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Abstract—In the chemical industry commercial process simu-
lators are widely used for process design due to their extensive
library of models of plant equipment and thermodynamic prop-
erties and their ease of use. Most of these simulators compute
the steady-states of complex flowsheets, but their models are
inaccessible and derivatives with respect to their model param-
eters are not available. Evolutionary algorithms are a suitable
approach for the global optimization of such black-box models,
but they require the evaluation of many individuals. Applications
to industrial-size case-studies suffer from high computational
times where the numerical simulations consume the majority of
the time. This contribution proposes the use of neural networks as
surrogate models to guide the evolutionary search. These models
are trained multiple times during the evolutionary search and
are used to exclude nonpromising individuals and to generate
candidate solutions. We demonstrate the performance improve-
ment due to the use of the surrogate models for a medium-size
case-study of a chemical plant consisting of a reactor, a liquid-
liquid separation and a distillation column. The results show that
the required number of simulations can be reduced by 50%.

Index Terms—evolutionary algorithms, surrogate models, op-
timization, neural networks, chemical processes

ACRONYMS
ANN artifical neural network.
API application programming interface.
CG candidate-generation.
DFO derivative free optimization.
DoF degree of freedom.
DS decision-support.
DS+CG decision-support and candidate-generation.
EA evolutionary algortihm.
ES evolution strategy.
MA memetic algorithm.
mae mean absolute error.
MINLP Mixed Integer Non-Linear Program.
MOO multi-objective optimization.
SVM support-vector machine.
SVR support-vector regression.

I. INTRODUCTION

In 2017, the chemical industry contributed 5.7 trillion US
dollars to the gross domestic product (GDP) of the world
[1]. Chemical production processes implement a sequence of
different so-called unit operations, e. i. distillation and reaction,
to create a product from a set of raw materials. The design

and revamping of chemical plants is usually performed by
an interdisciplinary group of experts. A common approach
is the use of steady-state process simulations, heuristic rules
and expert knowledge to find feasible and economic process
configurations. Steady-state process simulation is a mature
field with several commercial products in the market. These
simulators differ in the accessibility of the models and in their
used technique for the numerical solution of their simulations.
The applied techniques can be divided into the sequential-
modular and equation-oriented simultaneous approaches. Both
are explained well in Biegler et al. [2]. With respect to opti-
mization, it is important to distinguish between simulators with
accessible and with inaccessible models. Accessible models
provide full information about the underlying equations and
variables whereas the inaccessible models act as a black-box
that only provides simulation results or failure codes. There-
fore, inaccessible models require derivative-free optimization
methods.

In a recent overview, Asprion et al. [3] postulated require-
ments for a modern process simulator and gave an overview of
in-house and commercial process simulators. This contribution
applies Aspen TECH’s process simulator Aspen Plus, which
is widely used in industry because of its extensive model
library and relatively robust solution techniques. However,
competition is growing [4] and new process simulators respond
to some of the postulated requirements in [3]. To the best
knowledge of the authors all commercially available process
simulators either do not provide a public application program-
ming interface (API) to couple external optimization methods
or are based on inaccessible model libraries. Furthermore,
none of the available process simulators provide global op-
timization capabilities. Therefore, in this work an external
derivative-free optimization method is coupled to Aspen Plus.

Several groups have investigated the optimization of chem-
ical processes based on commercial simulators. One approach
is to compute the missing derivatives by numerical differenta-
tion and to apply gradient-based optimization. Sundberg et al.
E. g. [5] optimized a catalytic cracking process with Aspen
HYSYS. Cardella et al. [6] optimized a plant for hydrogen
liquefaction with the commercial process simulator UniSim
[7]. This procedure does not scale well for large numbers of
degrees of freedom (DoFs).
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Other groups applied derivative free optimization (DFO)
methods, Ernst et al. [8] developed a genetic algorithm for
chemical process optimization using Aspen Plus. Zimmermann
et al. [9] extended this work and investigated how a diverse
generation of individuals can improve the convergence of
multi-objective optimization (MOO) for chemical processes.
Urselmann et al. [10], [11] introduced a memetic algorithm
(MA) for chemical process optimization. The MA consists of
an evolutionary algortihm (EA) and a local refinement based
on nonlinear optimization. The MA was coupled to Aspen
Plus [12] to support engineers in the industry in their work on
the process design. The MA supports several derivative-free
optimization methods as local solvers. Further, an extension
for MOO [13] was developed. Janus et al. [14] found that
the use of DFO methods for local refinement, e. g. CMA-
ES [15] or the solver NOMAD [16], is not worth the effort
in comparison to only using an EA and applied the Aspen
Plus internal optimizer for constraint satisfaction. Although
this approach performs better than derivative-free alternatives,
it has technical limitations, e. g. the fact that an arbitrary cost
function cannot be formulated. No in-house or commercial
process simulator provides a robust global optimization, and
the use of derivative-free optimization methods on large plant
models coupled to a flowsheet simulator suffers from compu-
tation times which are usually not acceptable.

In the past, surrogate-assisted optimizaton has been used to
enhance the convergence of derivative-free optimization ap-
proaches [17]–[19]. A common problem here is the generation
of training data. Palmer et al. [20] used a small amount of
apriori sampled data to train surrogate models to optimize
an ammonia synthesis plant. Caballero and Grossmann [21]
replaced selected unit operations with surrogate models by
training Kriging models based on apriori sampling. Nentwich
et al. [22] used support-vector machines (SVMs) for classifica-
tion and Kriging models for regression as surrogate models to
describe the gas solubility in a reactor and the phase behavior
of a liquid-liquid mixture.

The framework proposed in this contribution uses surro-
gate models to reduce the required number of simulations
within an optimization based upon black-box models. Two
strategies to reduce the number of calls of the simulator
have been developed and tested: the exclusion of simulations
of nonpromising solutions by a decision-support system and
a candidate-generation scheme that generates candidates by
a derivative-based optimization on surrogate models. In our
approach no data is collected before the optimization, the
necessary information for training is collected on the fly while
the optimization by the EA is running. The sampled values of
the DoFs are widely distributed at first, but then are refined and
provide more accurate surrogate models in regions of interest.

The case-study considered in this contribution is a chemical
plant consisting of a reactor in which a so-called hydroformy-
lation reaction takes place [23], [24], a liquid-liquid separation
[25] by a decanter and a distillation column. Due to the
presence of two recycle streams the convergence of the process
simulation is not trivial. Some values of the DoFs lead to failed

process simulations, and the computational time spent on these
is wasted.

Section 2 introduces the method for surrogate-assisted op-
timization with dynamically adapted neural network models.
Section 3 introduces the case-study of the hydroformylation
of 1-dodecene to tridecanal. Section 4 presents the results
of different variants of the proposed surrogate-enhanced op-
timization scheme and Section 5 concludes this work and
provides ideas for future work.

II. METHOD

This contribution extends a MA for chemical process op-
timization with a decision-support (DS) and a candidate-
generation (CG) strategy. Both are based on machine learning
techniques to train surrogate models. The extension consists
of three parts

1) The on the fly collection of data while optimizing to
train the surrogate models.

2) The use of surrogate models as a decision-support sys-
tem to avoid nonpromising simulations.

3) The generation of solution candidates based on an
derivative-based optimization on the trained surrogate
models.

Before the description of the three new elements, the
extended MA framework is introduced.

A. Fundamentals: Memetic Algorithm Framework

Chemical process flowsheet optimization with a simulator
based on inaccessible models can be formulated as a Mixed
Integer Non-Linear Program (MINLP) of the form:

min fpx, y, zq

s.t. enpx, y, zq � 0, n � 1, . . . , N

nkpx, y, zq ¤ 0, k � 1, . . . ,K

x P Ra, y P Rb, z P Nc (1)

where fpx, y, zq is an economic cost function, x are state
variables of the system which are computed by the process
simulator, y are continuous DoFs and z are discrete DoFs.
The equality constraints enpx, y, zq describe the chemical
model of the flowsheet, e. i. mass balances, reaction kinetics.
The inequality constraints nkpx, y, zq ¤ 0 describe process
constraints, e. i. the required product purity.

To perform a simulation requires three steps. First the inputs
y and z are transferred to the process simulator, then the
simulation is invoked, and after a successful simulation the
state variables x are received. The simulation fails rather
frequently so that no set of state variables x that satisfies
the model equations is found. In the failure case neither the
cost function fpx, y, zq nor the constraints npxqk   0 can
be evaluated, i.e. the computational effort of the simulation is
wasted.

Figure 1 illustrates a flow chart of the generation loop
of the MA. The MA consists of a self-adapting evolution
strategy (ES) [26] that is extended by special operators for
chemical processes [11]. The offspring generation consists



Name (unit) Bounds
TRpC°) 80:120
PRpbarq 15:30
τphq 0.1:5
TEpC°) -5:25
Nspnoneq 4:40
Nf pnoneq 2:dyn
D2F pnoneq 0.6:0.95
RRpnoneq 0.1:15
Fdmf p

kmol
h q 20:100

Fdecp
kmol
h q 20:100

TABLE I
DEGREES OF FREEDOM

Fig. 1. Memetic algorithm for chem-
ical process optimization, grey boxes
show features added to the frame-
work by this contribution

of a recombination operator and a mutation operator. In this
contribution, the offspring generation is extended by the DS as
shown in Figure 2 (left). The DS is implemented to predict if
the generated offspring is promising. If the result is negative,
the offspring generation is repeated, otherwise the algorithm
continues with the further steps, simulation and CG.

Figure 2 (right) shows the meme that is employed to
collect data and to (re)-train the surrogate models. The first
training occurs after N0 simulations and thereafter retraining
occurs every Nit simulations, where both parameters are case-
specific. The meme implements the CG by transferring the
DoFs of converging simulations to an external derivative-based
optimization method that applies the surrogate models. When
DS and CG are not enabled, the MA behaves like the original
ES.

B. Data-sampling and Artificial Neural Networks

A database H is generated on the fly while the ES is
running. Every simulation result is stored in the database such
that the information is accessible to train surrogate models. We
use artifical neural networks (ANNs) as surrogate models and
access the MATLAB Statistics and Machine Learning Toolbox
via the COM-Interface for the training and querying of the
surrogate models. ANN is a generic term for a class of data-
based models. This contribution uses multilayer feed-forward
networks as surrogate models. The structure of a feed-forward
network is defined by the number of hidden layers Lh and by
the number of nodes in each layer Si with i P t1, ..., Lhu.
The number of nodes in the hidden layers are subject to
optimization but the nodes in the input and output layer depend
on the arguments and on the output of the trained function and
are therefore given a priori.

Any state variable x, any constraint npx, y, zqi or the cost
function f in (1), can be predicted by a neural network. In
general the influence of the state variables differs strongly
between the applications, e. g. the catalyst loss that is very
important for the proccess considered here [14] may be of
lesser importance or not present at all in other processes.

Therefore we propose predictions that are applicable to most
case-studies. These are the classification of the simulation
outcome Pclass and a set of k regressions Preg,k that estimates
the purity constraints of a process.

C. Application of the Decision-Support Strategy

The DS indicates if the simulation of a chosen set of DoFs
is promising by querying the trained surrogate models. A
classifier Pclass predicts if the simulation of an individual will
fail, i. e. the process simulation will not converge. For each
purity constraint of the case-study, a regression can be trained
that predicts the fraction of the constrained component in the
corresponding stream, i. e. the purity of a specific component.

We train a classifier that learns a binary prediction of the
simulation outcome (fail, converged). Hereby one represents
converged and zero represents failed simulations. The ANN
predicts a number between zero and one and the DS predicts a
failing simulation if Pclass   sclass. In the default case sclass
is 0.5 but it can be set differently for a more conservative or
more aggressive exclusion behavior.

For predicting the satisfactions of the constraint, we propose
a rule that combines an ANN prediction with a dynamic
threshold. The threshold depends on the prediction accuracy
of the model, measured by the mean absolute error (mae),
with respect to the full training data set. In addition, the
standard deviation of the mae over the set of feasible data
(2) is calculated. A security constant s is defined to describe
a confidence interval. These values are recalculated after each
training.

sfeas,k �

d
1

Nfeas � 1

¸
p|ti � Preg,k| �maeq2 (2)

For each constraints ck a positive evaluation of (3) indicates a
promising simulation. By the subtraction of mae, the error of
the trained model is taken into account. Under the assumption
of a normal distributed model error, a confidence interval of
1.96 assures a 95 % probability of predicting a solution, which
lies exactly on the constraint. The constant s can be adjusted to
trade-off the number of false negatives and saved simulations.

Preg,kpAq ¥ ck �maek � s � sfeas,k, @k P t1, ...,Ku (3)

For the final rule of the DS we propose the combination of
the classifier Pclass with the regressions Preq,k that predicts
the purity constraints of the process as a conjunction:

P �

$'&
'%
1 if @k : tPreg,k ¥ ck �maek � s � sfeas,ku

^ Pclass ¥ sclass

0 otherwise.

The left side of Figure 2 shows the modification of the
offspring generation to include the DS. After the mutation of
a newly generated offspring, the decision-support is queried.
In case of a negative result, a new offspring is generated by
using the same operators, until a promising offspring has been
generated. The different magnitudes of computational effort
for simulation compared to EA operations render the time



spend in offspring generation negligible even for hundreds of
offsprings.

D. Candidate-Generation by Optimization on Surrogates

The candidate-generation (CG) searches new candidates
by derivative-based optimization on surrogate models. We
compute points which minimizes the distance of the values of
a subset of the constraints to their boundaries and satisfy all
other constraints. The motivation for this is that in many cases
the optimum with respect to some cost function is located at
those boundaries, e. g. on the bound for product purities, a
higher purification commonly implies higher energy and/or
investment costs for the unit operation.

min
p̧

k�1

|ck � Preg,kpy, zq|, f P r1, ..,Ks (4)

s.t. ci � Preg,ipy, zq ¤ 0, f   i   K (5)
Pclasspx, zq ¥ sclass (6)
ymin ¤ y ¤ ymax, zmin ¤ z ¤ zmax

The optimization is subject to box-constraints that define the
boundaries of the DoFs. The classification (6) increases the
probability for the simulation of the generated candidates to
converge. The optimization is initialized with a value from the
offspring generated by the ES, whereby all DoFs are converted
to continuous values. The discrete DoF are treated as contin-
uous inputs of the ANN and the result of the optimization
is rounded to the next integers. The new candidate is first
evaluated by a simulation of the corresponding flowsheet. By
applying surrogate models, the optimization problem can be
solved fast, as the trained surrogate models provide derivatives.

The right side of Figure 2 shows a meme that implements
the candidate-generation. The meme is invoked after the off-
spring generation. First, the offspring is simulated and stored
in the training database H . If the simulation fails, the meme
terminates, otherwise the offspring is marked as an initial
point. The candidate-generation solves an optimization prob-
lem to improve this initial point. In this contribution we apply
the MATLAB solver fmincon but the concept is applicable to
other gradient-based solvers as well. The generated candidate
is then validated by a process simulation and the result of this
simulation is stored in the training database H .

III. CASE STUDY

We consider the case-study of the homogenously catalyzed
hydroformylation of 1-dodecene in a thermomorphic solvent
system. This process has been investigated in two miniplants
in the Collaborative Research Center DFG Transregio SFB 63
”Integrated chemical processes in liquid multi-phase systems”
InPROMPT. The process produces n-tridecanal in a reactor
by hydroformylation of a mixture of the reactants 1-dodecene
and the solvents DMF and decane. The reaction is catalyzed
by an expensive homogenous rhodium catalyst which has to
be recovered from the product stream. The phase behavior of
the mixture of DMF and decane is temperature-dependent and
this is used to switch between a homogenous mixture in the

Fig. 2. Offspring generation with decision-support (left), Meme for candidate-
generation (right)

Fig. 3. Process Flowsheet - Hydroformylation of 1-dodecene to tridecanal

reactor and a mixture with two liquid phases [25] where the
polar phase containing the catalyst is recycled to the reactor.

Figure 3 shows the process flowsheet and the DoFs are
highlighted in bold. A feed stream of the reactant 1-dodecene
and the solvents DMF and decane is heated up and pressurized
to create a homogenous mixture before it is fed into the reactor.
The reactor is also fed with carbon monoxide and hydrogen.
Beside the main reaction of 1-dodecene to n-tridecanal, four
side reactions are occuring in the reactor [24]. After the
reaction, the reacted mixture is cooled down by a cascade
of two heat exchangers. The first heat exchanger Hex 2-2 is
operated with cooling water and the second heat exchanger
Hex 2-1 is operated with ammonia to achieve temperatures
below five degrees Celsius. The mixture is fed into the liquid-
liquid separator. The polar DMF rich phase contains the
catalyst and is fed back into the reactor. The decane rich
phase contains the remaining reactant, the product and the
byproducts and is fed into the distillation column for product
purification. The top stream of the column is fed back to the
reactor and a product-rich liquid stream is obtained at the
bottom of the column.

The model of the case-study consists of approximately 2200
equations as stated by the equation-oriented user interface of
Aspen Plus. As the model library of the process simulator
Aspen Plus is not accessible, neither the exact equations nor
derivatives are known. An inequality constraint describes the
requirement of a product purity of 99 mol %. Table I lists
the ten DoFs of the case-study. The flowrate of the solvents



Param. Value Description
µ 10 Generation size of µ.
λ 20 Offsprings per generation.
κ 5 Maximum age individuals
N0 500 Simulations before first training.
Nit 200 Retrain after Nit simulations.
s 1.96 Width of the confidence interval.

sclass 0.5 Threshold for classification.
Si 5 Number of nodes per layer.

Lclass 2 Hidden layers for classification.
Lreg 2 Hidden layers for regression.

TABLE II
SHARED META-PARAMETERS OF THE OPTIMIZATION

DMF Fdmf and decane Fdec, the temperature TR, pressure PR

and residence time τ of the reactor, and the temperature TE
of the decanter are DoFs. In addition, the distillation column
provides two integer and two continuous DoFs, the number of
theoretical stages Ns and the feed stage Nf , and the distillate
to feed ratio D2F and the reflux ratio RR (both continuous).
The cost function (7) is an indicator of the production cost per
ton product.

fpx, y, zq �
COU � CMat

8000 � 9mProduct
� Penalty (7)

COU equals the sum of the capital and utility costs of the
seven unit operations, as proposed by Turton [27].

Penaltypvq �

#
v � 0 0

v � 0 4000� v � 10000
(8)

Equation (8) represents a cost for violating the product
purity constraints by an amount of v. It is modeled by a linear
function with a large constant, such that every solution that
violates the constraint leads to higher costs than those that
fulfill the constraint. Another source for discontinuities is the
optional use of the coolant ammonia in the heat exchanger
Hex 2-1. CMat is very sensitive to the loss of catalyst. The
coupling between the different vessels via recycle streams
and the structural DoFs in the column lead to a multi-modal
economic cost function.

IV. RESULTS

We investigated the performance of four variants of the
optimization method. The reference variant applies an ES
without modifications of the offspring generation or the meme.
There is a variant each for employing decision-support (DS)
and candidate-generation (CG) individually. The fourth vari-
ant applies both strategies decision-support and candidate-
generation (DS+CG). The parameters in Table II are shared by
the variants and they were determined by preliminary studies.
The experiments were repeated ten times for each variant.

We compare the experiments with respect to the minimum
cost value over the number of required simulations. The
training time of the ANN is negligible for the investigated

case-study but further investigations of the performance of
the derivative-based optimization on surrogate models will be
done in future work. Figures 4 and 5 show convergence plots
for the different variants. The x-axis indicates the progress
of the optimization measured by the number of simulations
and the y-axis indicates the cost per ton of product in Euro
per ton. As the experiment was repeated ten times for each
variant the diagram shows statistic metrics. The solid line
represents the average and the dotted lines represents the min
and max cost of the experiments. The transparent areas show
the standard-deviation of the cost between the runs. The
Figures are divided into three regions. The left most region is
called training region and it comprises N0 � 500 simulations.
After the black dotted line, the surrogate models are trained
for the first time. The second region comprises additional 1000
simulations and the line marks the numbers of simulations that
are needed to converge the surrogate-based variants. The right
most dotted line marks the number of simulations that are
needed for the reference ES to converge, 3000.

In the first region, a large variance of the performance of
the optimization can be observed, i. e. the algorithm is in
exploration mode. Every variant behaves as the ES variant
as no surrogate models are trained yet. In the second region,
the variances of the surrogate-based strategies shrink strongly,
so that the surrogate-assisted methods have all converged at
the end of this region. The CG variant does not converge to
the best known solution. The reference variant ES needs the
entire third region to converge, i .e. DS+CG requires about half
the number of simulations. Table IV shows the Wilcoxon tests
for the different variants at different numbers of simulations.
Hereby a one indicates that the right variant of the test is
significantly better than the left variant, e. g. in the first row,
DS is significantly better than ES after 1100 simulations. The
first row shows that there is a significant improvement for the
variant DS+CG over ES starting at 700 simulations. DS is
better than ES at 1100, 1200, 1500 and 3000 simulations, but
not for 1300 and 1400 simulations. CG is not better than the
reference case ES but becomes worse at 3000 simulations as
shown by the last row. The following two rows show that
DS+CG is at some points better than DS and also better
than CG starting at simulation 700. DS+CG found a better
solution than the best known solution found in previous work
by Janus et al. [14]. Table IV summarizes the performance
of the ten experiments per variant and shows that DS and
DS+CG converge faster than the reference case but CG is
not capable to converge to the best known solution even after
12.000 simulations.

Table V shows the average ratio of failed/infeasible/feasible
simulations for the different variants and gives an indication
for the reason of CG. In the reference case, 25 % of the sim-
ulations fail. The DS halves the number of failed simulations.
However, when applying CG, the number of failed simulation
almost doubles, while the combination DS+CG reduces the
number of failed simulations by 8 % with respect to the
reference case.

At first sight, the worse performance of the CG variant



Test after x Simulations
Test 600 700 800 900 1000 1100 1200 1300 1400 1500 3000

ES vs. DS 0 0 0 0 0 1 1 0 0 1 1
ES vs. CG 0 0 0 0 0 0 0 0 0 0 0

ES vs. DS+CG 0 1 1 1 1 1 1 1 1 1 1
DS vs DS+CG 0 0 0 0 0 1 1 1 0 0 0
CG vs DS+CG 0 1 1 1 1 1 1 1 1 1 1

CG vs. ES 0 0 0 0 0 0 0 0 0 0 1

TABLE III
RESULTS OF WILCOXON TEST - A ONE INDICATES THAT THE MEDIAN OF THE RIGHT TEST VARIANT IS SIGNIFICANTLY

BETTER THAN THE MEDIAN OF THE LEFT. TESTS ARE ON A CONFIDENCE INTERVAL OF 95%.

Costs [e / T] [e / T]
Variant Min. Avg. Max. Std. deviation

ES 3469 3484 3512 12.9
DS 3457 3467 3474 5.1
CG 3486 3556 3623 28.1

DS+CG 3438 3463 3480 6.5

TABLE IV
SUMMARY OF THE RESULTS - AFTER 12.000 SIMULATIONS

Variant failed infeasible feasible
ES 25 % 51 % 25 %
DS 12 % 50 % 38 %
CG 46 % 36 % 18 %

DS+CG 17 % 58 % 25 %

TABLE V
AVERAGE RATIO OF FAILED, INFEASIBLE AND FEASIBLE SIMULATIONS

is surprising, but without filter to reduce the number of
failing simulations, CG proposes to visit areas of the search
space with a high probability of simulation failures. The
worse number of infeasible simulations with DS+CG is not
a disadvantage because it shows that the strategy explores the
boundaries of the feasible space more aggressively than ES
or DS alone which makes sense as the best solutions often
are at these boundaries. Also the interaction of an ES and
the candidate-generation may disturb the self-adaptation of the
underlying ES.

V. CONCLUSION AND FUTURE WORK

Global optimization for chemical process flowsheets on the
basis of commercial process simulators, e. g. Aspen Plus, is not
yet applied in industry, due to high computational times. This
contribution is a building block to achieve a reduction of the
time needed for the optimization of complex flowsheets from
weeks to days for industrial-sized case studies. Derivative-free
optimization methods require a large number of simulations
which are time consuming, therefore the reduction of the
number of simulator calls is crucial.

Machine learning methods can be used to train surrogate
models, e. g. artifical neural networks (ANNs), for classifica-
tion and regression. These can be used for filtering simulator
calls and for derivative-based optimization.

In this contribution we applied on the fly training of ANNs
as surrogate-models and introduced two strategies, namely
decision-support (DS) and candidate-generation (CG), that are
based on the classification of the simulation outcome and a
derivative-based optimization based on the surrogate-models.

These strategies speed up the convergence of EA-based
optimization of flowsheets using an external process simulator.
For the case-study of the hydroformylation of 1-dodecene to
n-tridecanal it was shown that the proposed strategies halve
the number of required simulations.

We observed that caution is necessary when coupling a
self-adapting optimization method with an optimization-based
candidate-generation because the extrapolation of the latter
may lead into search regions that have a high rate of sim-
ulation failures and the candidate-generation may only visit
a sub space of the entire search-space. In this case-study,
the training time of the ANN was small compared to the
simulation time, and training is only performed every 200
simulations, therefore the time needed to train the ANN was
not a concern.

The investigated case-study has ten DoFs but in industrial
applications typically thirty or more DoFs are present [19].
In this case, the time needed to train the ANN as well as
the required number of data points may become an issue. A
solution for this challenge can be dimensionality reduction,
such that the surrogate models are trained for the different
unit operations individually. Similar modularization techniques
were proposed by Caballero et al. [21] or Quirante et al. [28]
and are promising directions for future work.

In industrial case-studies multiple constraints are present,
and they are often not independent and possibly contradictory.
A case-study with multiple and partly contradicting constraints
may lead to a search region that contains multiple local optima.
With a set of local optima the derivative-based solver may
need multiple intial points or an iterative approach to find
the optimum. The solver NOMAD [16] proposes the usage
of different barrier strategies, e.g. progressive and extreme,
to tackle problems with multiple constraints in an iterative



Fig. 4. Convergence plot for ten repeats, solid lines represent average, dotted lines represent the min and max and the transparent region shows the standard-
deviation of the experiments best found solution - comparing the surrogate-assisted variants with the reference variant ES (blue)

Fig. 5. Convergence plot for ten repeats, solid lines represent average, dotted lines represent the min and max and the transparent region shows the standard-
deviation of the experiments best found solution - Comparing the surrogate-assisted variants with the combination of both strategies (blue)



manner. Pan et. al [29] proposes an evolutionary algorithm
to generate a population of candidate solutions by applying
evolutionary MOO on surrogate models. Both approaches are
promising directions for future research. Besides ANNs,
other data-based model types can be employed. SVMs and
support-vector regression (SVR)s are based on a hyperplane
that separates classes or allows a distance measure of arbitrary
data points. This hyperplane may be projected to the design-
space, e. g. the 2d-space of distillate to feed and reflux ratio of
a distillation column. By this, the landscape which is enclosed
by the projected hyperplane can be validated by an engineer
and thereby increases the trust in the optimization.

Parallelization is a promising option to further reduce the
computation time [17]. It can be used to evaluate the candi-
dates in the population or to train several surrogate models in
parallel.
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