
Multifactorial Evolutionary Algorithm for
Inter-Domain Path Computation under Domain

Uniqueness Constraint
Huynh Thi Thanh Binh†, Ta Bao Thang†, Nguyen Binh Long†, Ngo Viet Hoang†, Pham Dinh Thanh∗,
† School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam

∗ Faculty of Natural Science and Technology, Tay Bac University, Vietnam
Email: binhht@soict.hust.edu.vn, {tabaothang97, binhlongmm99, ngoviethoang735, thanhpd05}@gmail.com

Abstract—Nowadays, connectivity among communication de-
vices in networks has been playing a significant role, especially
when the number of devices is increasing dramatically that
requires network service providers to have a better architecture
of management system. One of the popular approach is to divide
those devices inside a network into different domains, in which
the problem of minimizing path computation in general or Inter-
Domain Path Computation under Domain Uniqueness constraint
(IDPC-DU) problem in specific has received much attention from
the research community. Since the IDPC-DU is NP-complete,
an approximate approach is usually taken to tackle this prob-
lem when the dimensionality is high. Although Multifactorial
Evolutionary Algorithm (MFEA) has emerged as an effective
approximation algorithm to deal with various fields of problems,
there are still some difficulties to apply directly MFEA to solve
the IDPC-DU problem, i.e. different chromosomes may have
different numbers of genes or to construct a feasible solution not
violating the problem’s constraint. Therefore, to overcome these
limitations, MFEA algorithm with a new solution representation
based on Priority-based Encoding is introduced. With the new
representation of the solution, a chromosome consists of two
parts: the first part encodes the priority of the vertex while the
second part encodes information of edges in the solution. Besides,
the paper also proposed a corresponding decoding method as well
as novel crossover and mutation operators. Those evolutionary
operators always produce valid solutions. For examining the
efficiency of the proposed MFEA, experiments on a wide range
of test sets of instances were implemented and the results pointed
out the effectiveness of the proposed algorithm. Finally, the
characteristics of the proposed algorithm are also indicated and
carefully analyzed.

Index Terms—Multifactorial Evolutionary Algorithm, Inter-
Domain Path Computation under Domain Uniqueness constraint,
Path Computation Element, Evolutionary Algorithm.

I. INTRODUCTION

In the era of rapid technological development as nowadays,
numerous communication devices are required to be connected
to each others via a network. This demanding makes the
network system to become significantly larger and should be
partitioned into different domains for a better management. As
a consequence, multi-domain networks have been designed to
help resolving the scalability issues, since this network type is
capable of minimizing the routing signals. In addition, privacy
issues are also guaranteed in the multi-domain networks when
sensitive intra-domain information is not revealed to neighbor-
ing domains of the competing network operators.

In some recent studies on the multi-domain networks,
L. Maggi et al [1] introduced the problem of IDPC-DU. The
problem addresses the multi-domain network with hierarchical
Path Computation Element (h-PCE) architecture and focuses
on finding an inter-domain path with minimum cost that
crosses a domain at most once. The authors have proven that
the IDPC-DU problem is in NP-complete class.

After suggesting that the computational bottleneck for
IDPC-DU lies in the number of domains in [1], a dynamic pro-
gramming approach which based on Bellman- Ford algorithm
has been proposed with the complexity of O(|V |22|D||D|2) to
tackle the problem in combination with a novel domain clus-
tering concept which helps to artificially reduce the number
of domains.

However, as having been proved as NP-hard, the IDPC-
DU problem with a large number of dimensionality can be
solved more effectively by an approximation algorithm. One
of the most popular approximation algorithm that has been
widely studied in the scientific community is the Evolutionary
Algorithm (EA) [2, 3]. Despite various advantages of EA, its
weaknesses lie in the large consumption of resources and the
resolution of no more than one problem at a time.

To overcome these limitations, the MFEA [4, 5] has been
recently proposed and is emerging as one of the most effec-
tive variants of EA. MFEA can solve multiple independent
optimization problems simultaneously using a unique repre-
sentation of population in the Unified Search Space (USS).
Thanks to the sharing genetic materials of individuals from
multiple tasks in the USS, exchanging information among
different problems inside MFEA can help to obtain the optimal
solutions for each task.

Despite such advantages of the algorithm, to the best of
our knowledge, there has not been any attempt at applying
directly the MFEA to tackle with the IDPC-DU. Some of
the difficulties can be mentioned as the MFEA has not
been designed for path representation on multi-graph or to
construct a solution not to violate the Domain Uniqueness
(DU) constraint of the problem.

Consequently, this paper introduces a new approach based
on the MFEA to solve the IDPC-DU problem. The major
contributions of this work are as follows:
• Propose an effective way to encode a feasible path of the

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

IDPC-DU problem in USS and a corresponding decoding
mechanism.

• Propose evolutionary operators for applying MFEA to
solve the IDPC-DU problem.

• Analyze and evaluate experimental results on multiple
test instances to show the efficiency of the proposed
algorithm.

The rest of this paper is organized as follows. Section II
presents the notations and definitions used for formulating
problem. Section III introduces related works, while the pro-
posed MFEA for the IDPC-DU is elaborated in section IV.
Section V explains the setup of our experiments and reports
the computed results. The paper concludes in section VI with
discussions on the future extension of this research.

II. NOTATION AND DEFINITIONS

The IDPC-DU problem can be stated as follows: Given a
finite set of colors D and a weighted colored directed multi-
graph G = (V,E,w), where V is the set of nodes, E is the
set of edges and a weight function w : E 7→ R assigns to
each edge e ∈ E a positive cost w(e) ≥ 0. Let (i, j)k ∈ E
be the kth parallel edge between nodes i and j which has a
weight wk

i,j and is assigned with a color d ∈ D. Let Ed be a
domain of the graph which contains all edges having color d.
Therefore, the color of each edge will determine exactly one
network domain in which the edge belongs to. An edge which
points from node a to node b with an associated weight w and
colored by the color c, is denoted by (a, b, w, c).

Under the DU constraint, a path p on G traverses every
domain at most once. In other words, once p has left a domain
Ed, it does not revisit it later on. The IDPC-DU looks for a
path p∗ from source node s to destination node t such that:

1) The path p∗ satisfies the DU constraint.
2) The sum of weights of all edges on path p∗ is minimized.

p∗ = argminp∈Fs,t(G)

∑
(i,j)k∈p

wk
i,j (1)

where Fs,t(G) is the set of all feasible paths on graph G from
node s to node t.

Figure 1 depicts a weighted colored directed multi-graph
with 9 nodes (labeled from 1 through 9) and the set of edges
is partitioned into three domains (red, blue, black). The
IDPC-DU problem searches for a path from source node 1
to destination node 9 on which the sum of weight of edges
is minimized while the DU constraint must be obeyed. Path
{(1, 2, 1, blue), (2, 7, 1, red), (7, 8, 1, black), (8, 9, 1, red)}
has the minimum cost but is infeasible due to
entering the red domain twice, so it violates the DU
constraint. A feasible path satisfying this constraint is
{(1, 2, 1, blue), (2, 7, 1, red), (7, 3, 1, black), (3, 9, 1, black)}.

For a better convenience of describing our proposed
algorithm in this paper, the set of edges leaving a
node is called the out-edge set in which its size is
the out-degree of the node. The out-edge set of a
node i is denoted by Ei,out. For example, E1,out =

{(1, 2, 1, blue), (1, 2, 2, black), (1, 2, 3, red), (1, 5, 5, blue),
(1, 5, 1, black), (1, 6, 5, black)}. In addition, the subset
of Ei,out which has edges from the node i to
the node j is denoted by SEi,j . In Figure 1,
SE1,5 = {(1, 5, 5, blue), (1, 5, 1, black)}. Finally,
the maximum size of SEi,j is denoted by Si, with
Si = maxj∈V {|SEi,j |}. For example in Figure 1,
S1 = maxj∈V {|SE1,j |} = |SE1,2| = 3.

Fig. 1: An example of a weighted colored directed multi-graph

III. RELATED WORKS

Along with the increasing requirements posed by significant
advances in networking, path computation has become an
important factor that service providers need to pay special
attention to [6, 7]. In general, an optimal solution to the path
computation problem with minimum cost under constraints
can be obtained simply by pruning links that do not satisfy
constraints and applying the shortest path algorithm on the
resulting subgraph. However, this approach can be inefficient
when multiple domains are involved in the network. To
address this problem, the Path Computation Element (PCE)
architecture was introduced, enabling one to compute the best
possible path through multiple domains in the network. In [8],
Sukrit Dasgupta et al presented a brief review on the significant
developments of the PCE architecture and demonstrated the
superior performance of the PCE compared to the per-domain
approach when addressing the path computation problem.

With the development of the PCE architecture, inter-domain
networks have drawn great interest from the research com-
munity over the last decade. As mentioned above, the path
computation inside each domain (intra-domain) is controlled
by a PCE in multi-domain networks. For handling com-
munication among different PCEs, two architectures, which
are distributed and hierarchical, are primarily envisaged. In
particular, a good investigation on recent advances in path
computing for distributed and hierachical architectures of PCE
is provided in [9].

Several approaches has been introduced to tackle the prob-
lem of path computation in the inter-domain networks. In [10],
L. Buzzi et al proposed a solution based on a combination of
hierarchical routing and path computation procedures. The for-
mer method determines the sequence of domain to cross while
the latter calculates the end-to-end path. Another approach
to solve the path computation problem, which was proposed
by D. Siracusa et al [11], is to use a Domain Sequence

Protocol. The Domain Sequence Protocol technique helps to
compute the sequence of traversed domains in hierarchical
PCE architectures, from that, an optimal path in multi-domain
networks can be obtained.

When applying an EA to the path computation problem,
one of the most difficult and essential task is how to encode
a path in a graph intro a chromosome. The primary reasons
to explain for this difficulty is that: a) a path does not contain
a fixed number of nodes, since this value varies with the
maximum number is n − 1 for a graph of n nodes, and b)
a random sequence of edges usually does not correspond to a
path. In [12], M.Gen et al proposed a priority-based encoding
method, which fortunately capable of representing all most
every possible paths in the graph. In this encoding technique,
the authors give each node a priority and add into the path the
one with highest priority.

In recent literature, MFEA [4, 13] has been emerging
as an effective framework that can solve a wide range of
optimization problems. In [14], R. Chandra et al applied the
MFEA to train neural networks with the required tasks are
neural network topologies with different number of hidden
neurons. Recently, the MFEA has also been applied to solve
some problems related to path cost minimization on graph,
one of which is the Clustered Shortest-Path Tree Problem
(CluSPT) [15]. In applying the MFEA to tackle this problem,
P.D. Thanh et al [16] took the advantages of Cayley Code to
encode a solution of CluSPT into the USS and proposed new
evolutionary operators based on this type of encoding.

Although the MFEA has been developed for solving various
optimization problem, to the best of our knowledge, there has
not been any prior attempt to apply the MFEA to solve the
problem of IDPC-DU, that is, to find a minimum cost path that
crossed a domain at most one in the multi-domain network.
Hence, this paper focuses on proposing effective evolutionary
operators and a novel method of representing a path in IDPC-
DU in order to apply the MFEA for addressing the problem.

IV. PROPOSED ALGORITHM

MFEA is used to find the solutions of K IDPC-DU prob-
lems Gi = (V i, Ei, wi, Di), i = 1, . . . ,K where V i, Ei, wi

and Di are set of vertices (nodes), set of edges, weight matrix
and set of domains of graph, respectively.

A. Encoding path in IDPC-DU graph

In the routing problem, representing a valid path is a critical
and relatively complex problem. A good coding strategy
will provide many benefits for solving complicated multi-
constraint problems. One traditional approach of encoding
a path between two vertices s and t in the graph is to
represent it simply as a list of vertices or edges that passes
from s to t. However, with this approach, the length of
the path is not fixed since many potential nodes can be
selected and appears as intermediate nodes in solution path.
Therefore, the evolutionary operators can be very complex or
ineffective when implementing on this encoding, especially in
incomplete graphs. Moreover, because the path is randomly

generated, constraints are easy to be violated and may be
uncontrollable. Therefore, the obtained path may not terminate
at the destination node, leading to an invalid path.

Fortunately, there is another approach to encrypt the path
between two vertices, which is Priority-based Encoding. A
path is now represented by an array of integers of fixed size
N , where N is the total number of nodes in the graph. The
value of each element in the array is the priority of that node
in the graph. The higher the priority, the earlier the node is
visited and then, the order of nodes on the path from s→ t can
be interpreted as the order of priority of those nodes in the
graph. Every possible path in the graph can be represented
by this encoding, and this strategy has been applied in its
basic form to show its effectiveness in solving routing path
problems in simple undirected graph [12]. In this work, to
represent a solution for the IDPC-DU problem, a new solution
representation (NSR) based on the priority-based encoding is
introduced for the directed and multi-constrained graph, which
takes the advantages of the flexibility of this encoding method.

Because input graph of the IDPC-DU problem is a multi-
graph in which 2 nodes may be connected by many edges, if
only using the Priority-based Encoding to represent a path, a
given gene can only be decoded into a sequence of nodes that
the path passes through. Consequently, edges connecting those
nodes are not yet determined since this encoding can associate
with many paths. Therefore, we propose a many-to-one path
encoding consisting of two parts as follows:
• Node Priority: An array π has N elements where N is

the number of nodes in the graph and the value of ith

element presents the priority of the ith node. The higher
the value of a node is, the more priority that this node is
passed through. An example of the priority of nodes in
the input graph G as in Figure 1 is shown in the white
array of Figure 2. According to this priority, a path from
node 1 to node 9 on the input graph G is {1, 2, 7, 3, 9}.

• Edge Index: An array σ also has N elements where N
is the number of nodes in the input graph. The value of
the ith element in the array represents the index of the
edge in the out-edge set Ei,out that the path will take to
reach another node. The blue array in Figure 2 describes
an example for this representation. In this example, the
path will leave node 1 by the 1st out-edge (1, 2, 1, blue),
leave node 2 by the 3rd out-edge (2, 7, 1, red), etc. A
special case in this example is node 4 that has no edge
coming out of it, so the value of the fourth element in
the array is ‘-’.

A complete representation of the path is illustrated in
Figure 2.

Fig. 2: An representation of the path in graph

For each representation, the path from node s to node t

will be constructed by visiting the nodes in their orders of
priority according to a proposed Growing Path Algorithm
(GPA). The basic idea of the GPA is that from the node i, the
algorithm visits a node j having the highest priority by the kth

edge between them with k is an out-edge index in the subset
SEi,j that satisfies the DU constraint. With this strategy, each
encoding corresponds to a path and every possible single path
in a graph can be represented by at least an encoding.

Details of the GPA are described in Algorithm 1. For exam-
ple, from the encoding illustrated in Figure 2, a corresponding
path from node 1 to 9 of the given graph in Figure 1 can be
obtained, which is (1, 2, 1, blue), (2, 7, 1, red), (7, 3, 1, black)
and (3, 9, 1, black) with a total cost of 4.

Algorithm 1: Growing Path Algorithm
Input: A multi-graph G = (V,E,w),

E = {E1, . . . , ED}; A source node s; A
destination node t; an individual
I = (π1, π2, . . . , πN |σ1, σ2, . . . , σN).

Output: A path p and its cost

1 begin
2 H ← ∅ . Set of domains that path p has left;
3 d← -1 . The domain that the path p is visiting;

/* c(v) is cost of path from s to v */
4 c(s)← 0; c(t)←∞;
5 curr ← s . curr is the node that p is visiting;
6 visited[v]← false ∀v ∈ V ; p← ∅;
7 while h 6= t do
8 visited[h]← true;
9 Adj(h)← the set of edges that connect h to

other unvisited nodes in G, such that each
edge’s domain is not in H;

10 if Adj(h) = ∅ then Break ;
11 v ← the node has the highest priority πv and

connects to h by an edge in Adj(h);
12 Eh,v ← the set of edges connecting two nodes

h and v and belong to Adj(h);
13 k ← σv % |Eh,v|+ 1;
14 e ← the kth edge in Eh,v; p.append(e);
15 d′ ← the domain of e;
16 if d 6= −1 and d′ 6= d then H ← H ∪ {d} ;
17 d← d′; c(v)← c(h) + w(e); h← v;
18 return p and c(t);

B. Individual Representation in Unified Search Space

In MFEA, the representations of individual of each task
are combined into a common representation and evolutionary
operators are performed on it.

The USS for tasks is a graph which is constructed as
follows:
• The number of domains D in the graph is the

largest number of domains in all tasks, D =
max(|D1|, |D2|, . . . , |DK |) where |Di| is the number of
domains of the ith task.

• The number of nodes in the graph is the largest number
of nodes in all tasks. N = max(N1, N2, . . . , NK) where
N i is the number of nodes of the ith task.

• The maximum number of out-edges from the node i to
another node is the maximum of those in all tasks. Si =
max(S1

i , S
2
i , . . . , S

K
i) with Sj

i is the maximum number
of out-edge from the node i to another node in the jth

task.
An individual I = (π1, π2, . . . , πN |σ1, σ2, . . . , σN) in USS

consists of two parts and each part is an array of N elements.
The first part contains values representing the priority of the
corresponding nodes in the graph. In the second part, the ith

element in the array is the index of edge that the path leaves
node i in the graph.

C. Individual Initialization Method

With the desire to represent all possible paths between two
vertices s and t of the graph and to be able to explore all
possible solutions in the search space, the priority and the out-
edge indexes of all nodes in graph are generated randomly. Let
the representation of an individual in the USS be:

I = (π1, π2, . . . , πN |σ1, σ2, . . . , σN)

where {π1, π2, ..., πN} is a permutation of (1, 2, ..., N) and
each element in the second half part is a random number from
1 to the maximum number of out edges of the nodes respec-
tively. The initialization method is described in Algorithm 2.

Algorithm 2: Individual initialization method
Input: The number of nodes N and a set

{S1, S2, . . . , SN}
Output: An individual in unified search space

1 begin
2 π ← Shuffle the array of {1, 2, . . . , N} randomly;
3 for i ← 1 to N do
4 if Si = 0 then σi ← ‘-’ ;
5 else σi ← a random number from 1 to Si ;
6 I ← {π | σ};
7 return I;

D. Crossover Operator

This paper describes a crossover operator based on the Par-
tially Mapped Crossover (PMX) [17] and Two-Point Crossover
(TPX) [18] operators, in which the PMX is used in the first
part while TPX is used in the other part of the individual.

In the first part, the PMX is applied since this operator
is efficient for the permutation representation and tends to
maintain good characteristics of important similarities about
the position and the order of elements from the parent to
the child generation. In the other part, we choose to perform
the TPX because each element has a specific upper bound Si

leading to swapping values between elements is inappropriate.
Proposed method is detailed in Algorithm 3, and examples to
describe how these operators work in parent’s chromosomes
are illustrated in Figure 3 and Figure 4.

Figure 3 illustrates how PMX works in the Node-Priority
Segment. First, it selects uniformly at random 2 cut points
which partition the parents’ Node-Priority Segment into 3
sections (left, middle and right). The middle section between

Algorithm 3: Proposed Crossover operator

Input: Two parents I1 = (π1|σ1) and I2 = (π2|σ2);
Output: Two Offsprings O1, O2;

1 begin
2 π1∗, π2∗ ← PMX Crossover(π1, π2);
3 σ1∗, σ2∗ ← Two Point Crossover(σ1, σ2);
4 O1 ← {π1∗|σ1∗}; O2 ← {π2∗|σ2∗};
5 return O1, O2;

these cut points define the mappings (i.e. 4 ↔ 3, 2 ↔ 8 and
3 ↔ 5), and elements in this section of a parent are copied
directly into the corresponding offspring. Then, the remaining
of this offspring is filled up by copying elements of the other
parent. If an element is already present in the offspring, it is
replaced according to those mappings defined in the middle
section. For example, in the 2nd position, since value 8 in
Parent 1 has appeared in the middle section of Offspring 2 and
there exists a mapping 8↔ 2, the 2nd element of Offspring 2
is chosen to be 2. Analogously, we find offspring as shown.

Fig. 3: An example describes PMX Crossover Operator works in the
Node-Priority Segment.

Figure 4 presents how Two-point crossover operator works
in the Edge-Index Segment. Two cutting-points are chosen
randomly in the segment and the offsprings are built by
swapping the section between these cut points.

Fig. 4: An example describes how Two-Point Crossover Operator
works in the Edge-Index Segment.

E. Mutation Operator

Similar to the crossover operator, the mutation operator is
also performed on both segments of genes, in which
• Swap Mutation operator [17] in the first segment with the

idea of randomly selecting two positions and swapping
the values of those two positions for each other;

• One-Point mutation in the rest segment by choosing
randomly a position and changing its value.

Details of the proposed method is shown in Algorithm 4
with an example of a mutation in genes in Figure 5. In this
example, the priority values of the 3rd and 6th nodes are
swapped, and the out-edge index in the 7th position is changed
from 1 to 2.

Algorithm 4: Proposed Mutation operator
Input: An individual I = (π|σ); a set {S1, S2, ..., SN}
Output: A new individual I∗ = (π∗|σ∗)

1 begin
2 π∗ ← π; σ∗ ← σ;
3 i, j ← Choose two random positions in π;
4 Swap(π∗i , π∗j);
5 i← Choose a random position in σ;
6 σ∗i ← Random a number from 1 to Si;
7 return I∗;

Fig. 5: An example illustrates Mutation Operator on a representation.

F. Decoding method

A representation associated with a task Tj (the number of
nodes Nj) built from a unified representation I = (π | σ) is
denoted by Ij = (πj |σj). The first segment (πj) is built by
just choosing all integers that are not larger than Nj from π
(π = {π1, π2, ..., πN}) and keeping them in the same relative
order. The other segment is constructed by getting the first Nj

elements of the corresponding array σj = {σ1, σ2, ..., σNj
}.

Fig. 6: An example of decoding a specific representation of each Task
from the unified representation.

An example of the decoding method is shown in Figure 6
with the number of nodes of individual in USS, in Task 1,
Task 2 and Task 3 are 9, 6, 4 and 9 respectively.

V. COMPUTATIONAL RESULTS

A. Problem instances
To evaluate the proposed algorithm, on account of no in-

stances were available for IDPC-DU, two sets of test instances
are generated. To generate a test instance, we first passed three
parameters: number of nodes, number of domains and number
of edges. After that, we created an array of distinct nodes and
an array of distinct domains which satisfy a condition that the
number of nodes is greater than the length of domain array.
Source node and terminal node are the first and the last nodes
in the node array, respectively. From the above arrays, we
merged them to construct a valid solution path called p. Each
edge of p was assigned to weight 1, except for the out-edge
of the source node which is set to weight 2. To add noise
to the test instance, for every single node in p, we randomly
added several edges from that node to some other nodes not
in p. Moreover, some one-weight edges are created between
nodes not in the solution path. These traps would make simple
greedy algorithms harder to find optimal solution. Eventually,
we randomly generated edges with greater values of weight
than those of edges in p. This method guaranteed that p is the
optimal solution of the instance.

There are two sets of instances created, a small set (the
number of nodes varies from 10 to 45 with an increment of 5)
and a large set (the number of node varies from 50 to 100 with
an increment of 10). The number of nodes is then combined
with the domain size by ratio of 0.5, 1.0 and 2.0. All instances
are available in [19].

B. Experimental criteria
Criterias for assessing the quality of the output of the

algorithms are presented in Table I.

TABLE I: Criterias for assessing the quality of the output of
the algorithms

Avg The average function value over all runs.

BF The best function value achieved over all runs.

NIB Number of instances on which multitasking outperformed
single-tasking.

NIE Number of instances with Avg value of multitasking equals
to that of single-tasking

RPD The difference between the average costs of two algo-
rithms [20]

C. Experimental setup
To evaluate the performance of new MFEA for the IDPC-

DU, two sets of experiments are implemented.
• On the first set, two algorithms including single-task

(traditional EA) and multi-task (proposed MFEA) were
implemented.
• On the second set, we conducted an experiment (C-

experiment) for evaluating the effect of the parameters
on the convergence trends of each task in generations.

Each scenario was simulated for 30 times on the computer
(Intel Core i7 - 3.60GHz, 16GB RAM), with a population size

of 100 individuals evolving through 500 generations, the rmp
is 0.5 and the mutation rate is 0.05. The source codes were
installed by Java language.

D. Experimental results

1) Comparison between the performances of multi-task and
single task:

The experimental results show that proposed multitasking
exceeded single-tasking on most instances. Particularly, results
obtained by multitasking are better than those obtained by
single-task on 17 of 18 instances in Set 1. Table II presents
the achieved results of 2 test sets in five fields, in which the
field NIB indicates the number of instances on which average
results found by multi-task outperform those found by single-
task, while NIE shows how many instances in the group have
the average results obtained by multi-task which are equal to
those of single-task. A highlight indicated in Table II is that
the average RPD(multi-task, single task) of instances in Set 1
and Set 2 are 13.2% and 4.6% respectively.

TABLE II: Comparison of results obtained by multi-task and
single-task

Sets Number of in-
stances in a Set

NIB NIE Maximum
RPD

Average
RPD

Set 1 24 18 6 41.7 13.2
Set 2 18 17 1 15.8 4.6

The detail of comparison between results obtained by
multitasking and single-tasking is presented in the Table III
and Table IV. In these tables, italic, red cells on the Avg
column of a particular algorithm mean that on those instances,
that algorithm outperforms the other one. Experimental results
on these tables show that the output produced by multi-task
on Set 1 was better than that of single-task on 18 of 24
instances. The biggest gap recorded in this group was 41.7%
on instance Idpc 10x5x425 and the instance with the smallest
difference was instance Idpc 30x15x10025 on which multi-
task performed better than single-task only 0.2%. Regarding
Set 2, the results also showed that multi-task surpassed single-
task on 17 of 18 instances. The gap percentage on instances of
Set 2 varied between 1.6% (on instance Idpc 100x50x461319)
and 2.7% (on instance Idpc 60x120x434337).

2) C-experiment:
To compare the convergence trends of objective functions

between single-tasking and multitasking, we use the functions
in [4] for computing the normalized objectives and averaged
normalized objectives.

Figure 7 depicts the average convergence trends of the
single-tasking (ST) and multitasking (MT) of instances
Idpc 100x100x1000000 and Idpc 50x100x285357. The figure
shows that multitasking outperformed single-tasking in which
multitasking converges faster than single-tasking on all gener-
ations.

Refer to Figure 8 for a better understanding of the improved
performance as a consequence of multitasking and single-
tasking. The figure depicts the convergence trends correspond-

TABLE III: Results obtained by algorithms in Set 1

EA MFEA

Instances BF Avg Rs BF Avg Rs

Idpc 10x10x1000 13 13 1 7 12.2 1
Idpc 10x20x2713 12 12 1 12 12 1
Idpc 10x5x425 12 12 1 7 7 1
Idpc 15x15x3375 16 16 1 10 10 1
Idpc 15x30x12111 16 16 1 10 10 1
Idpc 15x7x1504 18 18 1 18 18 1
Idpc 20x10x2492 22 23.5 1 22 22 1
Idpc 20x20x8000 21 21 1 15 15.4 1
Idpc 20x40x26104 21 21 1 15 15.2 3
Idpc 25x12x4817 27 27.9 1 27 27 1
Idpc 25x25x15625 26 26 1 18 24.1 1
Idpc 25x50x57147 26 26 1 18 24.7 3
Idpc 30x15x10025 33 33.1 1 33 33 2
Idpc 30x30x27000 33 34 1 32 32 6
Idpc 30x60x89772 32 32 2 32 32 8
Idpc 35x17x13934 38 44.5 1 38 38 2
Idpc 35x35x42875 39 39 1 37 37 6
Idpc 35x70x123585 36 36 3 28 35.5 8
Idpc 40x20x18485 42 45.7 1 42 42 4
Idpc 40x40x64000 42 42.1 2 42 42 10
Idpc 40x80x130681 42 42 3 42 42 21
Idpc 45x22x43769 48 49 1 47 47 4
Idpc 45x45x91125 46 46 3 46 46 10
Idpc 45x90x322081 46 46 7 46 46 21

Rs: Running time of algorithms in seconds

TABLE IV: Results obtained by algorithms in Set 2

EA MFEA

Instances BF Avg Rs BF Avg Rs

Idpc 100x100x1000000 103 104.2 21 102 102 114
Idpc 100x200x2296097 101 105.9 38 101 101 50
Idpc 100x50x461319 115 121.2 9 102 102.1 56
Idpc 50x100x285357 52 52.6 7 52 52 42
Idpc 50x25x38961 53 60.8 1 53 53 11
Idpc 50x50x125000 53 53 4 52 52 29
Idpc 60x120x434337 61 61.2 11 61 61 42
Idpc 60x30x99470 64 68.8 2 62 62 11
Idpc 60x60x216000 63 63.3 5 62 62 29
Idpc 70x140x923343 73 73.7 20 72 72 90
Idpc 70x35x120810 72 72 3 72 72 23
Idpc 70x70x343000 71 72.2 6 71 71 40
Idpc 80x160x1490468 81 81.4 24 81 81 90
Idpc 80x40x175762 82 85.8 4 82 82 23
Idpc 80x80x512000 85 88.4 10 82 82 40
Idpc 90x180x1644367 91 92.1 33 91 91 50
Idpc 90x45x260195 95 102 6 93 93.2 56
Idpc 90x90x729000 91 91.7 13 91 91 114

Rs: Running time of algorithms in seconds

Fig. 7: Convergence trends of f̃ in multi-task and serial single task
for instances Idpc 100x100x1000000 and Idpc 50x100x285357

Fig. 8: Comparing convergence trends of f̃1 and f̃2 in multi-
tasks and serial single task for instances Idpc 100x100x1000000 and
Idpc 50x100x285357

ing to each individual task. According to Figure 8, the conver-
gence rate of multi-task on instance Idpc 100x100x1000000
was slightly slower in comparison with single-task. An expla-
nation for this phenomenon is that evolutionary multitasking
does not necessarily guarantee improved performance for
every task [21] in the MFEA. Some tasks are positively
impacted, while other tasks may be negatively impacted by
the implicit genetic transfer available during multitasking. In
contrast, on instance Idpc 50x100x285357, the convergence
rate of each task in multi-task is much faster than that of the
corresponding task in single-task.

VI. CONCLUSION

This paper introduces an algorithm based on MFEA to
deal with the IDPC-DU problem. In the approach, a solution
representation based on an improvement of the Priority-based
Encoding is proposed. The new encoding method can present
IDPC-DU solutions with different lengths by individuals of
fixed sizes and always guarantees to construct a valid so-
lution when the decoding operator is applied. Furthermore,

the paper proposes novel crossover and mutation operators
corresponding to the proposed representation method. The
proposed algorithm is evaluated on 2 different data sets,
and experimental results show that the algorithm performed
well in most instances, especially those instances with large
dimensionalities.

ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Combat Ca-
pabilities Development Command (CCDC) Pacific and CCDC
Army Research Laboratory (ARL) under Contract Number
W90GQZ-93290007. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the CCDC Pacific and CCDC ARL
and the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

REFERENCES

[1] L. Maggi, J. Leguay, J. Cohen, and P. Medagliani,
“Domain clustering for inter-domain path computation
speed-up,” Networks, vol. 71, no. 3, pp. 252–270, 2018.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary
computation 1: Basic algorithms and operators. CRC
press, 2018.

[3] H. T. T. Binh, P. D. Thanh, and T. B. Thang, “New
approach to solving the clustered shortest-path tree prob-
lem based on reducing the search space of evolutionary
algorithm,” Knowledge-Based Systems, vol. 180, pp. 12
– 25, 2019.

[4] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolu-
tion: toward evolutionary multitasking,” IEEE Transac-
tions on Evolutionary Computation, vol. 20, no. 3, pp.
343–357, 2016.

[5] H. T. T. Binh, P. D. Thanh, T. B. Trung, and L. P.
Thao, “Effective multifactorial evolutionary algorithm
for solving the cluster shortest path tree problem,” in
Evolutionary Computation (CEC), 2018 IEEE Congress
on. IEEE, 2018, pp. 819–826.

[6] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P.
Sondag, “Adaptive fastest path computation on a road
network: a traffic mining approach,” in Proceedings of
the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 794–805.

[7] M. K. M. Ali and F. Kamoun, “Neural networks for short-
est path computation and routing in computer networks,”
IEEE transactions on neural networks, vol. 4, no. 6, pp.
941–954, 1993.

[8] S. Dasgupta, J. C. De Oliveira, and J.-P. Vasseur, “Path-
computation-element-based architecture for interdomain
mpls/gmpls traffic engineering: overview and perfor-
mance,” IEEE Network, vol. 21, no. 4, pp. 38–45, 2007.

[9] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo, and
P. Castoldi, “A survey on the path computation element

(pce) architecture,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 4, pp. 1819–1841, 2013.

[10] L. Buzzi, M. C. Bardellini, D. Siracusa, G. Maier,
F. Paolucci, F. Cugini, L. Valcarenghi, and P. Castoldi,
“Hierarchical border gateway protocol (hbgp) for pce-
based multi-domain traffic engineering,” in 2010 IEEE
International Conference on Communications. IEEE,
2010, pp. 1–6.

[11] D. Siracusa, S. Grita, G. Maier, A. Pattavina, F. Paolucci,
F. Cugini, and P. Castoldi, “Domain sequence protocol
(dsp) for pce-based multi-domain traffic engineering,”
Journal of Optical Communications and Networking,
vol. 4, no. 11, pp. 876–884, 2012.

[12] M. Gen, R. Cheng, and D. Wang, “Genetic algorithms
for solving shortest path problems,” in Proceedings of
1997 IEEE International Conference on Evolutionary
Computation (ICEC’97). IEEE, 1997, pp. 401–406.

[13] P. D. Thanh, H. T. T. Binh, and T. B. Trung, “An
efficient strategy for using multifactorial optimization to
solve the clustered shortest path tree problem,” Applied
Intelligence, 2020.

[14] R. Chandra, A. Gupta, Y.-S. Ong, and C.-K. Goh, “Evolu-
tionary multi-task learning for modular training of feed-
forward neural networks,” in International Conference
on Neural Information Processing. Springer, 2016, pp.
37–46.

[15] M. D’Emidio, L. Forlizzi, D. Frigioni, S. Leucci,
and G. Proietti, “Hardness, approximability, and fixed-
parameter tractability of the clustered shortest-path tree
problem,” Journal of Combinatorial Optimization, pp. 1–
20, 2019.

[16] P. D. Thanh, D. A. Dung, T. N. Tien, and H. T. T. Binh,
“An effective representation scheme in multifactorial
evolutionary algorithm for solving cluster shortest-path
tree problem,” in Evolutionary Computation (CEC), 2018
IEEE Congress on. IEEE, 2018, pp. 811–818.

[17] E. E. Agoston, Introduction to Evolutionary Computing.
Berlin, Springer-Verlag, 2003.

[18] X. Yu and M. Gen, Introduction to evolutionary algo-
rithms. Springer Science & Business Media, 2010.

[19] P. D. Thanh, T. B. Thang, N. V. Hoang, and
N. B. Long, “Inter-domain path computation under
domain uniqueness constraint instances,” Mendeley
Data, vol. v3, 2020. [Online]. Available: http://dx.doi.
org/10.17632/t726xwcjf9.3

[20] P. Pop, O. Matei, and C. Pintea, “A two-level diploid
genetic based algorithm for solving the family traveling
salesman problem,” in Proceedings of the Genetic and
Evolutionary Computation Conference. ACM, 2018, pp.
340–346.

[21] Y. Yuan, Y.-S. Ong, A. Gupta, P. S. Tan, and H. Xu,
“Evolutionary multitasking in permutation-based combi-
natorial optimization problems: Realization with tsp, qap,
lop, and jsp,” in Region 10 Conference (TENCON), 2016
IEEE. IEEE, 2016, pp. 3157–3164.

http://dx.doi.org/10.17632/t726xwcjf9.3
http://dx.doi.org/10.17632/t726xwcjf9.3

