
Local Covering: Adaptive Rule Generation Method

Using Existing Rules for XCS

Masakazu Tadokoro∗, Satoshi Hasegawa∗, Takato Tatsumi∗, Hiroyuki Sato∗, and Keiki Takadama∗

∗The University of Electro-Communications

Tokyo, Japan

Email: {tadokoro@, hasegawas@cas.lab., tatsumi@, sato@hc., keiki@inf.}uec.ac.jp

Abstract—This paper focuses on the covering mechanism in
Learning Classifier System (LCS) which generates a new classifier
(i.e., an if-then rule) when no classifier matches the input. We
propose Local Covering, a niche-based rule generation method
for XCS, to reduce the sensitivity of a hyperparameter that
determines the generalization probability of initial rules. In Local
Covering, the system looks up classifiers in the population and
finds the closest match from the input. After that, the selected
classifier is copied as the covering classifier and its condition is
generalized to cover the input. To integrate the Local Covering
method with XCS, XCS-LCPCI (XCS with Local Covering for
Previously Covered Inputs) is proposed, which executes Local
Covering only if the input has been previously covered by
the covering processes. The experimental results with three
different problems show that XCS-LCPCI successfully acquires
the general classifiers with any of six different parameter settings,
while the performance of the conventional XCS varies depending
on the parameter settings.

Index Terms—learning classifier system, XCS, covering,
MNIST problem

I. INTRODUCTION

Learning Classifier System (LCS) [1] is a paradigm of

machine learning, which integrates Genetic Algorithm (GA)

and reinforcement learning to generate if-then rules called

classifiers that match multiple inputs. LCS aims to acquire

a maximally-generalized mapping of the states (inputs) with

the actions (outputs) according to the rewards (i.e., cor-

rect/incorrect). Among LCSs, XCS (eXtended Classifier Sys-

tem) [2] is the most studied variant whose classifier fitness is

based on the accuracy of payoff prediction. In general, XCS

deals with binary data, and the condition of a classifier consists

of the ternary symbols {0,1,#}, where “#” (don’t care symbol)

matches both 0 and 1 in the corresponding attribute. Such

interpretability of XCS is widely shown in many data mining

problems. For example, Kharbat et al. [3] reported that XCS

achieved higher mining performance than C4.5 in a medical

data mining task.

However, XCS has several sensitive parameters to be tuned

by hand. In particular, the parameter P# strongly influences

the performance of XCS. P# determines the probability of

inserting “#” to the classifier in the initial rule generation

operation called covering, and its most suitable value varies

depending on the problem. If P# is set far from the “#”

rate of desired optimal rules, the learning performance of

XCS decreases. To tackle this problem, Fredivianus et al. [4]

has proposed XCS-RC, which employs a heuristic-based rule

combining method as a genetic operator instead of GA. XCS-

RC generates no “#” in the covering operation, and it does not

need the parameter P# to be tuned. However, XCS-RC has

three additional hyperparameters for rule combining and these

hyperparameters need to be tuned considering the problem.

Towards no hyperparameters in the covering operation in

a true sense, this paper proposes a novel covering method

Local Covering, which references existing classifiers in the

population [P] to determine where the “#” symbol should be

generated in the condition of the covering classifier instead

of a fixed probability parameter P# in XCS. Since Local

Covering requires the classifiers in the population [P], it is

integrated with XCS by executing Local Covering only if the

input of the classifier has ever been previously covered; other-

wise, the conventional covering method with P# is operated.

Here, this paper calls the above improved XCS, XCS with

Local Covering for Previously Covered Inputs (XCS-LCPCI).

To investigate the effectiveness of XCS-LCPCI, this paper

conducts the experiments of the three different problems with

the several different P# settings, and shows how XCS-LCPCI

is robust to the P# settings from these results.

The rest of this paper is organized as follows: Section

II introduces an overview of XCS; Section III explains our

proposed method Local Covering and how it is integrated

with XCS as XCS-LCPCI; Section IV conducts the three

experiments to evaluate our method; Section V shows the

experimental results; Section VI discusses the implications

from the results; and finally, Section VII concludes the paper

along with future work.

II. XCS CLASSIFIER SYSTEM

A. Overview

XCS is a machine learning system that evolves if-then rules

named classifiers by GA through reinforcement learning. A

classifier mainly consists of the condition C, the action A,

the prediction p, the prediction error ϵ, the fitness F . XCS

updates C and A by the mutation/crossover operators of GA.

The prediction p is updated to be closer to the received reward,

and the prediction error ϵ indicates the difference between p
and the actual reward.

Fig. 1 shows the architecture of XCS. [P] is the population,

which stores all classifiers in it. When XCS receives an

input state from the environment, the system forms the match

set [M] of classifiers whose condition matches the state.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

If [M] does not have θmna or more different actions, the

system generates new classifiers called covering classifiers that

matches the input state and has an action not appeared in [M].

This operation is called covering, and [M] has at least θmna

different actions by this. The system forms prediction array

PA, where the payoff prediction of each action is recorded,

by calculating the weighted average of p with the weight of

F . On the basis of the payoff prediction in PA, the output

action is chosen by epsilon-greedy selection. After the action

selection, XCS receives the reward from the environment as an

evaluation value of the action execution. To update classifiers

that contributed to the action selection, the system forms the

action set [A] by picking up classifiers that have the same

action as the selected one from [M]. After [A] is formed, the

prediction p, prediction error ϵ, and fitness F of classifiers in

[A] are updated by referring to the received reward.

B. Covering

The covering is a classifier generation operation invoked

when [M] does not have θmna different actions. Each attribute

of the input state is changed to “#” with a fixed probability

P#. Since P# determines how many “#”s are generated in

the initial iterations, it needs to be tuned considering the

problem. Butz et al. [5] suggests setting P# to a value around

0.33, however, the optimal setting is totally depending on the

problem.

III. LOCAL COVERING

Local Covering is a covering method that generates a new

condition based on a classifier selected from the population

[P]. In Local Covering, the symbols in the condition dif-

ferent from the input are replaced with “#” to generate a

new condition. This method aims to suppress the generation

of overgeneral classifiers in the covering operation. These

overgeneral classifiers could result in less covering occurred in

later iterations, and that interferes with learning convergence

especially when rules should have a small number of “#”. To

avoid the generation of overgeneral classifiers, Local Covering

generates the minimum number of additional “#” to cover the

unseen input.

A. Procedure of Condition Generation

In Local Covering, a new classifier is generated by the

following procedure:

1) The Minimum Hamming Distance (MHD, described

later) between the input state σ and the condition C
is calculated for all classifiers in [P].

2) The classifiers having the minimum value of MHD are

chosen from the population [P] under several conditions.

The condition C of chosen classifiers are stored in an

array selectedConds.

3) The condition of a new classifier is randomly chosen

from selectedConds.

4) The symbols other than “#” are replaced with “#” if the

corresponding attribute is different from the input σ.

Note that the conventional covering method that is operated

using P# if the array selectedConds is empty.

Fig. 2 shows how Local Covering generates a covering

classifier using existing classifiers in [P]. In this example, the

system tries to generate a covering classifier with the action

“0”. The condition “1110#1” is selected as the nearest one

from the input state “111101”, and the fourth attribute of

“1110#1” is replaced with “#” so that the condition of the

covering classifier covers the state. As a result, the condition

of the covering classifier is set to “111##1”. Since Local

Covering iterates over [P] to select the nearest condition

and MHD iterates over attributes of the condition, the time

complexity of this algorithm is O(mn), where m is the data

length and n is the number of classifiers in [P].

To apply Local Covering, the function GenerateCovering-

Classifier in [5] is replaced with Algorithm 1. Note that

StandardCovering at line 15 is the conventional covering

function of XCS.

Algorithm 1 LocalCovering([P], [M], σ)

1: selectedConds← empty array

2: D ← +inf

3: a← random action not present in [M]

4: for each classifier cl in [P] do

5: d← MinimumHammingDistance(cl.C, σ)

6: if cl.A = a and cl.exp ≥ 1 and d ≤ D then

7: if d < D then

8: D ← d
9: selectedConds← empty array

10: end if

11: selectedConds.append(cl.C)

12: end if

13: end for

14: if selectedConds is empty then

15: return StandardCovering([M], σ)

16: end if

17: Cl← new classifier

18: Cl.A ← a; Cl.p ← pI ; Cl.ϵ ← ϵI ; Cl.F ←FI ;
Cl.exp ← 0; Cl.as ← 1; Cl.num ← 1;
Cl.ts ← current iteration count;

Cl.C ← random in selectedConds
19: for i = 0...(#σ - 1) do

20: if Cl.C[i] ̸= “#” and Cl.C[i] ̸= σ[i] then

21: Cl.C[i]← “#”
22: end if

23: end for

24: return Cl

B. Minimum Hamming Distance (MHD)

To determine how close a condition C is to the input

state σ, we introduce Minimum Hamming Distance (MHD),

which uses the hamming distance between the input state

and the closest state covered in the condition. In the ternary

representation, MHD denotes how many attributes in the

condition C are required to be replaced with “#” to cover

[P]

State
101101

Action
0

Reward
1000

GA

Insert

Parent
Selection

0: 979.04

1: 0.00

PA[M]

10#10# : 0 => 1000 𝜖=0.00, 𝐹=0.80 …
10##0# : 0 => 952 𝜖=0.00, 𝐹=0.62 …

[A]

####01 : 1 => 0 𝜖=443, 𝐹=0.01…

001### : 1 => 1000 𝜖=0.00, 𝐹=0.71 …
11###0 : 1 => 0 𝜖=0.00, 𝐹=0.95 …

Subsumption

Insert

XCS Classifier System

Update
Q-Learning

Covering

Env.

Fig. 1: The Architecture of the XCS Classifier System

[P]

111101

State
MHD

2

3

2

1

0011#1 : 0 => 0

01#01# : 0 => 1000

10111# : 1 => 1000

101001 : 0 => 1000

1110#1 : 0 => 0

110#01 : 1 => 1000

111##1 : 0 => 0.01

Generate

Different attributes are

replaced with “#”

Covering Classifier

Select a classifier with

the minimum MHD value

Exclude classifiers

having a different action

Fig. 2: Classifier Generation Procedure of Local Covering

the input state σ. MHD is calculated by Algorithm 2, where

C denotes a condition and σ denotes an input state.

Algorithm 2 MinimumHammingDistance(C, σ)

1: d← 0

2: for i = 0...(#σ − 1) do

3: if C[i] ̸= “#” and C[i] ̸= σ[i] then

4: d← d+ 1
5: end if

6: end for

7: return d

C. XCS with Local Covering for Previously Covered Inputs

XCS with Local Covering for Previously Covered Inputs

(XCS-LCPCI) is an XCS that employs Local Covering only

in the second or later covering of a state. Since Local Covering

refers to existing classifiers and chooses one having the nearest

condition, the population [P] should have enough number

of classifiers before Local Covering is performed. If Local

Covering is applied to the entire covering operation, the input

state is compared to dissimilar conditions at an early stage,

which results in overgeneralization of the condition. To avoid

this situation, XCS-LCPCI introduces a covering classifier set

[CC] that stores previously-generated covering classifiers to

determine whether to apply Local Covering. In the covering

State
101101

Action
0

Reward
1000

GA PA

[M]

[A]

Subsumption

Insert

Q-Learning

Covering

Env.

[P]

#01#10 : 0

0#10#1 : 0

[CC]

XCS-LCPCI

InsertLocal

Covering?

Fig. 3: XCS-LCPCI

operation of XCS-LCPCI, Local Covering is used if [CC] has

a classifier that matches the input state; otherwise, the covering

classifier is generated by Standard Covering using P#. Finally,

the generated covering classifier is inserted to [CC].

Fig. 3 is a schematic diagram of XCS-LCPCI. In this

figure, [CC] is the additional component to the original XCS.

The upward arrow means XCS-LCPCI determines whether

to operate Local Covering by referring to [CC], and the

downward arrow means every generated covering classifier is

inserted into [CC].

Note that XCS-LCPCI exhibits the same performance as

XCS until a previously-generated covering classifier is deleted.

Since Standard Covering generates a condition randomly, gen-

erated covering classifiers tend to have an inaccurate condition

leading to the deletion of these classifiers. In XCS-LCPCI,

Local Covering is called after the system starts to delete these

inaccurate classifiers. Since XCS performs classifier deletions

only after the number of classifiers exceeds N , the population

is guaranteed to have N classifiers when Local Covering is

performed.

To use XCS-LCPCI, the function GenerateCoveringClassi-

fier is replaced with Algorithm 3.

Algorithm 3 GenerateCoveringClassifier([P], [M], [CC], σ)

1: prevCovered = false

2: for each classifier cl in [CC] do

3: if DoesMatch(cl, σ) then

4: prevCovered = true

5: break

6: end if

7: end for

8: if prevCovered = true then

9: Cl = LocalCovering([P], [M], σ)

10: else

11: Cl = StandardCovering([M], σ)

12: end if

13: [CC].append(Cl)
14: return Cl

IV. EXPERIMENT

To compare the performance of XCS and XCS-LCPCI, we

conducted experiments using three different problems, 20-bit

multiplexer (MUX) problem, 11-bit class-imbalanced multi-

plexer (CIMUX) problem [6], and MNIST problem [7]. These

problems have different distributional features. While the dis-

tribution of input is uniform in the 20-bit multiplexer (MUX)

problem, the 11-bit class-imbalanced multiplexer (CIMUX)

problem has a strong bias in class labels and attributes that

determine the answer class. MNIST problem is a problem

using a dataset of handwritten digits, and it has a large

number of input attributes. In addition, in the MNIST problem,

only specific attributes (the center part of an image) have

importance for classification because the outer part of an

image is always “0” (white). The conventional XCS requires

different P# settings for these three problems to obtain

optimal performance. Here we use six different P# settings,

P# = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, to compare the robustness of

P# settings of XCS and XCS-LCPCI.

We employ the theoretical parameter settings of XCS [8]

for three hyperparameters θsub，β，ϵ0 by the problem. To

fulfill the condition to use these theoretical parameter settings,

Moyenne Adaptive Modifee (MAM) is disabled when updat-

ing p and ϵ.
We use the standard parameter setting described in [5] for

other hyperparameters, i.e., α = 0.1，ν = 5，χ = 0.8，µ =
0.04，θdel = 20，δ = 0.1，doGASubsumption = true. We

use our implementation based on XCSJava 1.0 [9].

A. Experiment 1: 20-bit MUX Problem

The MUX problem is a typical benchmark problem of LCS.

An input state of the MUX problem consists of a k-bit binary

number called address bits and a 2k-bit binary number called

reference bits, where k is a positive integer and a larger value

of k makes the problem more difficult. If a denotes the decimal

number of the address bits, the answer of this problem is the

(a+ 1)-th binary digit of the reference bits.

In this experiment, we use the theoretical parameter settings

based on [8], where θsub = 31，β = 0.1387，ϵ0 = 58.52847.

Fig. 4: Examples from the MNIST Dataset

We set N = 2000 considering the search space size of the

problem. Other parameters are set to the standard settings [5]:

doASSubsumption = true，θGA = 25.

B. Experiment 2: Class-Imbalanced MUX Problem

The Class-Imbalanced MUX (CIMUX) problem [6] is a

modified MUX problem that has biases in class labels. In

this paper, we choose “0” as a minority class and “1” as a

majority class, which means the likelihood of states whose

answer is “1” is smaller than that of “0”. In the CIMUX

problem, the input state is generated randomly, and the state is

sent to XCS if the answer is the majority class; otherwise, it is

sent to XCS with 1/2i probability, where i denotes the class-

imbalance level to determine the difficulty of the problem.

The environment repeats to generate a random state until it is

sent to XCS in one iteration. The CIMUX problem is difficult

in that XCS needs to identify overgeneralized classifiers by a

limited number of minority class data.

In this experiment, we set θsub = 15345，β = 0.0007472，
ϵ0 = 0.130206 on the basis of the theoretical parameter

settings [8]. To reproduce the result of [8], all parameters are

set to the same values, i.e., N = 800，doASSubsumption =
false，θGA = 3200, and the class imbalance level i = 10.

C. MNIST Problem

The MNIST problem is a classification task of the hand-

written digit images in the MNIST dataset [7]. To make the

problem simpler, we use only 11,841 training data and 1,938

test data having a class label of “0” or “6”1. To input the

image into XCS, each pixel is binarized to “0” (white) or “1”

(black), and the image is reshaped to a 784-bit binary string.

To use a theoretical parameter setting based on [8], we as-

sume the correct rate threshold to identify incorrect classifiers

is 98% in this problem, and we set θsub = 49，β = 0.09915，
ϵ0 = 38.34258. We set N = 20000 by referring to the search

space size of the problem. Other parameters are set to the

standard settings [5]: doASSubsumption = true，θGA = 25.

V. RESULTS

Fig. 5, Fig. 6, and Fig. 7 show the plots of the received

reward in the 20-bit MUX problem, the 11-bit CIMUX prob-

lem, and the MNIST problem, respectively. The results are

averaged over 5,000 iterations in Fig. 5 and Fig. 7, and 500,000

1XCS can deal with multiclass classification tasks. However, since a large
number of classifiers are required to learn the 10-class multiclass classification
task of 784-bit inputs appropriately, here we chose this binary classification
problem in this experiment.

𝑃# = 0.0 𝑃# = 0.2 𝑃# = 0.4 𝑃# = 0.6𝑃# = 0.8 𝑃# = 1.0

	400

	500

	600

	700

	800

	900

	1000

	20000 	40000 	60000 	80000 	100000 	120000 	140000

R
ew

ar
d

	A
v
er

ag
e

Iteration

(a) XCS

	400

	500

	600

	700

	800

	900

	1000

	20000 	40000 	60000 	80000 	100000 	120000 	140000

R
ew

ar
d

	A
v
er

ag
e

Iteration

(b) XCS-LCPCI

Fig. 5: Reward Average of Experiment 1 (20-bit MUX)

iterations in Fig. 6. All these results are averaged over 31 runs

using different random seeds.

The results show the performance of XCS is depending

on P#, and especially P# = 0.0, 0.2 caused a decrease in

performance. Especially, XCS can solve the MNIST problem

by setting P# = 1.0 2, but XCS completely fails to solve it

with the other P# settings. On the other hand, XCS-LCPCI

achieved a comparable performance even with these low P#

settings. In Fig. 6 (b), XCS-LCPCIs with any P# settings

show comparable performance to XCS with P# = 0.8, which

achieved the best performance at the last iteration in Fig. 6 (a).

This implies XCS-LCPCI has a robustness of both too high

P# and too low P# settings.

VI. DISCUSSION

A. Analysis on Classifiers Generated by Local Covering

Table I shows the rate of “#” for each attribute in covering

classifiers generated by Local Covering, where bi denotes

the i-th attribute of the state and a is the decimal number

of address bits. b4+a is the reference bit to be an answer

to the problem3. The result is averaged over 31 different

2We found the original XCS outperforms the performance of our previous
work that uses VAE for preprocessing [10] if P# is set to 1.0 in this MNIST
problem.

3For example, for an input “11101010101”, the address bit value is a =
(111)2 = 7, and the corresponding reference bit is b4+a = b4+7 = b11,
thus the answer is b11 = “1′′.

𝑃# = 0.0 𝑃# = 0.2 𝑃# = 0.4 𝑃# = 0.6𝑃# = 0.8 𝑃# = 1.0

	400

	500

	600

	700

	800

	900

	1000

	1x107 	2x107 	3x107 	4x107 	5x107 	6x107 	7x107 	8x107 	9x107 	1x108

R
ew

ar
d

	A
v
er

ag
e

Iteration

(a) XCS

	400

	500

	600

	700

	800

	900

	1000

	1x107 	2x107 	3x107 	4x107 	5x107 	6x107 	7x107 	8x107 	9x107 	1x108

R
ew

ar
d

	A
v
er

ag
e

Iteration

(b) XCS-LCPCI

Fig. 6: Reward Average of Experiment 2 (11-bit CIMUX)

seeds, and the standard deviation is reported in the SD field.

This table shows that Local Covering generates less “#” in

address bits than in reference bits. In the MUX problems,

the desired optimal rules do not have “#” in these address

bits. Therefore, this result implies that Local Covering avoids

overgeneralization by generating conditions similar to existing

ones. On the other hand, the reference bit b4+a does not have

a significant difference in the “#” generation rate from other

reference bits. From these results, Local Covering can assign

“#” to attributes confirmed to be able to generalize by existing

classifiers, but it is difficult for Local Covering to find the

attribute to specify in the input state because this method

replaces all differences between a state and a condition with

“#”.

Fig. 8 shows examples of covering classifiers generated by

the conventional and proposed method in the MNIST problem.

In this figure, Standard Covering with P# = 0.0, 0.4 fails

to generate a condition that can be used for other inputs.

XCS with P# = 0.0, 0.2, 0.4, 0.6, 0.8 completely failed to

learn the MNIST dataset because [P] is filled with classifiers

with too specific conditions generated by Standard Covering.

Furthermore, XCS does not update a classifier until the input

matches its condition. This causes too specific rules are left

until the population size exceeds N , and the system is trapped

in a covering/deletion loop. On the other hand, XCS-LCPCI

has a mechanism to generalize an existing condition to cover

a new input received from the environment, and too specific

TABLE I: “#” Generation Rates by Local Covering of XCS-LCPCI (P# = 0.8) in Experiment 2 (11-bit CIMUX)

b1 b2 b3 b4 b5 b6

“#” generation rate 0.425 0.419 0.420 0.884 0.885 0.884
by Local Covering (SD: 0.026) (SD: 0.025) (SD: 0.025) (SD: 0.018) (SD: 0.018) (SD: 0.016)

b7 b8 b9 b10 b11 b4+a

“#” generation rate 0.884 0.884 0.890 0.886 0.891 0.879
by Local Covering (SD: 0.019) (SD: 0.016) (SD: 0.015) (SD: 0.020) (SD: 0.021) (SD: 0.020)

𝑃# = 0.0 𝑃# = 0.2 𝑃# = 0.4 𝑃# = 0.6𝑃# = 0.8 𝑃# = 1.0

	400

	500

	600

	700

	800

	900

	1000

	20000 	40000 	60000 	80000 	100000 	120000 	140000

R
ew

ar
d

	A
v
er

ag
e

Iteration

(a) XCS

	400

	500

	600

	700

	800

	900

	1000

	20000 	40000 	60000 	80000 	100000 	120000 	140000

R
ew

ar
d

	A
v
er

ag
e

Iteration

(b) XCS-LCPCI

Fig. 7: Reward Average of Experiment 3 (MNIST)

conditions are generalized by using this mechanism.

B. Rule Discovery Strategy of XCS-LCPCI

Generally, the rule exploration strategy of XCS can be

statically changed by using different P# settings. If P# is

set to a small value, XCS tries to find a set of rules using a

generalization pressure by genetic operators. In contrast, if P#

is set to a large value such as 1.0, XCS tries to find attributes

that can be specified in classifier conditions. However, because

of the high-dimensional input of the MNIST problem, a large

size of the population is required to find building blocks

if the exploration starts with the generalization of specific

classifiers using P# smaller than 1.0. Local Covering can

skip the initial exploration until the first subsumption by

forcing the newly-generated classifier condition to include an

existing classifier condition even when P# is smaller than

1.0. This reduces the generalization cost required for the

Local Covering

in XCS-LCPCI

Standard Covering

in XCS

𝑃# = 0.0 𝑃# = 0.4 𝑃# = 1.0“0” “1” “#” (Don’t Care)

Fig. 8: Examples of Covering Classifiers Generated in Exper-

iment 3

first subsumption and helps XCS to generalize too specific

classifiers in a feasible time. For a better understanding of the

difference between Standard Covering and Local Covering, we

visualized the transition of classifier conditions in Fig. 9 by

calculating weighted average of conditions with the weight of

num× F × p. While the average classifier condition of XCS

stays the same, XCS-LCPCI appropriately finds the pixels to

generalize in early iterations. This implies that Local Covering

skips costly generalization steps by replacing the attributes that

vary depending on inputs with “#”.

Since XCS-LCPCI switches the covering method to Local

Covering as [CC] covers the state-action space, XCS-LCPCI

discontinues to use P# for covering. This allows the system

to escape from a covering/deletion loop caused by the use of

a constant probability for the “#” production.

C. Effect of Inheriting the Prediction of the Base Classifier

This section discusses whether to inherit the payoff pre-

diction from the base classifier chosen in Local Covering.

Since Local Covering generates a similar classifier to the

chosen one from [P], inheriting the prediction value from the

base classifier could help covering classifiers to converge their

payoff prediction by a smaller number of evaluations.

We investigated an additional experiment to compare XCS-

LCPCI with and without the use of prediction inheritance us-

ing the 11-bit CIMUX problem with P# = 0.6. Other settings

are set to the same as Experiment 2. In this experiment, the

prediction error ϵ is not inherited.

Iteration: 150,00050,000 100,000

Iteration: 150,00050,000 100,000

𝐴 = “0”𝐴 = “6”

𝐴 = “0”𝐴 = “6”

“0” “1” “#” (Don’t Care)

(a) XCS

(b) XCS-LCPCI

Fig. 9: Transition of the Average Condition of Classifiers in the Experiment 3 (P# = 0.2)

Fig. 10 shows the reward average of XCS-LCPCI with and

without prediction inheritance in the 11-bit CIMUX problem.

Note that XCS-LCPCI w/o Prediction Inheritance shows the

same results as P# = 0.6 in Fig. 6. This result suggests that

prediction inheritance has a negative impact on performance.

This is caused by the influence of newly generated classifiers

on the value of the prediction array. In the standard XCS-

LCPCI, newly generated classifiers are excluded to determine

the system output by the greedy selection because the pre-

diction value of these classifiers are set to a value close to

zero. In XCS-LCPCI with prediction inheritance, however,

the covering classifier could copy classifiers having a high

prediction value and generalize its condition without resetting

the prediction. As a result, even transient classifiers are taken

into account in the prediction array, which produces a noise in

action selection. Consequently, XCS-LCPCI should not inherit

the prediction value from the base classifier in classification

problems.

	400

	500

	600

	700

	800

	900

	1000

	0 	1x107 	2x107 	3x107 	4x107 	5x107 	6x107 	7x107 	8x107 	9x107 	1x108

R
ew
ar
d
	A
v
er
ag
e

Iteration

XCS-LCPCI	w/o	Prediction	Inheritance
XCS-LCPCI	w/	Prediction	Inheritance

Fig. 10: Reward Average of XCS-LCPCI with and without

Prediction Inheritance in the 11-bit CIMUX Problem

VII. CONCLUSION

In this paper, we proposed a niche-based covering method

named Local Covering, which generates a new classifier by

generalizing the nearest condition in the population. Also,

to integrate Local Covering with XCS, we proposed XCS-

LCPCI, which employs Local Covering only for the second

or later covering for a certain state. The results of the three

different experiments confirmed that XCS-LCPCI reduced the

parameter sensitivity of P#.

Future work will include applying Local Covering to UCS

[11], which forms a best action map instead of a complete

action map. Local Covering could perform better with UCS

because the comparison to a classifier predicting a zero reward

never happens in a best action map. Also, the condition to

be chosen as a base classifier of Local Covering needs to be

discussed further. Furthermore, this method also can be applied

to the real-valued XCS (XCSR) [12] by extending the concept

of Minimum Hamming Distance (MHD), and this method has

a potential to reduce the sensitivity of the parameter s0 in

XCSR.

REFERENCES

[1] J. Holland, “Escaping brittleness: The possibilities of general purpose
learning algorithms applied to parallel rule-based systems,” in Machine

learning: An artificial intelligence approach, R. Michalski, J. Carbonell,
and T. Mitchell, Eds. Los Altos, CA: Morgan Kaufmann, 1986, vol. 2,
ch. 20, pp. 593–623.

[2] S. W. Wilson, “Classifier fitness based on accuracy.” Evolutionary

Computation, vol. 3, no. 2, pp. 149–175, 1995.

[3] F. Kharbat, M. Odeh, and L. Bull, Knowledge Discovery from Medical

Data: An Empirical Study with XCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 93–121.

[4] N. Fredivianus, H. Prothmann, and H. Schmeck, “XCS revisited: A
novel discovery component for the extended classifier system,” in
Simulated Evolution and Learning. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 289–298.

[5] M. V. Butz and S. W. Wilson, “An algorithmic description of XCS,” in
Advances in learning classifier systems: Third international workshop,

IWLCS 2000, P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds. Berlin
Heidelberg: Springer-Verlag, 2001, pp. 253–272.

[6] A. Orriols-Puig and E. Bernadó-Mansilla, “Bounding XCS’s parameters
for unbalanced datasets,” in Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation, ser. GECCO ’06. New
York, NY, USA: Association for Computing Machinery, 2006, p.
15611568.

[7] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
http://yann.lecun.com/exdb/mnist/, 2010.

[8] M. Nakata, W. Browne, T. Hamagami, and K. Takadama, “Theoretical
XCS parameter settings of learning accurate classifiers,” in Proceedings

of the Genetic and Evolutionary Computation Conference, ser. GECCO
’17, New York, NY, USA, 2017, pp. 473–480.

[9] M. V. Butz, “XCSJava 1.0: An implementation of the XCS classifier
system in Java,” Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign, IlliGAL report 2000027, 2000.

[10] M. Tadokoro, S. Hasegawa, T. Tatsumi, H. Sato, and K. Takadama,
“Knowledge extraction from XCSR based on dimensionality reduction
and deep generative models,” in 2019 IEEE Congress on Evolutionary

Computation (CEC), June 2019, pp. 1883–1890.
[11] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning

classifier systems: Models, analysis and applications to classification
tasks,” Evolutionary Computation, vol. 11, no. 3, pp. 209–238, 2003.

[12] S. W. Wilson, “Get real! XCS with continuous-valued inputs.” in
Learning Classifier Systems, ser. Lecture Notes in Computer Science,
P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds., vol. 1813, 1999,
pp. 209–222.

