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Abstract—One of the most known transportation problems, the
Large-Scale Vehicle Routing Problem (LSVRP) requires more
sophisticated methods to be solved due to the sheer amount
of customers. Most current methods include manually designed
heuristics and parameters, such as restrictions in the search
space. Hyper-heuristics(HHs) appear as a counterpoint to the
manually designed complex methods. This paper presents a
preliminary study on adaptive search space based on clustering,
utilizing a HH Selection framework with Genetic Algorithm
(GA). The initial results show promise in having an adaptive
search scope when compared to a fixed clustering approach. A
comparison of the effects of having a route-first vs cluster-first
initial solution is also presented, favouring the latter one, as well
as a comparison between two types of chromosome decoding.
Finally, the proposed method is compared to a manually designed
algorithm, producing results with better quality. The method is
shown to be significantly better for most scenarios, achieving
solutions just as good as when no limits are applied, but in a
much shorter time.

Index Terms—Hyper-Heuristics, Vehicle Routing Problem,
Clustering, Large-Scale

I. INTRODUCTION

One of the main problems in transportation is the Vehicle
Routing Problem (VRP). The VRP has several applications
such as the delivery of goods and services such as waste
collection or postal service. The core of the classical VRP
is to find routes that attend every customer without visiting
any of them more than once. The problem was introduced by
[1], which solved the distribution of fuel for several stations.
Several variants for the original problem were later proposed
by several authors, [2] and [3] review those variants and
solution methods. One of these variations is concerned about
a large quantity of customers, also known as Large-Scale VRP
(LSVRP). This variant is concerned in solving problems by a
reasonable time-frame and without having to invest too much
in computational power, since a larger number of customer
implies in more memory and time-consuming computation.
However, this size of problem is much more realistic for
companies, and any reduction in distribution cost will have
a significant impact due to the large scale nature. For the
methods that do tackle such scale, most are very dependent
on high-level knowledge on the subject. The most successful
algorithms are manually designed meta-heuristics [3], making
them not generalisable across datasets. Additionally, although
most successful algorithms utilize some form of divide-and-

conquer or limits to deal with the larger search space, they
still do that manually, such as [4] [5].

Hyper-heuristics (HHs) try to tackle the design level com-
plexity by building a more general framework using low-level
and easy-to-implement heuristics, usually having a trade-off
on quality over time [6] [7]. The lack of HHs work for the
LSVRP, however, makes it difficult to compare both types of
heuristics to each other. For example, when looking for low-
level heuristics (LLH) to apply in problems of such scale,
even though HHs might efficiently look for the most suitable
heuristic and the standard is that the search space size is not
even considered. When the search space is considered, it will
usually be manually designed, where it can be either too small,
avoiding finding better solutions, or too large and making it
very slow, and this decision is made based on the expertise
of the developer, with little to no test or proof. The general
rule for limiting the search space is based on how many
customers/edges to consider, which is based on a manually
set parameter or the result of a fixed clustering algorithm.

The work of [8] shows that it is possible to have a non-
manually designed neighbourhood search space, they do it
based on distance and angle between routes. However, the
considered threshold is based on the routes rather than global
distribution. As shown by [9], some characteristics such as
longest edges and their gravity centres are not reliable as in-
dicators of good solutions. Therefore we propose an approach
that aims to consider a more general overview of the search
space, based on clusters of customers which adaptively change
throughout the search.

The current HHs studies are limited in the fact that they
do not employ pruning techniques at the LLH level, and
therefore have limited scalability. To deal with those limita-
tions, a HH framework for the LSVRP is proposed in this
study. The proposed Cluster-based Hyper-Heuristic (CbHH)
searches the heuristic space and automatically trims the search
space based on the evolution of the solution. The CbHH
automatically evolves the state of the exploration space with
the help of a Genetic Algorithm (GA), which also contributes
to the search with its parallel concept. The CbHH does not
require sophisticated design and explores the solution space
based on adaptive clusters. Additionally, two different types
of chromosome decoding schemes are explored. The goals of
this work, in the context of HHs for solving the large-scale
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VRP, are as follows:
• Objective 1: to explore whether an adaptive search space

will improve the computational time without losing too
much quality, compared to both having no clusters or
fixed ones.

• Objective 2: to investigate how the solutions are affected
by the starting clusters.

• Objective 3: to study how the solutions are affected by
different types of chromosome decoding schemes.

• Objective 4: to question whether the Cluster-based HH
can find competitive results when compared to traditional
manually designed heuristics.

The rest of the paper is organised as follows. In the next sec-
tion (II) a brief problem description for the VRP is presented,
followed by a succinct review of the literature. Next, Section
III expands on the Cluster-based Hyper-heuristics. Section IV
presents the experimental design, followed by the results and
discussions on Section V. Finally, Section VI presents final
remarks and research perspectives.

II. BACKGROUND

A. Problem Description

The Vehicle Routing Problem in its classical form (also
known as Capacitated VRP, or CVRP) is defined as a graph
G = (V,E), where V is the vertex set in the graph, and E the
edges set. In other words, the vertex represents the customers
and the edges are the paths between them. The set V is given
as V = {0, 1, . . . , n}, where 0 represents the depot, and the
set E is given as E = {(i, j) : i, j ∈ V, i 6= j}. Additionally,
there is a fleet of identical vehicles with a maximum capacity
of Q each. Each customer has a demand qi > 0, representing
the amount or the weight of the parcel it requires. The goal of
the classical VRP is to find the optimal routes, i.e. routes with
the least possible length. These routes must visit all customers
exactly once; they must not exceed each vehicle capacity, and
all routes must start and end at the depot.

B. Related Work

Among the different variants for the Vehicle Routing Prob-
lem, the Large-Scale VRP (LSVRP) is particularly hard to
solve due to its size. Although it is not a clear rule, to be
considered a large scale, an instance needs to have at least
200 customers [10] [11] [12] [4]. The most advanced exact
methods can optimally solve up to 600 customers, but only
for specific instances [13], and require hours of computational
time, which is expected due to the problem’sNP-hardness [2].
Heuristics that aim to find the best possible solution within a
reasonable time has become a promising alternative to these
exact methods.

While some heuristics methods can efficiently solve in-
stances of large scale, the emphasis of most studies so far
has been tested only to the smaller ones. This focus leads
to very good and fast results to these small instances, but
which usually do not scale well for larger ones. For example,
[14] have solved several variations of the VRP with their
Hybrid Genetic Algorithm achieving state-of-the-art results,

but it takes several minutes for large instances, taking more
than 100 minutes for 600 customers and more. The hybrid
Iterated Local Search (ILS) from [15] follows the same pattern
after instances of that size or larger. Both pointed by [4].

As a counter-point to these manually designed heuristics,
the Hyper-Heuristics (HHs) operates at a higher level of
abstraction than meta-heuristics [16] and are usually proposed
as frameworks which are designed to provide a more general
solution for any type of instance domain [17]. Some of these
HHs frameworks are applied to different types of problems,
some including VRP, such as [18] [19] [20] [12]. Generally
speaking, the idea of a HH is to let some mechanism choose
which kind of search or construction step will be applied in
each iteration. For that, HHs utilize low-level heuristics (LLH),
which are heuristics of easy implementation and generic for
one (or more) problem(s), without the need of extensive and
carefully elaborated search steps. One of the goals is to have
basic and easy-to-understand heuristics at the application level
and to leave the more carefully designed techniques to the
high-level layer, which minimizes the need for expertise on the
given problem. The focus of HHs work has been on this aspect,
but not acknowledging scalability issues at the LLH-level. For
more on this subject and HHs applications, the reader can refer
to [6].

As for HHs solving the VRP, the work of [21] revise the
framework of [19] with an adaptive ILS, tackling the VRP with
Time Windows (VRPTW), a variation which customers have a
service window. Genetic Programming (GP), an evolutionary
approach that evolves programs instead of solutions, are regu-
larly used with the Dynamic VRP (DVRP), as in [22] and [23].
The work of [24] focus on a bi-objective variation, the Mixed-
Shift VRPTW (MSVRPTW). In [25] the authors propose a
Grammatical-based HH to solve the CVRP. The work of [7]
combines both the selective and generative types of HHs in a
GP framework for the VRP. But, to the best of our knowledge,
so far only one work uses HH for a Large-Scale variant of the
VRP. In [12] the search space is divided into m sub-problems
which are solved by column generation techniques to solve
the LSVRP with Time-Windows. The combination is improved
with a HH framework, where a multi-armed bandit mechanism
search for which low-level heuristic to be applied next. No
emphasis is given to the scalability of the LLH.

As shown in the review of [11], most VRP approaches apply
a form of reducing the search space when dealing with such
size to achieve scalable methods. A good portion of them is
based on a manually set threshold on the neighbourhood search
space or by using clusters. To cite some examples, in [11]
the authors explore a database with geographical and experts
experience data to partition the customers into clusters, and
in combination with some AI techniques return a sequence
of clusters to be visited. By applying this partitioning process
they are providing a smart way to reduce the search space,
which resulted in reducing the number of used vehicles. More
recently, [4] have designed a local search algorithm for very
large scale VRPs (with up to 30000 customers), starting from
a simple and quick solution, and improving it by adding



several pruning techniques to the search space, for example,
considering just the closest 100 customers in a neighbourhood
move. This produces an effective limit to the enormous amount
of neighbours, achieving state-of-the-art solutions.

The use of clustering or pruning techniques are not limited
to large scale applications. For example, in [26] the authors
utilize clusters to reduce the search space to within neighbour-
ing routes. Although the clusters are fixed, they still provided
a balance between effectiveness and efficiency.

What all previously mentioned work have in common,
is that they have a parameter-based and fixed limit on the
search space, whether by experimentation, manually set, or
set by as a result of an auxiliary algorithm. This limit can
become a liability when searching for better solutions since
the improving step can be outside this search range. To give a
practical example, as pointed by [27], the optimal solution in
a given 532-city problem utilizes the 22nd nearest neighbour,
and any fixed size limit that explores less than 22 neighbours
would likely not find the optimal. Although this example is
for a Travelling Salesperson Problem, the principle is the same
for the VRP: any fixed limit can easily avoid finding better
solutions, especially with larger instances since they have more
possibilities, and it may not be the most suitable throughout
the whole search.

To tackle this issue of finding a suitable limit to the search
space, and the complexity of design previously mentioned,
the Cluster-based Hyper-Heuristic (CbHH) is proposed. This
framework combines a selection of perturbation heuristics and
an adaptive cluster model, aiming to find a search space which
is compact enough to be easily explored, and also not hard-
limited, allowing changes in such a way that it can find better
solutions. Besides, the method also has a parallel evolution
using a Genetic Algorithm (GA) as the selection heuristic,
which would search for several outcomes.

III. CLUSTER-BASED HYPER-HEURISTICS APPROACH

The proposed method aims to prune the search space
automatically. The idea is to initially create clusters based on
the customers’ location, and let the clusters evolve according
to where the better solutions are heading to, as seen in Fig.
2. In the example, there is a randomly created customer-
distribution (2a), then the initial clusters are created (2b), and
as the evolution process progresses, the clusters will adaptively
change (2c). The solution chromosome is detailed and the
utilized Low-Level Heuristics are specified next. Followed
by the framework specifications, concluded by the Genetic
Algorithm (GA) details.

A. Solution Representation

A solution represents a sequence of low-level heuristics that
will be applied to improve an initial solution. The chromosome

Fig. 1: Example of a chromosome.

is a string of integers (as shown in Figure 1) where each allele
represents the index of one of the LLH, which is essentially
one neighbourhood type. Each value is unique for intra and
inter clusters heuristics. In the Figure, for example, the 3
can be a Two-Opt* applied only inside each cluster, while
4 could be Two-Opt* applied inter-cluster. Additionally, the
chromosome has variable size, it can grow or shrink depending
on the evolution process, which will be detailed in Section
III-C.

The LLHs are classical local-search operators which are
here divided into two groups based on how their neigh-
bourhoods are explored: the first group considers the whole
cluster of a given route, named as ”regular”; and the second
group will consider M closest clusters, here named ”cluster-
based”; both are detailed in the next sub-section. Some of
the LLH are utilized in both groups but are characterized by a
different integer. Next a list of these LLH, totalling 11 possible
heuristics, since the ones in bold are utilized in both groups,
otherwise, it is specified where they are applied.
• Low-Level Heuristics 1: Cross-Exchange, swaps a sub-

string of customers between two routes. Indexes 0 and 1,
respectively for each type.

• Low-Level Heuristics 2: 2-OPT, modifies two edges in a
given route. Used only in the local cluster. Index 2.

• Low-Level Heuristics 3: 2-OPT*, swap two edges in
two given routes. Indexes 3 and 4, respectively for each
type.

• Low-Level Heuristics 4: OR-OPT, transfers a sub-string
with a length of 2, 3 or 4 to another position. Used only
in the local cluster. Index 5.

• Low-Level Heuristics 5: OR-OPT*, transfers a sub-string
with a length of 2, 3 or 4 to another route. Used only
between clusters. Index 6.

• Low-Level Heuristics 6: MERGE, combines two dif-
ferent routes into one, by concatenating one into any
position of the other. Indexes 7 and 8, respectively for
each type.

• Low-Level Heuristics 7: Reverse 2-OPT*, swap two
edges in two given routes, but reversing the order of the
remaining route. Indexes 9 and 10, respectively for each
type.

B. Framework

The overall idea of the framework is to evolve a sequence of
operators that will improve an initial solution. Each operator in
the sequence will consider the limits set by the clusters based
on its group (detailed in the previous sub-section), modifying
the clusters according to the result of each move and repeating
the process for each chromosome, always starting from the
same initial solution. The evolutionary process evolves the
population of sequences. The final output of the framework
will be the sequence of operators (and implicitly the sequence
of cluster moves) which resulted in the best improvement. Fig.
3 show the Hyper-Heuristic workflow.

Following Algorithm 1, the initial clusters are created using
the K-means algorithm (line 2), a partitioning algorithm which



(a) Original instance (b) Initial Clusters (c) Adapted Clusters as a result of the frame-
work

Fig. 2: In this figure, there is a fictional example of how the cluster-based search adaptively changes the cluster space.

is easy to implement, fast and efficient [28]. Then an initial
solution is created respecting the clusters’ limits (line 3). For
this work, the savings algorithm of Clark and Wright (CW)
[29] was selected for the initial solution, since it is a fast
deterministic algorithm with fairly good results. Next, the
evolutionary process (lines 4-21) starts by creating the initial
population (line 4). The main loop starts by selecting each
individual in the population (lines 6-7), and copies of the
initial solution and clusters are created (lines 8-9), only the
copies are updated by the LLH. Then, for each allele in the
individual (line 10) the correspondent LLH is applied to the
current solution (line 11). The decoding process, shown in
lines 13-14, determines if the next LLH will be the first one
or the next one, based on the type of decoding chosen. If
the current solution is better then the current best, the current
solution becomes the new best (lines 15-16). If the stopping
criteria are not met (maximum number of generations), the
crossover and mutation steps occur (line 18), otherwise the
algorithm return the best individual (line 20).

The clusters are updated according to the type of LLH
applied, as shown in Algorithm 2. The cluster-based type
is the one which explores more than the cluster for im-
provements and is composed of only inter-route LLHs. Their
neighbourhoods consider the M closest clusters considering
their centroids Ci (defined by Equations 1, 2 and 3, with
Cli being the cluster i), where M is a percentage of the
total number of clusters. For example, in an instance with 10
clusters, if the next selected LLH is Two-Opt* and M = 20%,
then for each cluster, the two (20% of 10) closest clusters will
be considered. This is the main diversification step (other than
the genetic process), since it allows for a larger, yet limited,
neighbourhood to be explored. The clusters are updated based
on the resulting changes on the routes and whether they are
majority inside a cluster or not. The procedure, summarized
in Algorithm 3, receives the clusters and the routes from a
VRP solution. Then for each route, it verifies whether a new
cluster will be created or just update the current ones (as
shown in Figures 2b and 2c). It does that with the function
ClusterWithMajority, which returns the cluster in which most
of the customers belongs to, if it has at least 50% of the route,
otherwise returns 0. It can be noted that a new cluster will

Algorithm 1 Clustering-based Selection Perturbative Hyper-
Heuristic

1: procedure CBSPHH(an instance, a list of LLHs)
2: clusters← Kmeans()
3: initial solution← CW Savings(clusters)
4: population← InitializePopulation()
5: best← ∅
6: loop
7: for each individual ∈ population do
8: new s← initial solution
9: new c← clusters

10: for each allele ∈ individual do
11: new s← LLH(allele, new s, new c)
12: Eval(news)
13: if Improvement and VNS mode then
14: Restart from first Allele
15: if Best Improvement then
16: best← individual
17: if Stopping Criteria not met then
18: Evolve the population by Crossover and Muta-

tion
19: else
20: return best

only contain the customer from one route, however on the
next iteration of the selection process, new customers can be
added (or even removed), dynamically changing the clusters
and search space. As an example, suppose in a given solution
state, one of the routes starts at a given cluster A, passes
through cluster B, and ends in cluster C, as a result of applying
the Two-Opt* algorithm on cluster A, with B and C being
considered neighbour clusters. And suppose this route contains
15, 14 and 17 customers in each cluster, respectively. Then this
route will flourish as a new cluster D since the majority of the
route is not within one cluster (the majority would be at least
50% of 15+14+17). Another example, if some route had 10,
4 and 6 in each cluster, respectively, then the customers from
B and C would become part of cluster A. If these customers
were the only customers in either B or C, these clusters would
be removed from the cluster list.



x̄i =

∑
j∈Cli

xj

|Cli|
(1)

ȳi =

∑
j∈Cli

yj

|Cli|
(2)

Ci = (x̄i, ȳi) (3)

A regular LLH will only consider its cluster, therefore
the idea is to improve each cluster individually. The type of
heuristic determines if they are inter-route or intra-route, but
whenever possible, both are explored. This step is considered
as an intensification one, which will end up in a local minimum
for all clusters, according to the selected LLH.

Fig. 3: Overall flow chart of the proposed framework.

Algorithm 2 Low-Level Heuristic Phase

1: procedure LLH(Integer allele, Routes solution, List
clusters)

2: repeat
3: Limit search-space based on allele type
4: Call allele function from LLH database .

For example, if allele is Cross-Exchange cluster-based,
invoke it.

5: if allele is cluster-based then
6: UpdateClusters(solution, clusters)

7: until No improvement

C. Genetic Component

The Genetic Algorithm (GA) utilized is specified in this
section. The algorithm follows the common GA framework
where there is a string type chromosome, a crossover is
applied, as well as a mutation step according to some rate.
Each initial individual is created as a random permutation that
allows repetition of the LLH, with a fixed initial size but that
can grow up to a δ (delta), for example, if the initial size is
10 and δ is 5, the individuals can have anywhere from 10 to
15 alleles.

Algorithm 3 Cluster Update Phase

1: procedure UPDATECLUSTERS(Routes solution, List
clusters)

2: for each Route r ∈ solution do
3: c← ClusterWithMajority(r)
4: if c = 0 then
5: RemoveFromClusters(r)
6: AddNewCluster(clusters, r)
7: else
8: RemoveFromClusters(r)
9: AddInExistingCluster(clusters, c, r)

Two crossover operators are selected here. The first one
is the same utilized in [30], called best-best, where for each
parent the best-improving sequence of the chromosome is
passed on to the children as in Figure 4. The second one works
very similarly, but instead of the best-improving sequence,
the cut points are random, in a way to increase diversity.
Each type has a 50% probability of being chosen. The top
10% individuals are saved for the next generation, while
the remainder is composed by the resulting crossover of the
current population. The parents’ selection is done by random
pairs, but one given parent can breed at most two times, being
removed from the selection pool after the second time, to
avoid oversampling of a given scheme. For the mutation step,
similarly to the crossover, two methods are applied with a 65-
35 chance, if the mutation occurs. The first one removes the
worst improving sequence of a chromosome, called remove-
worst, also from [30]. While the second randomly adds new
LLH, up to one fifth ( 15 ) of the selected chromosome length,
at random positions. Every individual in the population (after
the crossover step) can suffer the mutation with a 10% chance.
Additionally, and to avoid falling in a local optimum schema,
half the population is reset (a new random permutation) every
20 continuous generations without improvement, the other half
are the 50% best individuals.

Since each individual in the population will have a different
order in which the LLH are applied, there is a second implicit
diversification step (other than the cluster-based LLH men-
tioned above). To explain a bit further, with a different order
in which the LLH are applied, then the changes in clusters
and in routes will ripple into the next selected LLH. Because
applying a cluster-based Cross-Exchange first into the initial
solution and then applying a Two-Opt in each cluster will



Fig. 4: Example of a best-best crossover, based on [30].

most likely result in a different set of routes and clusters than
if doing the other way around (Two-Opt first and CE second).
Therefore, the method explores the heuristic space while also
exploring the solution space.

IV. EXPERIMENT DESIGN

In this section, the experiment details are described. The
algorithms compared in this experiment were coded in C++1

with the library VRPH (created by [31]), from which the VRP
basics and some of the implemented heuristics were directly
reused. The computer in which the experiments were run on
an Intel®Core™i7-8700 @ 3.2GHz and 15GB memory.

A. Experiment Goals

The objective of these experiments is to validate the idea
of the Cluster-based Hyper-heuristics, specifically to answer
the four objectives presented in Section I. For this purpose,
four types of experiments were conducted, all considering the
Large-Scale VRP:
• Experiment 1: the goal is to show the effects of changing

the search space with the parameter M (the percentage of
neighbour clusters which are considered in a search), by
considering a larger or smaller size, and to compare with
fixed clusters, or no clusters at all. This experiment was
conducted by having three different instances being run
varying the parameter M to 25% and 50% (0% would
not consider inter-routes between clusters and therefore
was not tested, and 100% is the same as no clusters
since all are considered). Expectations are that with a
larger number of neighbouring clusters, the solution will
improve at the cost of higher computation time, and the
exact opposite for a lower value. However, by how much,
and what point has the best trade-off between quality and
execution time?

• Experiment 2: this experiment investigates how much the
starting clusters affect the solution. To achieve that, two
approaches are chosen: the first one is a route-first cluster-
second approach, where the K-means is used after the
initial routes are created, this way the starting clusters will
have multiple routes passing and the cluster evolution will
happen accordingly; the second is a cluster-first route-
second, where the K-means is run 30 times (since the
clusters depend on the initial random points, they can
have different outcomes) and the one having the best

1Version 11 compiled with g++ and optimisation flag -O2.

initial solution is chosen (creating the clusters first, will
make the initial routes obey the cluster delimitation).

• Experiment 3: its shows the effects of different chromo-
some decoding approaches. The objective is to show by
how much solution quality changes from a VNS-based
type decoding to a single pass, and how is the execution
time affected.

• Experiment 4: it compares the Cluster-based HH so-
lutions to the best-known solution, as well as to a
deterministic algorithm (CW) and to a manually designed
combination of the same LLH. The objective of this
experiment is to show whether the proposed method is
competitive to existing methods, in both solution quality
and execution time. This experiment utilizes the best
configuration found by experiments 1 and 2, aiming to
be the most competitive.

The results and discussions regarding these experiments are
given in Section V. But first, the dataset and parameters are
shown.

B. Dataset and Parameters

The instances utilized are a sub-set from the CVRPLIB
dataset of [13], which ranges from 100 to 1000 customers,
varying both geographical distribution and vehicle capacity.
The size of these instances meet the large-scale definition and
have known optima or a good solution is known.

Unless otherwise mentioned in a given experiment, the
parameters use the default values described in Table I.

Parameter Name Value
M (for closest clusters) 25% of the number of clusters

K (for K-means) 10% of instance size
VNS Type Explore Sequence

Generations 100
Population size 30

Minimum individual size + δ 22 + 11
Number of runs 10

TABLE I: Default parameters.

V. RESULTS AND DISCUSSION

This section discusses the results of the experiments de-
scribed in Section IV-A.

A. Experiment 1

This experiment considers the effect of changing the search
space, as well as comparing it to its counterparts: not using
the cluster limit on the search, and not updating the cluster as
the proposed method. Table II presents the results, showing
for each case the average solution with standard deviation,
the best result and the average execution time in minutes. As
expected, the cases in which the search space includes more
clusters (such as No Clusters and 50%) take longer, since the
number of evaluations needed is significantly higher, while the
quality increase is not much different. The fixed clusters also
have a worse performance overall, since the search space is
likely larger than the proposed approach, and it avoids different
search areas, searching the same clusters throughout execution.



No Cluster Fixed Cluster (25%) CbHH (25%) CbHH (50%)
Instance Avg(s.d.) Best Time Avg(s.d.) Best Time Avg(s.d.) Best Time Avg(s.d.) Best Time
X-n200-k36 60898(429) 60537 216.6 61024(460.22) 60537 126.84 60996.89(194.96) 60600 6.53 60826.50(368.22) 60543 40.84
X-n251-k28 40401.5(96.62) 40266 250.68 40298.15(173.65) 39847 47.51 40339(129.52) 39974 8.48 40428.41(146.38) 40195 73.83
X-n308-k13 27580(155.32) 27361 1032.72 27736.65(187.08) 27343 170.40 27973.73(386.11) 27205 33.66 27353.5(160.12) 27016 297.8 3

TABLE II: Results for Experiment 1: the effectiveness of the proposed method when changing the search space size. The
average solution, as well as the standard deviation and best solution, are shown, followed by execution time in minutes.

B. Experiment 2

In this experiment, the starting solution is explored. As
shown in Table III, the route-first solution is worse than its
counterpart. One possible explanation is that the initial Savings
algorithm will make the clusters adapt to its routes and reach
a local optimum much faster. In fact, all converge to the same
solution. While for the cluster-first the initial routes are freer
to be updated.

Route-First Cluster-First
Instance Avg(s.d) Avg(s.d)
X-n200-k36 60993(0) 60996.89(194.96)
X-n251-k28 40406(0) 40339(129.52)
X-n308-k13 28242(0) 27973.73(386.11)

TABLE III: Results for Experiment 2: a comparison between
both methods of initialization. The solution average and stan-
dard deviation are shown.

C. Experiment 3

This experiment investigates the difference in time and
quality based on how the chromosome is decoded. Table IV
shows the effects of different decoding of the chromosome on
quality and performance for the given instances’. The VNS is
expected to have a better result since it explores the search
space more heavily, at the cost of more time. However, the
difference is much less than expected, with less than 2%
between average solutions, finding the best solution in all test
cases. The extra computational cost is especially noticeable in
smaller instances.

Explore Sequence VNS
Instance Avg(s.d) Time Avg(s.d) Time
X-n200-k36 60996.89(194.96) 6.53 61034(358.25) 33.91
X-n251-k28 40339(129.52) 8.48 40277.88(166.18) 15.48
X-n308-k13 27973.73(386.11) 33.66 27435.82(117.88) 35.49

TABLE IV: Results for Experiment 3: a comparison between
the two types of decoding for the chromosome. Showing the
average, standard deviation and execution time in minutes.

D. Experiment 4

This final experiment compares the proposed method with
the best-known solution 2, a manually designed combination of
the LLH and to the Savings algorithm. The manually designed
version is based on creating chromosomes of fixed length
which uses all the selected LLH (therefore of length 11),
chosen in random order, and are not put through the GA

2Taken from the CVRPLIB website (http://vrp.galgos.inf.puc-rio.br/index.
php/en/)

process (all other parameters are the same as in I). This aim
to simulate the process of selecting the LLH and using them
in some specific order, which is commonly done in heuristics
design. Table V summarizes the comparison. The proposed
method performs better than the other two and is within 5%
of the best-known solution for all instances.

Overall the results seem promising in showing that having
the adaptive clusters improve the search speed, without much
loss of quality. It performs better than some of the compared
cases. We performed a Wicolxon Ran-Sum test to verify the
statistical significance of this performance comparing the base
case with the tested variants: the fixed clusters, regarding
parameter M , cluster-first and decoding type VNS. The results,
as seen in Table VI, show that the method is significantly better
for most cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an adaptive clustering technique based on
solution evolution in combination with a HH framework is
proposed, aiming Large-Scale Vehicle Routing Problems. The
4 experiments realized aimed in showing the effectiveness
of both the clustering technique and its combination with a
Genetic Algorithm for selecting low-level heuristics, as well
to compare it to other methods. The results show that the clus-
tering technique significantly improves the performance when
compared to scenarios with no search limits, and with fixed
clusters. Therefore, the proposed technique finds its purpose of
limiting the search space more efficiently. Additionally, even
though the evolution process can still be considered slow when
compared to other meta-heuristics, this can be done offline,
and the application of the resulting chromosome takes very
little time (less than a minute for all instances).

Future work will investigate whether evolving the algorithm
for multiple instances could lead to a chromosome applicable
to more cases. Expanding the experiments to compare to man-
ually designed limits on the search space is also considered
as a next step. Another possible study concerns the automatic
evolution of the parameter M based on the current search
space, adaptively changing the search size according to recent
progress.
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