
A Training Difficulty Schedule for Effective Search
of Meta-Heuristic Design

Jair Pereira Junior
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

pereira-junior.ua.ws@alumni.tsukuba.ac.jp

Claus Aranha
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

caranha@cs.tsukuba.ac.jp

Tetsuya Sakurai
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

sakurai@cs.tsukuba.ac.jp

Abstract—In the context of optimization problems, the perfor-
mance of an algorithm depends on the problem. It is difficult to
know a priori what algorithm (and what parameters) will perform
best on a new problem. For this reason, we previously proposed
a framework that uses grammatical evolution to automatically
generate swarm intelligence algorithms given a training problem.
However, we observed two issues that affected the results of
the framework. The first issue was that sometimes the training
problems are too easy, and any candidate algorithm could solve
it or too difficult that no candidate algorithm could solve them.
The second issue was the presence of parameters in the grammar,
which causes a significant increase in the search space. In this
work, we addressed those issues by investigating three training
schedules in which the problems start easy and get harder
over time. We also investigated whether numerical parameters
should be part of the grammar. We compared these training
schedules to the previous one and compared the performance
of the generated algorithms against the traditional algorithms,
which are DE, PSO, and CS. We found that gradually increasing
the difficulty of the training problem produced algorithms that
could solve more testing instances than training only in 10-D.
The results suggest that a step-by-step increase in difficulty
is a better approach overall. We also found that including
parameters in the grammar resulted in algorithms on par with
the traditional meta-heuristics. Besides, as expected, our results
show that removing parameters from the grammar exhibit the
worst overall performance. However, interestingly it could solve
most of the testing instances within the given testing budget.

Index Terms—automatic algorithm generation, training
scheduling, meta-heuristic, hyper-heuristic, grammatical evolu-
tion

I. INTRODUCTION

Many problems in engineering, design, and sciences can
be described as optimization problems. A well-known way
to solve these problems is to use meta-heuristic search al-
gorithms, such as Genetic Algorithm (GA) [1], Differential
Evolution (DE) [2], Particle Swarm Optimization (PSO) [3],
and Cuckoo Search (CS) [4]. However, the performance of an
algorithm depends on the problem, and it is difficult to know
a priori what algorithm (and what parameters) will perform
best on a new problem.

In this context, we previously proposed a framework based
on grammatical evolution (GE) to automatically generate
swarm intelligence (SI) algorithms given a problem [5]. In that
work, the algorithms automatically generated by GE showed

comparable performance to the traditional hand-crafted algo-
rithms. However, we identified two issues that affected the
results of the framework.

The first problem was observed in the training. Sometimes
the problem is too easy, and any candidate algorithm gets
the best results, sometimes it is too hard, and no candidate
algorithm gets any result. In both cases, the final result is an
inability of GE to learn.

The second problem was regarding the setting of control
parameters, such as population size and crossover probability.
If the parameters are part of the grammar, the search space
becomes exceptionally high, and many similar candidate al-
gorithms are generated. On the other hand, if they are not
part of the grammar, the value of these parameters will have
a significant impact on the evaluation of new individuals.

In this work, we addressed those issues by investigating
three training schedules in which the problems start easy and
get harder over time. We also investigated whether numerical
parameters should be part of the grammar or not. We compared
these training schedules to the previous one and compared the
performance of the generated algorithms against the traditional
algorithms (DE, PSO, and CS) on the COCO [6] benchmark.

We observed that (1) it is effective to increase the difficulty
of the problem during the training and that (2) as expected,
removing the parameters from the grammar has the worst
overall performance. However, interestingly it could solve
most of the problems within the given testing budget.

This paper is organized as follows: Section II provides
an overview of the field. Section III provides a description
of our framework to automatically generate SI-algorithms.
Section IV presents the proposed training schedules. Section
V describes the experimental design. Section VI presents
the results and discussion of our investigation. Section VII
presents the conclusion, limitations and future research.

II. RELATED WORK

It has been observed that there is no single algorithm that
can perform best in all classes of optimization problems. This
phenomenon, known as performance complementarity [7], has
motivated many studies on ways to select or generate a proper
algorithm for a given class of problems. Algorithms that do
this previously mentioned task are called hyper-heuristics.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

While meta-heuristics searches for solutions in the problem
space, in hyper-heuristics, the algorithms operate on a higher
level searching for programs in the algorithm design space.

Burke et al. [8] proposed a classification of hyper-heuristics
methods based on their feedback source during learning (on-
line, offline, and none), and the nature of their search space
(selection or generation, and construction or perturbation). For
a heuristic generation, GP is the most commonly used method
[8]. GP conducts the search using the traditional operators
of the genetic algorithm on a set of predefined building
blocks. However, GP can have a huge search space, depending
on the problem. Another method for heuristic generation is
Grammatical Evolution (GE). GE is a variation of GP, in which
a context-free grammar restricts the search space.

Studies on using GP and GE for algorithm selection and
generation have investigated a self-configuring crossover op-
erator [9], generation and tuning of mutation operators [10],
design tuning of genetic algorithm for black-box search [11],
design tuning of PSO [12]–[14], tuning of the update-mean
rule of CMA-ES [15], designing optimizers largely from
scratch [16] and many others.

Our work follows the same direction as the previous re-
search by trying to automate the design of meta-heuristic
search algorithms. We, however, investigate different ways to
do the training. Our goal is to not only analyze the design
space of meta-heuristic algorithms by using a GE to guide the
recombination of components of existing algorithms. But, as
well as to determine ways to improve the training phase of
the hyper-heuristic. Thus, this research aims to enhance our
understanding of the design space of meta-heuristics, enabling
us to determine components that are useful for which classes
of optimization problems, and how to guide the search for
those components better.

III. FRAMEWORK: FRANKEN-SWARM

Our framework to automatically generate SI-algorithm ex-
plores the design space of meta-heuristics algorithms using
Grammatical Evolution (GE). The framework has two main
parts: the components library and the recombination frame-
work.

The component library is composed of a set of building
blocks extracted from meta-heuristic algorithms, and the re-
combination framework is composed of a formal grammar that
describes how the components are put together. The details of
these two parts are described in the two following sections,
respectively.

Our framework is implemented in Python1. The meta-
heuristics components are an in-house implementation, while
the GE engine uses the PonyGE2 Grammatical Evolution
library [17].

A. Component library

This part is composed of several meta-heuristic components.
These components were extracted from the three most tradi-

1All the code, and the data for this paper, including experimental scripts,
are available at https://github.com/jair-pereira/FRK/tree/CEC’20.

tional swarm intelligence (SI) meta-heuristics in the literature.
These algorithms are Differential Evolution (DE), Particle
Swarm Optimization (PSO), and Cuckoo Search (CS). In
addition to these algorithms, some Genetic Algorithm (GA)
operators were also used. Next, all operators were categorized
as Initialization, Selection, Variation, Replacement, Dropout,
or Repair rules. Table I shows the categorization of all oper-
ators present in the proposed framework. A brief description
of these categories follows. Initialization operators define how
each candidate solution will be initialized at the beginning
of the algorithm and how it will be re-initialized after a drop
operator. Selection operators select candidate solutions to input
to variation operators. Variation operators modify the selected
candidate solutions. Replacement operators choose which be-
tween the pre-updated solution and the updated solution will
be in the next population. Dropout operators choose candidate
solutions to be re-initialized. Repair operators define what will
be done to the values out of bounds of a candidate solution.

B. Recombination Framework

This part uses GE to search the design space of meta-
heuristic algorithms by recombining the building blocks from
the component library based on their category. Algorithm 1
shows a simplified version of the formal grammar, focusing
on the common structures of SI-algorithms. The terminals of
the operators can be found in Table I. This grammar describes
algorithms with one, two, or three variation operators. These
operators are associated with up to three different selection
rules depending on the function’s arity, and one replacement
rule. A drop rule may be applied at the end of every iteration.

Algorithm 1 Simplified Grammar for Algorithm Generation
#components
<S> ::= <define repair><main>
<main> ::= <iteration> | <iteration><drop>
<iteration> ::= <step>

| <step><step>
| <step><step><step>

<step> ::= S ← <selection>(X)
U ← <variation>(S)
X ← <replacement>(X, U)

#parameters
<population> ::= 50 | 100 | 200 | 400 | 800 | 1200
<float> ::= 0.00 | 0.25 | 0.50 | 0.75 | 1.00 | 2.00
<percentage> ::= 0.10 | 0.25 | 0.50 | 0.75 | 1.00

C. Algorithm Synthesis

To generate an algorithm for a given problem, our frame-
work is submitted to a training phase. The goal of the training
phase is to generate an algorithm that performs well in the
training problems and should show similar performance when
tested on similar classes of problems.

In the training phase, several algorithms are generated
randomly based on the defined grammar. These algorithms are
then tested on the training problem. Next, the classical genetic
operators are used to generate the next candidate algorithms.
The previous step is repeated until the maximum number

TABLE I
META-HEURISTIC OPERATORS: BRIEF DESCRIPTION AND CATEGORIZATION

Initialization
Random Uniform generates a candidate solution where each element is sampled from a uniform distribution

Selection
Current selects the candidate solution currently being updated
Random selects a candidate solution from the population with uniform probability

K-Tournament selects the best candidate solution out of k solutions selected from the population with uniform probability

Variation

PSO Update Rule velocityi+1 = w.vi + c1.r1.(pbesti − xi) + c2.r2.(gbesti − xi)
xi+1 = xi + vi+1

Cuckoo Update Rule xi+1 = xi + 0.2 ∗ Levy ∗ (xi − pbest), where Levy is a Lévy Flight
Uniform Mutation each element of the xi has a fixed probability to be replaced with a value sampled from a uniform distribution
Blend Crossover xi+1 = (1− γ).xi1 + γ.xi2

Exponential Crossover each element of xi1 has probabilityn to be replaced with elements from xi2, where n is the number of previous replacement
Uniform Crossover each element of xi1 has a fixed probability to be replaced with elements from xi2

DE Mutation xi+1 = xi1 + β.(xi2 − xi3)

Replacement
Current replaces the current candidate solution by the updated one

Always the Best replaces the candidate solution by the updated one if there is fitness improvement
Cuckoo Rule replaces the candidate solution by the updated one if the fitness is better compared to a random updated candidate solution

Later waits for another update rule before trying replacement again

Drop
Random uniformly attempts to drop candidate solutions based on a given probability

Worst drops k fitness-wise-worst candidate solutions based on a given probability

of iterations is reached. The final output is a meta-heuristic
search algorithm that had the best performance in the training
problem.

IV. PROPOSED TRAINING SCHEDULING

In this section, we describe the training scheduling and
grammar variants.

We proposed different training scheduling to investigate
whether training our framework directly in a hard task is
better than training in a task that starts easier and gets
harder over time. The difference between all the scheduling
is that the function’s dimension, in which the framework is
trained, increases over time. In the baseline, our framework is
trained directly in 10-D. In scheduling 2-to-10D, it is trained
initially in 2-D and later, it changes to 10-D. Similarly, in the
scheduling 5-to-10D, it starts in 5-D and later changes to 10-
D. In the scheduling 2,3,5-to-10-D, it starts in 2-D, changes
to 3-D, then 5-D, and finally 10-D.

We proposed two variations of the grammar that recombines
the meta-heuristics operators to investigate whether numerical
parameters should be included in the grammar or not. This
question arose because the presence of parameters in the
grammar causes a significant increase in the search space. We
proposed one grammar that searches for operators only, and
we use as a baseline the grammar of our previous work, which
searches for operators and its parameters within a certain
granularity as specified in 1. For the new grammar, random
parameters are used for every run of a candidate algorithm.

V. EXPERIMENTAL DESIGN

We carried out a training-testing experiment to investigate
(1) whether training in lower dimension leads to equivalent
promising regions in the search space of the same problem in
a higher dimension, and (2) whether it is beneficial or not to
search for operators altogether with its parameters.

In the training phase, an algorithm is submitted to training
problems in order to tune its parameters and/or to select its
components. In the testing phase, the algorithm is submitted
to different problems in order to assess its performance on
problems with similar characteristics.

In order to assess the performance of our framework, we
compared it to three traditional methods in the literature, PSO,
DE, and CS. It is important to note that all the analyses were
done separately for each problem in the training set.

We chose the problem instances from the COCO [6] bench-
mark, which is a continuous numerical black-box optimization
benchmark. COCO implements 24 noiseless functions divided
into 5 groups based on their properties and, consequently,
difficulty. In this benchmark, a problem instance is a function
and two parameters: its scalable dimension (2, 3, 5, 10, 20,
and 40) and its instance (1 to 15) - a random, artificial shift
on the function space. We selected the functions in the Table
II due to the insights obtained about the algorithms behaviour
[18]. It is important to emphasize that the selected Rastrigin
(f15) is a transformed version that alleviates its symmetry and
regularity.

TABLE II
SELECTED FUNCTIONS FROM COCO BENCHMARK.

Function Modality Characteristic Information Obtained

Sphere Unimodal Highly Symmetric Optimal convergence rate

Attractive Sector Unimodal Highly Asymmetric Behaviour in an asymmetric landscape

Rastrigin
Multimodal
(highly)

Adequate global structure
Alleviated symmetry (transformed)
Alleviated regularity (transformed)

Behaviour in an highly multimodal landscape

Gallagher’s Multimodal Weak global structure
(unrelated and randomly chosen 101 optima) Behaviour in a landscape without global structure

A. Training and Testing

We trained the baseline (PSO, DE, and CS) and our pro-
posed framework in instance 1 of 10-D Sphere, Attractive
Sector, Rastrigin, and Gallagher’s 101-me. The maximum
number of functions evaluated (NFE) was 3e+7.

For the baseline, we tuned their parameters using iRace
[19] with maxExperiments=3e+3 and NFE of a run=1e+4. For
the testing phase, we used only the best set of parameters
found. Table III shows the tuned parameters for each problem
instance.

For our framework, we trained both grammars using all
four training schedules previously introduced. The GE pa-
rameters were iteration=30, population=20, and meta-heuristic
NFE=1e+4 with 5 repetitions. Only the best algorithm with the
lowest mean - out of the 5 repetitions, was used for the testing
phase.

We balanced the NFE between the hyper-heuristic and meta-
heuristic to have the number of iteration and population of the
hyper-heuristic as high as possible while keeping it feasible
runtime-wise.

To write a balanced grammar, we followed the guidelines in
[20]. We chose the subtree representation to reduce invalids as
recommended in [17]. Consequently, mutation and crossover
did also use subtree representation. The tournament selection
had k=4 for low pressure (20% of the population).

We tested all the configured algorithms on the same func-
tions as in the training but on the others 2 to 15 instances. For
each problem instance, the algorithms had NFE=1e+5 with up
to 10 restarts. By testing on the same functions, but in different
instances, we are looking at whether our framework could
capture the function underlying structure during the training
phase.

VI. RESULTS

In this section, we present the comparison of the two gram-
mars variants in each training schedule, and the performance
during the testing.

A. Training Schedules

Here, we assessed whether we are generating better candi-
date algorithms over time and how good those algorithms are.
We compared the two grammars (including parameters vs not
including parameters) in each proposed training scheduling by

plotting the precision of the best candidate algorithm during
the training. The chosen precisions ranges from 1e+02 to 1e-
08. Note that a change in one decimal place of precision means
ten times increase being in a logarithmic scale.

The training and testing results in Rastrigin were omitted
due to limit of space and similarly poor performance of
all methods. Including the testing results of the traditional
algorithms. We discuss this situation in the Section VII.

Figs. 1-3 compare the grammar that includes parameters
against the grammar that does not include it, for all training
schedules. They show the precision of the best candidate
algorithm at each iteration of the grammatical evolution.
Each figure corresponds respectively to the functions Sphere,
Attractive Sector, and Gallagher’s 101-me. We compare pairs
grammar-training schedule by looking at the area under the
curve, in which higher precision at early iterations is better.

The gray area on the left side indicates when the candidate
algorithms were evaluated in low dimension(s). Similarly, the
white area on the right side signals the training in the target
dimension (10-D).

As can be seen in fig. 1 (Sphere), the grammar that includes

TABLE III
PSO, DE, AND CS: PARAMETER TUNING (IRACE)

Particle Swarm Optimization

Problem Population Velocity
modifier

Pbest
modifier

Gbest
modifier

Sphere 100 0.39 0.00 1.84
Attractive Sector 200 0.56 0.00 1.67

Rastrigin 800 0.12 0.01 1.82
Gallagher’s 400 0.49 0.12 1.79

Differential Evolution

Problem Population DE-Mutation
modifier

Crossover
probability

Sphere 50 0.08 0.18
Attractive Sector 50 0.47 0.92

Rastrigin 50 0.17 0.85
Gallagher’s 50 0.5 0.93

Cuckoo Search

Problem Population Drop
probability

Solutions
to be dropped

Sphere 50 0.57 25
Attractive Sector 50 0.97 25

Rastrigin 50 0.89 25
Gallagher’s 50 0.78 25

parameter with 5-to-10D scheduling is the only case that does
not lose precision when the problem gets harder. Overall, the
training schedule that uses more dimensions seems to be more
robust. Similarly, the grammar that includes parameters is also
more effective because they lose less precision.

In fig. 2 (Attractive Sector), it is not clear which method is
better. Overall, the grammar that includes parameters using
2-10D is as good as the grammar that does not include
parameters using 5-10D.

Lastly, fig. 3 (Gallagher’s) is consistent with the fig. 1, in
which the grammar that includes parameter with 5-to-10D
scheduling is the only case that does not lose precision when
the problem gets harder and including parameters is overall
better.

Looking at all functions for the scheduling 2,3,5-to-10D,
both grammars do not lose precision when the problems
changes from 2D to 3D. When it changes from 3D to 5D, they
quickly recover the precision (except in Rastrigin). This quick
recover may indicate that a step-by-step increase in dimension
is beneficial for the training. Also, the grammar that does not
include parameters is always slightly better, possibly indicating
that the components capture better the underlying structure of
the functions compared to parameters.

Moving to the Fig. 4, we picked the training scheduling that
hit better precision overall (5-to-10-D) and compared it to the
training done directly in 10-D. In this graph, we show only
the precision of the evaluations in 10-D. First, looking at the
framework that searches for parameters, both scheduling hit
the same precision, except in Gallagher’s where starting the
training at 5-D is much better. It seems faster that training
first in 5-D when including parameters in the grammar. We
observed a similar trend when looking at the framework that
uses random parameters, but here, it is faster to train straight
in 10-D. For these schedules, using lower dimension in the
training seems more beneficial only if the grammar includes
parameters. Overall, Attractive Sector, seems more sensitive
to the choice of operators over parameters, while Gallagher’s
seems sensitive to parameter tuning.

B. Testing

In this subsection, we compared the performance of all
generated algorithms by plotting the empirical cumulative dis-
tribution function (ECDF). We first compared all the cases for
the grammar that includes parameters, and then we compared
the other grammar. Finally, we compared the best schedule of
each grammar against the traditional algorithms.

In the figs. 5-7, the x-axis represents the budget in logarith-
mic scale, being the maximum budget NFE=1e+6, represented
as 5 in the graph. The y-axis represents the number of
problems in the testing set. In this representation, algorithms
with bigger area under the curve are considered better.

Fig. 5 shows the testing results for the grammar that includes
parameters. As can be seen, the framework was unable to solve
Attractive Sector and Gallagher’s 101-me when trained straight
in 10D. This confirms our previous findings [5].

The training schedule that had the most consistent per-
formance was 2,3,5-to-10D, supporting that a step-by-step
increase in the dimension can improve the training.

Surprisingly, 2-to-10D had a very similar performance per-
formance to 5-to-10D, since the leap from 2 to 10D is much
higher than 5 to 10D. They performed similarly in Sphere and
Gallagher’s, but 2-to-10D could solve 100% the problems in
Attractive sector while 5-to-10D could solve only about 60%.

Fig. 6 shows the testing results for the grammar without
parameters. Due to the random parameters, it is important to
recall that these algorithms had testing budget of NFE=1e+5
(each restart) with up to 10 restarts. It is again surprisingly
that 2-to-10D performed better than straight in 10-D and 5-
to-10D, but it supports the same results of the algorithms
generated by grammar that includes parameters. Interestingly,
the algorithms using random parameters could solve a fair
amount of problems by the exchange of more budget, and
in this case the 2-to-10D schedule was better probably by
selecting components less sensitive to parameters.

Fig. 7 shows the testing results. As shown, DE is overall
the best algorithm, being the the generated algorithm by the
grammar with parameters on par with it.

Turning now to the statistical test, we performed the
Wilcoxon Signed Rank Test of each training schedule against
the baseline 10-D. There was a significant difference only
for 2-to-10D (p=0.03). While not significant for 2,3,5-to-10D
(p=0.11) and for 5-to-10D (p=0.79), the significance values
may indicate that 2D was a good starting point for the training.

Lastly, we performed the Wilcoxon Signed Rank Test
comparing the grammar with parameters against the grammar
without parameters for each function presented in this paper.
None of these differences were statistically significant. This
suggests that part of the training budget has to be used to tune
parameters, and how large this budget should be depend on
the problem. Sphere and Gallagher’s 101-me (both p=0.12)
may suggest a lower budget for parameter tuning compared to
Attractive Sector (p=0.81).

VII. CONCLUSION

In this study, we investigated three training schedules in
which the problems start easy and get harder over time. Also,
we determined whether the numerical parameters should be
part of the grammar or not. The results indicate that it is faster
to train straight in 10-D in the absence of parameters in the
grammar than other training approaches. However, this method
may hit lower precision if the problem is sensitive to parameter
tuning (e.g., Gallagher’s).

The training results also indicate that including parameters
in the grammar leads to more robust algorithms as a result
of losing less precision when the problem gets harder. In
addition, the results using the 2,3,5-to-10D schedule suggest
that increasing step-by-step the dimension leads to more
robustness in terms of precision.

The testing results of the 2,3,5-to-10D schedule indicate that
this approach generates algorithms that can consistently solve

Fig. 1. Comparison between pairs of grammar-training schedules. The best pairs are the ones with higher precision at earlier iterations in 10-D.

Fig. 2. Comparison between pairs of grammar-training schedules. The best pairs are the ones with higher precision at earlier iterations in 10-D.

Fig. 3. Comparison between pairs of grammar-training schedules. The best pairs are the ones with higher precision at earlier iterations in 10-D.

Fig. 4. Comparison between both grammars, each trained using the schedule 5,10-D and straight in 10-D. Only evaluations in 10-D are shown.

more testing instances. A more granular increase in difficulty
may lead to even better results.

Some limitations are present in this study. First, the number
of variation operators is limited. We did not use operators that
behave well in a highly multimodal landscape, as revealed
by our results in Rastrigin. Second, we trained and tested
only on four benchmark functions. These limitations should
be addressed in future works by adding more operators from
other meta-heuristics, and by using more functions to assess
the generalizability of the investigated methods better.

There are two questions raised by this study that need to
be investigated. First, because we observed that it is effective

to increase the dimension during the training gradually, the
natural progression of this work is to analyze a good trade-off
between training in easier problems and the performance of
the generated algorithms. Second, because we also observed
that the generated algorithms from the grammar without
parameters took more budget but could a part of the problems
in the testing set, the goal then is how to better divide the
training resources between the search for components and the
search for parameters.

REFERENCES

[1] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

Fig. 5. ECDF of the algorithms generated by grammar that includes parameters.

Fig. 6. ECDF of the algorithms generated by grammar that does not include parameters.

Fig. 7. ECDF of the traditional algorithms and of the generated algorithms for both grammars on the best training scheduling.

[2] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-International Conference on Neural Networks, vol. 4,
pp. 1942–1948, IEEE, 1995.

[4] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in 2009 World
congress on nature & biologically inspired computing (NaBIC), pp. 210–
214, IEEE, 2009.

[5] A. Bogdanova, J. P. Junior, and C. Aranha, “Franken-swarm: gram-
matical evolution for the automatic generation of swarm-like meta-
heuristics,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 411–412, 2019.

[6] N. Hansen, D. Brockhoff, O. Mersmann, T. Tusar, D. Tusar, O. A.
ElHara, P. R. Sampaio, A. Atamna, K. Varelas, U. Batu, D. M.
Nguyen, F. Matzner, and A. Auger, “COmparing Continuous Optimizers:
numbbo/COCO on Github,” Mar. 2019.

[7] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary computa-
tion, vol. 27, no. 1, pp. 3–45, 2019.

[8] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Wood-
ward, “A classification of hyper-heuristic approaches,” in Handbook of
metaheuristics, pp. 449–468, Springer, 2010.

[9] B. W. Goldman and D. R. Tauritz, “Self-configuring crossover,” in
Proceedings of the 13th annual conference companion on Genetic and
evolutionary computation, pp. 575–582, 2011.

[10] J. R. Woodward and J. Swan, “The automatic generation of mutation
operators for genetic algorithms,” in Proceedings of the 14th annual con-
ference companion on Genetic and evolutionary computation, pp. 67–74,
2012.

[11] M. A. Martin and D. R. Tauritz, “Evolving black-box search algo-
rithms employing genetic programming,” in Proceedings of the 15th
annual conference companion on Genetic and evolutionary computation,
pp. 1497–1504, 2013.

[12] P. B. Miranda and R. B. Prudêncio, “Gefpso: A framework for pso
optimization based on grammatical evolution,” in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation,
pp. 1087–1094, 2015.

[13] R. H. R. de Lima and A. T. R. Pozo, “A study on auto-configuration of
multi-objective particle swarm optimization algorithm,” in 2017 IEEE
Congress on Evolutionary Computation (CEC), pp. 718–725, IEEE,
2017.

[14] P. B. Miranda and R. B. Prudêncio, “A novel context-free grammar for
the generation of pso algorithms,” Natural Computing, pp. 1–19, 2018.

[15] S. N. Richter, M. G. Schoen, and D. R. Tauritz, “Evolving mean-
update selection methods for cma-es,” in Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1513–1517,
2019.

[16] M. Lones, “Optimising optimisers with push gp,” arXiv preprint
arXiv:1910.00945, 2019.

[17] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
and M. O’Neill, “Ponyge2: Grammatical evolution in python,” in

Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pp. 1194–1201, 2017.

[18] S. Finck, N. Hansen, R. Ros, and A. Auger, “Real-parameter black-box
optimization benchmarking 2010: Presentation of the noisy functions,”
tech. rep., Citeseer, 2010.

[19] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58,
2016.

[20] M. Nicolau and A. Agapitos, “Understanding grammatical evolution:
Grammar design,” in Handbook of Grammatical Evolution, pp. 23–53,
Springer, 2018.

