Parameter Value
Sample size (n) 100
Number of features (m) 2; 10
Number of classes (nc) 2
Number of runs 10
Complexity measures L2; N1; N2; C2
Initialization method Uniform random
Population size 30
#Generations 5000
Selection method Tournament
Reproduction rate 0.6
Mutation rate 0.2
Crossover rate 0.9
Crossover method Two-point
Mutation method Shuffle Indexes

algorithm and ECoL [1] which contains implemented com-
plexity measures to characterize classification problems. These
libraries are reliable and extensively used for research projects.

A. Experimental Setup

The step that precedes the optimization process is the gener-
ation of the synthetic database. The synthetic base, size n, was
created following a uniform distribution of values between 0
and 1, with a given number of attributes m. Table II presents
the parameters used to generate the synthetic database. We
tested two different sample sizes, numbers of features, and
classes, considering four complexity measures.

Once the synthetic bases are created, the optimizer will try
to find the combination of labels that best satisfy the different
targets for each of the complexity measures. It is important to
mention that each execution is independent, but uses the same
synthetic data set.

In this work, we used the NSGA-III as the many-
optimization algorithm, and it is available in the DEAP library
[21]. All parameters were chosen empirically, and they are
stated in Table II. The optimizer used 5,000 iterations as a
stop criterion, generating up to 150, 000 synthetic data sets.



TABLE III
COMPLEXITY TARGET VALUES FOR EACH PROBLEM LEVEL.

Problem level L2 N1 N2 C2
Easy 0.07 0.07 0.07 0.07
Medium 0.07 0.07 0.07 0.48
Difficult 0.22 0.22 0.22 0.22
Very difficult 0.35 0.35 0.35 0.48

B. Evaluation Methodology

To evaluate the proposed method, the experiment was di-
vided into two parts: 1) data visualization and 2) quantitative
analysis. The first considers a synthetic database with 2
attributes and 100 samples. The optimization algorithm was
used to generate synthetic data sets in four different complexity
scenarios: easy, medium, difficult, and very difficult. The target
values for each problem level can be seen in Table III. The
easy problem presents a linearly separable behavior, balanced
and with a low level of overlapping. The medium problem
is linearly separable and with low overlapping, but with
highly unbalanced behavior. The difficult problem presents
overlapping; the data are not linearly separable and present
some imbalance. Finally, the very difficult problem is chaotic,
with a high level of non-linearity, imbalance, and overlapping.
The objective of this experiment is to show (graphically
through scatter plots) the data set labeled with a promising
solution obtained by the optimization algorithm at each of the
problem levels. As the output of the NSGA-III is a Pareto
composed by a set of incomparable solutions, we used the
Borda count method [22] to select a single promising solution
from the Pareto. This method is a single-winner ranking
method in which every criterion ranks each algorithm, and
then an average rank is returned, where the algorithm in the
first place is the winner. The solution returned by the borda
count is used for the data visualization.

The second experiment has a more quantitative bias, evalu-
ating the performance of the optimizer in a data set with 100
samples considering 2 and 10 attributes. In this experiment, the
fitness values, the execution time, and the number of iterations
used by the optimizer to achieve the results are presented.
Besides, we also executed classifiers to investigate their perfor-
mance (in terms of average accuracy) in the different generated
data sets.

VI. RESULTS AND DISCUSSION

A. Data Visualization

Figure 2 shows the position of each instance of the synthetic
data set generated with their respective labels, optimized by
NSGA-III. The x and y axes are the values of the data
set attributes. Figures 2-A, -B, -C, and -D represent one
of the solutions belonging to the resulting Pareto, found by
NSGA-III, for each of the problem levels (see Table III).
This experiment considers the generation of data sets with
100 instances and 2 attributes. Figure 2-a shows the data set
with its labels optimized to meet the objectives of the simple

problem. The simple problem is extreme, where all objectives
need to be optimized for the smallest values of complexity. As
the measures of complexity L2, and N1 and N2 are conflicting,
minimizing them at the same time is a difficult task. The
values achieved for each of the objectives were, L2 = 0.21,
N1 = 0.53, N2 = 0.35 and C2 = 0.06. The algorithm
achieved a value close to the optimum in terms of C2, turning
the base balanced. Although the generated data set has a low
value of L2, it does not have a completely linearly separable
behavior. This is due to the balance of classes, making the
task of reducing overlapping (values of N1 and N2) more
difficult.

Figure 2-b shows the data set with its labels optimized
to meet the objectives of the average problem (see Table
III). In this case, an attempt is made to optimize the value
of C2 = 0.48, increasing the base imbalance. The values
achieved for each objective of the average problem were,
L2 = 0.15, N1 = 0.40, N2 = 0.17 and C2 = 0.48.
The optimization algorithm was able to optimize the value
of C2 as much as possible, making the base unbalanced. The
imbalance favors the reduction of overlapping since there are
fewer instances of a given class. For this reason, the values
achieved for each of the other objectives were lower when
compared to the simple problem.

Figure 2-c shows the data set with its labels optimized to
meet the objectives of the difficult problem. In this case, an
attempt is made to increase the measurement values, increasing
the complexity of the data set (see Table III). The values
achieved by the algorithm for each objective of the difficult
problem were, L2 = 0.21, N1 = 0.54, N2 = 0.32 and
C2 = 0.21.

Figure 2-d shows the data set with its labels optimized to
meet the objectives of the very difficult problem. Like the
simple problem, the very difficult problem is extreme, only
that all objectives need to be optimized to the highest values
of complexity. As the complexity measures L2, and N1 and
N2 are conflicting, optimizing their values at the same time is
not trivial. In this problem, the goal is to find a solution that
approximates L2 = 0.35, N1 = 0.35, N2 = 0.35 and C2 =
0.48. However, due to the conflicting nature of the objectives,
the values reached for each one of them were, L2 = 0.17,
N1 = 0.60, N2 = 0.72 and C2 = 0.48. The result achieved
shows a data set with chaotic behavior, with a high rate of
unbalance and overlapping.

The optimization algorithm was also used to generate data
sets with 10 attributes. The objective is to check if there
is any impact on the optimization of complexity measures
when the number of attributes increases. Table IV shows the
optimization results for both 2 and 10 attributes. As you can
see, the increase in the number of attributes did not have a
negative impact on the generation of data sets. The execution
time is close, and in some situations, the values achieved
are even better when compared to the results for those of 2
attributes. The values in bold mean that they are better than
the other.



(a) L2:0.21,N1:0.53,N2:0.35,C2:0.06 (b) L2:0.15,N1:0.40,N2:0.17,C2:0.48

(c) L2:0.21,N1:0.54,N2:0.32,C2:0.21 (d) L2:0.17,N1:0.45,N2:0.35,C2:0.48

Fig. 2. L2, N1, N2 and C2 values of the generated data sets with 100 instances and 2 attributes.

TABLE IV
L2, N1, N2 AND C2 VALUES OF THE GENERATED DATA SETS WITH 100 INSTANCES CONSIDERING 2 ATTRIBUTES AND 10 ATTRIBUTES.

Data set complexity m Target (L2, N1, N2, C2) Reached (L2, N1, N2, C2) Time (s)

Simple 2 (0.07, 0.07, 0.07, 0.07) (0.21, 0.53, 0.35, 0.06) 2.460
10 (0.07, 0.07, 0.07, 0.07) (0.16, 0.58, 0.31, 0.07) 2.475

Medium 2 (0.07, 0.07, 0.07, 0.48) (0.15, 0.40, 0.17, 0.48) 1.470
10 (0.07, 0.07, 0.07, 0.48) (0.14, 0.45, 0.26, 0.50) 1.488

Difficult 2 (0.22, 0.22, 0.22, 0.22) (0.21, 0.54, 0.32, 0.21) 1.950
10 (0.22, 0.22, 0.22, 0.22) (0.20, 0.55, 0.30, 0.22) 2.010

Very Difficult 2 (0.35, 0.35, 0.35, 0.48) (0.17, 0.45, 0.35, 0.48) 2.190
10 (0.35, 0.35, 0.35, 0.48) (0.16, 0.46, 0.38, 0.47) 2.215

B. Quantitative Analysis

To complement the previous analysis, classifiers (from the
Scikit Learn library) were run, with their default parameters,
on the data sets generated with 100 attributes and 2 classes.
Figure 3 shows the average accuracy achieved (x-axis) for each
classifier at different levels of problems (y-axis). The accuracy
of the classifiers was calculated through the cross-validation
experiment (cv = 10), being performed 100 times to calculate
the mean and standard deviation.

The behavior of the Decision Tree and Naive Bayes classi-
fiers showed a pattern, even though they have different learning
schemes. As the complexity of the problem increased, the
accuracy achieved by these classifiers also decreased. This
shows the influence that the chosen complexity measures
have on the performance of these classifiers, and can help
in estimating their accuracy.

The Random Forest algorithm behaved differently from the
other two. As it is an ensemble capable of dealing with non-
linearity and data imbalance, its performance in medium and
very difficult problems was superior to low or intermediate
balancing problems.

The task of optimizing different and conflicting measures
of complexity is not a non-trivial task. This work is the first

to treat the data set generation problem as a many-objective
problem. It is important to mention that the results showed here
were not compared to the related work because it would be
unfair to compare approaches which try to optimize a different
number of objective functions.

The results presented in this section showed that although
the task is difficult, the proposed method was able to generate
data sets of specific complexities, trying to satisfy the different
objectives as much as possible. The experiments carried out
gave an idea of the potential of the proposal, but several
analyses still need to be carried out, such as the generation of
data sets with more instances, attributes, classes; optimization
of other different measures of complexity; and variation of
genetic operators optimization algorithm.

VII. CONCLUSION AND FUTURE WORKS

Machine learning algorithms are commonly assessed using
empirical evaluation on real-world data. Though, sometimes
there is no previously labeled data accessible. Synthetic data
sets have gained recognition as an alternative for efficient
classifier evaluation because they are available and high pa-
rameterizable for a given learning task. The characterization
of such data sets can be done employing descriptors on the



(a) Decision Tree (b) Naive Bayes (c) Random Forest

Fig. 3. L2, N1, N2 and C2 values of the generated data sets with 100 instances and 2 attributes.

learning object at hand, e.g., complexity measures, which
extract statistical and geometric characteristics from the data
sets, for a given classification problem, to assess their com-
plexity. Such complexity measures can be used to guide the
creation of synthetic data sets. The present work proposes
the use of a many-objective algorithm for the generation of
synthetic data considering four measures of complexity that
will be optimized at the same time. The main contributions
of this work are: i) use of a many-objective optimization
algorithm (MaOA) to generate synthetic data; ii) proposition of
an experimental setup for the use of MaOA for the complexity-
based data generation problem.

Results demonstrate that the problem is challenging, and the
proposal is able to optimize conflicting objectives, generating
data sets of specific complexities. The experiments carried
out gave an idea of the potential of the proposal, but several
analyses still need to be carried out. As future work, we intend
to evaluate different many-objective optimization algorithms
for the data set generation; optimize other different complex-
ity measures and investigate their impact on the search for
solutions; generate synthetic data sets with a greater number
o instances, attributes and classes; and evaluate different
distributions for the creation of unlabeled data. Finally, we also
intend to build a meta-base to support the recommendation
of suitable classifiers for classification problems with specific
characteristics of complexity.
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