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Abstract—Balancing and sequencing of assembly lines is the
process of partitioning the assembly work in terms of operations,
and to assign and schedule them to workstations in an optimal
way. In particular, in response to highly competitive market
conditions, manufacturers face the problem of producing several
models of a base product on the same assembly line, which leads
to a mixed-model assembly line balancing problem. This problem
is proven to be NP-hard and is computationally challenging.
In addition to the usual problem constraints (e.g. precedences
between operations and satisfying cycle times), we consider
setup times between operations, which further complicates the
problem. In this work, we present a novel ant colony optimisation
approach, which is based on learning permutations of the
operations. The permutations are then mapped to an assignment
of operations to workstations in a greedy fashion. The numerical
experiments demonstrate improvements both in the quality of
solutions and significant improvements in computational time
in comparison to the exact state of the art solution methods
currently available in the literature.

Index Terms—Assembly line balancing; Mixed-model, Setup
times, Ant colony optimisation

I. INTRODUCTION

After Henry Ford’s great discovery on assembly lines by
introducing moving belts for a production system, an assembly
line balancing problem (ALBP) dealt with an optimal assign-
ment of operations to workstations (stations or machines) by
satisfying several constraints to optimise objective functions
including efficiency, cycle time, cost, and so forth to meet
customer demand. In this regard, production systems are con-
sidered as transformation processes to convert resources into
final products including goods and services. With the growing
trend and request for greater product variability and shorter
life cycles of goods and services, new low demand production
systems are replacing the traditional mass production assembly
lines to accommodate the recent trends [25]. To find the best
configuration for an assembly line design, a huge body of
research is devoted to an optimal allocation of operations
to workstations [26] and possibly re-optimising an existing
configuration [7] in response to some changes.

Assembly lines can be categorised based on the number of
product models they process. The ALBPs for a single product
with high volumes are referred to as simple ALBP (SALBP)
[5]. However, based on competitive market conditions and
changing customer demands, a flexible and balanced assembly

line is a key indicator for the success of a manufacturing
system in rapidly changing business environments. To respond
to these conditions, a mixed-model assembly line balancing
problem (MMALBP) concerns with customer-centered market
requirements on producing a product model with different
features or several models on the same production line [24].

An MMALBP is considered as type I (MMALBP-I) when
the aim of the problem is to design a new assembly line with
known demand. A type II problem concerns with redesigning
of an existing line based on some new changes in any
component of a given production system [29], [1]. In this
paper, a type I version of the problem is under investigation.
In other words, the main question in this paper is to find an
optimal allocation of operations to workstations with the target
of minimizing the number of workstations subject to known
production capacity.

Even though MMALBP-I is complicated in its own right, we
consider the problem with another dimension of complexity
by accounting for setup times. Generally, in the assembly line
balancing and sequencing literature, setup times are neglected
as they consume a small amount of time in comparison with
other operational times. In addition, setup times usually are
separated from the main production processes, and they are
considered just before or after each operation independently.
However, setup times must be brought into account, when for
example we deal with a system with a considerably short cycle
time [2]. Hence, in this paper, our aim is to solve a mixed-
model assembly line balancing problem with setups of type I
(MMALBPS-I).

There are several advantages in preferring mixed-model
assembly lines over single model assembly lines. In mixed-
model assembly lines, one would avoid the construction of
several lines and satisfy ever-changing customer demands.
In addition, due to producing several models, they have in-
creased flexibility of a manufacturing system. Moreover, they
are more suitable and realistic in today’s highly competitive
global markets. Nevertheless, the assignment of operations to
workstations in order to minimize the number of workstations
for predefined cycle time and given number of models is NP-
hard [10], [5] and finding even a feasible solution (that cannot
be guaranteed to be optimal) is time-consuming [4]. Hence,
designing an efficient meta-heuristic method for finding an
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optimal solution for an MMALBPS-I is inevitable while
presenting several challenges.

As a brief literature review, extending a SALBP to incorpo-
rate setup times was first seen in [3], [22] where the problem
was described as a mathematical problem and several meta-
heuristics were proposed. An indication of the difficulty of
the problem is investigated in [26] where authors formulated
the problem in mixed integer programming problem (MIP)
format and showed that a standard MIP-solver is not capable
of efficiently solving this kind of problems. The MMALBPS is
studied as a mathematical model considering product-related
inter-operation times in [20], [2] and hybrid meta-heuristics
were proposed including ant colonies, bee colonies, genetic
algorithms, and so forth [1]. The best treatment of MMALBPS
appeared in [2]. They tried to fill the literature gap in provid-
ing an efficient exact solution procedure based on Bender’s
decomposition. Recently, the MMALBPS problem is under
further investigation. In particular, considering uncertainty in
input data and stochastic sequences of operations are studied
in [39], [11]. Also, different variants of this problem including
a two-sided assembly line, parallel lines, and robotic two-
sided assembly line were considered in [38], [21], [19] by
utilising different approaches ranging from mixed integer pro-
gramming, fuzzy logic, and different hybrid meta-heuristics.

There is a large body of work devoted to using ACO
in solving different versions of assembly line balancing and
sequencing problems (e.g. [14], [16], [40], [41], [18]). Fattahi
et. al. [14] investigate solving a mixed programming model
for a multi-manned ALBP using ACO. Kucukkoc and Zhang
[16] demonstrate the efficacy of ACO in deadlin with two con-
flicting objectives in a type-E parallel 2S-ALBP. In addition,
different versions of ACO is used in solving SALBP-I [40],
SALBP [41], and U-shaped assembly line balancing problem
[18].

In order to confront the inherent challenges and difficulties
of solving the MMALBPS, we propose an ACO approach.
Previous studies with MMALBP have proposed constructive
meta-heuristic approaches, which use a neighborhood structure
to select an operation for a station [37]. In these studies, a solu-
tion is generated by selecting one operation for assignment at a
time. This neighborhood structure is typically inefficient when
considering other variants of the MMALBP where operations
need to be sequenced, as there is the overhead of applying a
sequencing procedure after allocating operations. More recent
meta-heuristic approaches such as artificial bee colonies [17]
and ACO [1], are also build their solutions by assigning jobs
to stations. In contrast to the previous approaches for the
MMALBPS known in the literature (including ACO), our
ACO focuses on learning permutations of operations instead
of the operation allocation strategy. After a permutation is
constructed, each operation is assigned to a workstation in
sequence according to the order in the permutation, in a greedy
manner, and preserving feasibility. Numerical experiments
show excellent results in finding an optimal solution in short
time frames, and often outperforming existing exact approach
based on integer programming.

The paper is organised as follows. The MMALBPS problem
and its associated mixed integer program is detailed in Sec-
tion II. Section III discusses the proposed ACO approach and
the assignment heuristic for this study. In Section IV we in-
vestigate the efficacy of our proposed approach against known
integer programming based methods. Section V concludes
the paper and provides a discussion about future possibilities
related to the variants of the MMALBPS and extension of the
ACO approach proposed here.

II. PROBLEM DEFINITION

The aim of a mixed-model assembly line production system
is to manufacture different models of a base product with
slight changes in some features on a single line. In this prob-
lem, a precedence diagram shows the precedence relationship
between operations to produce a finished product. Assume
there are N operations to complete M models of a product
in a manufacturing system with at most S workstations and a
given cycle time of length C. The assignment of the operations
to workstations (sequencing) follows the precedence diagram
by introducing parameters Pij , where Pij = 1 if operation
i must precede operation j; Otherwise, Pij = 0. Also,
operation i ∈ {1, . . . , N} for model m ∈ {1, . . . ,M} has
processing time of length Tim. An MMALBP with parame-
ters (N,M,C, Pij , Tim) seeks an optimal assignment of N
operations pertaining to M models to workstations so that the
number of workstations is minimised. When M = 1, we are
dealing with SALBP.

Incorporating sequence dependent setup times in an
MMALBP problem leads to MMALBPS. As introduced in
[27], a setup operation can be categorised as forward or
backward operations. A forward setup operation is defined
between two consecutive assembling operations of a worksta-
tion on the same model. However, a backward setup operation
is defined between the last and first assembling operations
of a workstation which are performed on two consecutive
workpieces. Let’s consider µm

ij indicating a forward setup time
between operations i and j from the same model, and µmk

ij

indicating a backward setup time between operations i and
j where operation i belongs to model m and operation j
belongs to model k with respect to their precedence diagram.
From balancing perspective, or determining the workload of
workstations, setup times must be taken into account with
processing times and performing orders. In this paper we want
to solve an MMALBPS with parameters (N , M , C, Pij , Tim,
µm
ij , µmk

ij ) by designing a new assembly line with a give cycle
time C. The final solution determines the minimum number
of workstations, the workload of each workstation, and the
optimal allocation of operations to the workstations.

A. The Mixed Integer Programming Model of MMALBPS-I

Parameters:
• N : the number of operations and the set {1, . . . N}
• M : the number of models and the set {1, . . .M}
• S: the maximum number of stations and the set {1, . . . S}
• C: cycle time



• Tim: process time required for operation i of model m
• Qim ∈ {0, 1} is 1 if Tim > 0
• Fijm forward setup time between operations i and j for

model m
• Bijmn backward setup time between operation i of model
m and operation j of model n

• Pij ∈ {0, 1} is 1 if operation i must precede operation j
Decision Variables:
• Yis ∈ {0, 1} is 1 if operation i is assigned to machine s
• As ∈ {0, 1} is 1 if station s is active
• wijs ∈ {0, 1} is 1 if operation i precedes operation j at

machine s
• Xijms ∈ {0, 1} is 1 if operation j directly follows

operation i of model m at station s
• Zijmns ∈ {0, 1} is 1 if i is the last operation of model
m and j is the first operation of model n at station s

Objective function: minimize the number of workstations

minimize
S∑

s=1

As

Constraints: subject to

1) assign each operation to exactly one station
S∑

s=1
Yis = 1,

for all i ∈ N,
2) guarantee all the predecessors are already assigned to

previous machines, for all i, j ∈ N, i 6= j(
S∑

s=1

sYis −
S∑

s=1

sYjs

)
Pij ≤ 0,

3) workstation capacity restriction, for all s ∈ S,m, n ∈M

N∑
i=1

YisTim +

N∑
j=1

(XijmsFijm + ZjimnsBijmn)


≤ CAs,

4) the order of active workstations As ≥ As+1, for all
s ∈ S

5) order of the operations and setup operations between
them, for all i, j ∈ N,m, n ∈M, and s ∈ S

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns

≤ 3(1− Yis + Yjs),

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns

≤ 3(1 + Yis − Yjs), and

wijs + wjis +Xijms +Xjims + Zijmns + Zjimns

≤ 3(Yis + Yjs),

6) precedence of operations in a station, for all i, j ∈
N, i 6= j, s ∈ S

Pij(Yis + Yjs) ≤ wijs,

7) prevent ordering operations with itself wiis = 0 for all
i ∈ N, s ∈ S,

8) ordering within any three operations, for all i, j, k ∈
N, i 6= j 6= k, s ∈ S

wiks + wkjs − 1 ≤ wijs,

9) operation performing order within a workstation, for all
u ∈ N, s ∈ S∣∣∣∣∣∣

N∑
k=1

N∑
l=1

wkls −
N∑

v|v<u

v

∣∣∣∣∣∣ ≤ N
∣∣∣∣∣u−

N∑
p=1

Yps

∣∣∣∣∣ ,
10) each operation in any station has only one successor, for

all i ∈ N,m ∈M
N∑
j=1

S∑
s=1

Xijms ≤ 1,

11) only one forward setup operation between any pair of
operations, for all i, j ∈ N, i 6= j, m ∈M , s ∈ S

Xijms +Xjims ≤ 1,

12) there is no forward setup operation between any opera-
tion and itself, for all i ∈ N , m ∈M

S∑
s=1

Xiims = 0,

13) each workstation has only one backward setup operation,
for all m,n ∈M , s ∈ S

N∑
i=1

N∑
j=1

Zijmns ≤ 1,

14) no forward operation if a backward operation is already
assigned, for all i, j ∈ N, i 6= j, m,n ∈M , s ∈ S

Xijms ≤ 1− Zijmns,

15) determines forward and backward operations in any
workstation, for all i, j ∈ N , m,n ∈M , s ∈ S

(YisQim + YjsQjn − 1)−

(
N∑

k=1

wiksQkm

)

−

∣∣∣∣∣
N∑
l=1

YlsQln −
N∑

p=1

wjpsQpn − 1

∣∣∣∣∣ ≤ Zijmns,

and
(YisQim + YjsQjm − 1)

−

∣∣∣∣∣
N∑

k=1

wiksQkm −
N∑
l=1

wjlsQlm − 1

∣∣∣∣∣ ≤ Xijms.



III. METHODS

A. Ant Colony Optimisation

We use Ant colony system (ACS) [13] as the variant of
ACO for this study. In a number of studies, ACS has been
shown to be very effective, and in particular, this approach has
improved characteristics relative to the original ACO method,
Ant System [13]. The algorithm is presented in Algorithm 1.

A solution to the problem is represented by a permutation
of operations (π). The permutation needs to be mapped to
a feasible assignment to workstations, which is represented
by π̂ (an assignment heuristic that allocates operations to
stations, including generating precedence feasible schedules,
is provided in the next section). The input to the algorithm is
an MMALBPS problem instance, a time limit (tmax) and a
number of solution to be built at each iteration ns. The first
step is to initialise the pheromone trails (Initialise(T )), where
τij = 1

|J | represents the desirability of picking operation j in
position i of π.

Algorithm 1 ACO for MMALBPS

1: Input: An MMALBPS instance, tmax, ns
2: Initialise(T )
3: while time elapsed < tmax do
4: for j = 1 to ns do
5: πj := ConstructPermutation(T )
6: π̂j := AssignOperations(πj)
7: πib := minj=1,...,nants f(πj)
8: πbs := Update(πib)
9: T := PheromoneUpdate(πbs)

10: return πbs

The main part of the algorithm is between Lines 3–9,
where the algorithm executes until a time limit is reached.
In each iteration, a number of solutions defined by the input
parameter ns are built by starting with an empty sequence
and incrementally adding solution components or operations
(ConstructSequence(T )). An operation is selected in one of
two ways. A random number q ∈ (0, 1] is generated and if this
number is smaller than a predefined parameter q0, an operation
is selected for variable i deterministically. Otherwise the
operation is selected probabilistically. Specifically, if q < q0,
operation k is chosen for variable i according to:

k = argmax
j∈J

τij · ηij (1)

On the other hand, if q ≥ q0, operation k is selected with
probability:

P (πi = k) =
τik · ηik∑
j∈J τij · ηij

(2)

where ηij is a heuristic bias for selecting operation j given
that operation i was the previous selection. For the purposes
of the MMALBP problem, we investigated several heuristic
biases (e.g. based on setup times µ) and found that ηij = 1

Tim

was the most effective.

In the ACS algorithm, a local pheromone update applies
to every operation selection (ensures the same selection is
less likely to be repeated). In this study, when in position
i operation j is chosen, the local pheromone update rule that
applies is:

τij = max τij · (1.0− ρ), τmin (3)

where τmin = 0.0001 is a small value which ensures that no
pheromone value becomes too small, thereby always allowing
it to be selected.

Once a permutation of the operations has been constructed,
a corresponding allocation is produced (AssignOperation(πj),
details provided in the next section). From among the solu-
tions, the iteration best solution is selected (Line 7) by finding
the solution using the minimum number of stations. This is
followed by updating the global best solution to the iteration
best solution if it is an improvement (πbs := Update(πib))
and the final step is to update the pheromone trails (T :=
PheromoneUpdate(πbs)). Specifically, the pheromone trails
are updated based on the solution components in πbs using:

τij = τij · (1.0− ρ) + δ (4)

where δ = Q/f(πbs), and Q is selected such that 0.01 ≤ δ ≤
0.1. The evaporation rate was set to 0.1 and chosen based on
tuning by hand.

B. Assigning Operations to Stations

In previous studies, it has been shown that a permutations
can often be mapped to final schedule or assignment efficiently
[33], [32], [6], [34]. Hence, for the MMALBPS, we design
such a customised heuristic that maps the permutation to a
feasible assignment.

The assignment heuristic is presented in Algorithm 2. Given
a permutation π of operations, the heuristic assigns the opera-
tions to machines satisfying precedences and using up as much
of the cycle time as possible at every used station.

Algorithm 2 Placement Heuristic
1: INPUT: π
2: π̂s ← ∅ ∀s ∈ S, W ← ∅, gi ← 0 ∀i ∈ S
3: for t ∈ π do
4: t̂← t
5: if Prec(t) not done then
6: W ←W ∪ t̂
7: else
8: while t̂ 6= ∅ do
9: s := AvailableWorkStation(t̂)

10: (π̂, gs)← Update(t̂)
11: t̂← ∅
12: for j ∈ W do
13: if Prec(j) done then
14: t̂← j
15: W ←W \ j
16: break
17: OUTPUT: π̂



As input, the algorithm requires a sequence of the opera-
tions. First, π̂, a waiting list (W ) and the station cycle times (g)
are initialised. For each operation in π (Line 3), the algorithm
attempts to identify a workstation it can be processed by. In
Lines 5-6 the operation t is tested to determine if its preceding
operations are completed, and if not the operation is placed
in the waiting list (W ). If the operation is available to be
allocated to a station, a feasible station is found (Lines 9-10).
This happens by first determining which (first) machine an
operation can be allocated to (Line 9) and then update the
assignment in π̂ and ensure the relevant times are added to
gs (Line 10). That is, the time includes the processing time
of an operation (pt), the forward setup time from the last
operation t̄ to the current operation t̂ (µmk

t̄t̂
) and the backward

setup time from the current operation t̂ to the first operation
(t̂s0) on the machine µmk

t̂t̂s0
. Once the operation is allocated,

the waiting list is examined to determine if any of these
operations are precedence-freed (i.e. preceding operations are
complete), and if so, this operation is allocated (Lines 12–
16) as previously described. At the end of this procedure,
all operations have been allocated, satisfying precedences,
ensuring the cycle times are feasible, and the final allocation
π̂ is output by the algorithm.

IV. EXPERIMENTS AND RESULTS

ACS for the MMALBPS was implemented in C++ compiled
in GCC-5.4.0. The experiments were all conducted on Monash
University’s Campus Cluster, MonARCH.1

The comparison in this study is to that of [2], which is
the current state-of-the-art for the MMALBPS. The problem
instances were also obtained from this study, and we compare
solutions for single model and two model problems. There is
no set of standard benchmark problems containing sequence
dependent setup times. The set of problems solved in [2]
had been generated using the existing precedence diagrams
in the literature where, the assembling and setup operation
times had been produced randomly. Additionally, to have an
efficient comparison, the proposed Bender’s decomposition
(BDA) approach proposed by [2] been implemented by and
utilized for solving the same set of problems. The problem
instances, number of assembling operations and cycle times
are provided in Table I. There are 20 problem instances per
model type and we run ACS 30 times on each problem
instance.

The parameters settings for ACS were found through tun-
ing by hand on a subset of the problem instances. The
values {0.2, 0.1, 0.0.5, 0.01} were tested for ρ and it was
found that 0.1, was the most effective value. Values of
{0.5, 0.2, 0.1, 0.01} were tested for q0 and it was found that
q0 = 0.1 was best. As previously mentioned, τmin = 0.0001
was used to ensure the probability of selecting a task in a
position is never 0.

The first comparison is for the single model problems.
These results are presented in Table II. We see that for all

1https://confluence.apps.monash.edu/display/monarch/MonARCH+Home

TABLE I: Main characteristics and numbers of the test in-
stances.

Problem Name N C
Instance Number
M=1 M=2

Bowman 8 10 1 21
Jackson 11 10 2 22
[23] 12 10 3 23
[28] 14 10 4 24
[9] 15 10 5 25
[15] 16 10 6 26
[30] 17 10 7 27
[35] 19 10 8 28
Mitchell 21 10 9 29
[36] 25 10 10 30
Heskiaoff 28 10 11 31
Buxey 29 10 12 32
Sawyer 30 10 13 33
Lutz1 32 10 14 34
Gunther 35 10 15 35
Kilbridge 45 10 16 36
Hahn 53 10 17 37
Warnecke 58 10 18 38
Tonge 70 10 19 39
Arcus 1 83 10 20 40

small problem instances ACS performs as well as the integer
programming model (IP) or BDA. For the larger problem
instances (Instance 10 or greater), the IP model is intractable,
always running out of memory. For these cases, ACS is the
best performing method nearly always equal to BDA or better.
The only problem instance where ACS struggles is Instance
19, where BDA finds an excellent solution, but requires a full
hour of run-time to do so.

On examining the results further, we see that the standard
deviation of ACS across several runs is low (0 for most prob-
lem instances), demonstrating the reliability of the algorithm
in finding good solutions. Furthermore, the run times needed
by ACS are substantially lower than that of BDA or IP.

Table III shows the results for the two model problem
instances. The pattern observed here is very similar to that
of the single model case, though, ACS is consistently more
effective in this case compared to BDA, even for the large
problem instances. The run time requirements of ACS are
low and the standard deviations show that very high-quality
solutions can be found reliably across several runs of the
algorithm.

Figures 1 and 2 provide a visualisation of the results
seen in the tables. Figure 1 shows the percentage differ-
ence of each method relative to the best solution found
between all of these methods. For example, the values for
each instance for ACS is computed as |ACS−UB∗|

UB∗ , where
UB∗ = min (IP,BDA, IP ). We see that ACO nearly always
performs best, except on the largest problem instances for
single or two models.

Figure 2 shows how the run times of ACS and BDA, for
single model (left) and two model (right), vary in finding their
best known solutions. Note that the scales in these figures, for
each method, are significantly different. BDA clearly requires
increased times with increasing problem size. This is partially
true for ACS, which generally requires more time for more
complex problems, but is generally quite small.



TABLE II: A comparison of integer programming (IP), Bender’s decomposition (BDA) and ACS for single model problems;
The best values found by each algorithm is reported as Opt. Val. and the best values are marked in bold; ACS is run 30 times
per instance, hence, the objective value’s associated standard deviations (SD) are also reported; For ACS, the cycle time used
is reported as Cyc. Time.

IP BDA ACS

Instance Best Time Best Time Best SD Time Cyc. Time

1 7 0.21 7 0.09 7 0 0 935
2 7 4.84 7 0.48 7 0 0 970
3 8 2.76 8 0.19 6 0 0.03 985
4 10 10.18 10 0.42 9 0 0 975
5 7 156.26 7 0.28 7 0 0 987
6 9 27.40 9 0.24 9 0 0 979
7 13 300.54 13 0.77 13 0 0 975
8 13 412.57 13 0.83 12 0 0.02 994
9 14 41.31 14 0.44 14 0 0 986

10 out mem - 13 1.74 13 0 0 987
11 out mem - 17 3.69 17 0 0 997
12 out mem - 16 5.59 14 0 6.09 998
13 out mem - 20 19.93 19 0 6.08 1000
14 out mem - 19 3.27 18 0 0.01 998
15 out mem - 25 6.26 25 0 0 991
16 out mem - 29 54.38 29 0 0.22 997
17 out mem - 31 36.62 30 0 4.09 995
18 out mem - 34 178.78 34 0 0.01 999
19 out mem - 36 3600 39 0 0.18 1000
20 out mem - - - 53 0 0.87 999

Fig. 1: The solution quality of each method relative to the best
solution found by IP, BDA and ACS.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate an ant colony optimisation
approach for tackling the mixed model assembly line bal-
ancing problem with setups. In contrast to previous ACO
approaches for this problem, we propose a model where the
ACO learns a permutation of the operations. After a permuta-
tion is constructed, each operation is assigned to a station in
sequence according to the order in the permutation, greedily,
an ensuring feasibility. We find that this approach leads to
excellent results in short time frames, often outperforming
existing exact approach based on integer programming.

A key aspect of future work, would be to determine how
the proposed approach in this study can be adapted to other

variants of the problem [38], [21], [19], including also the
stochastic variants [39], [11]. For example, this ACS method
can be adapted in a straightforward manner to MMALBPS
where the objective is to minimise cycle time rather than
number of workstations. A further extension would be to
consider a multi-objective variant which aims to minimise the
number of workstations and also cycle time.

While we have shown that the proposed ACS approach is
very effective, there is still room for improvement. Heuristics
or meta-heuristics on their own are unable to provide guaran-
tees on the quality of solutions. A potential solution to this
is to develop matheuristics which hybridise ACO with integer
programming (e.g. the study by [31]). Such approaches can
provide guarantees and also provide significant improvements
in solution quality, especially for large problems.

The problem instances considered here are relatively small
and we are working to develop a problem instance set that
reflects real world situations more closely. We are currently in
the process of designing tests cases in conjunction with experts
who are working assembly lines problems in the industry. In
such cases, scalibility of the algorithms (matheuristics) can be
improved with parallel implementations, similar to the studies
[8], [12].
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TABLE III: A comparison of integer programming (IP), Bender’s decomposition (BDA) and ACS for two model problems;
The best values found by each algorithm is reported as Opt. Val. and the best values are marked in bold; ACS is run 30 times
per instance, hence, the objective value’s associated standard deviations (SD) are also reported; For ACS, the cycle time used
is reported as Cyc. Time.

IP BDA ACS

Instance Best Time Best Time Best SD Time Cyc. Time
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28 12 163.08 12 0.67 11 0 0 982
29 12 459.71 12 0.25 10 0 0.04 985
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