
Boundary Constraint-Handling
Methods in Differential Evolution

for Mechanical Design Optimization
Sebastián-José de-la-Cruz-Martı́nez

National Laboratory for Advanced Informatics
(LANIA A.C.)

Rébsamen 80, Centro
Xalapa, Veracruz, México

sdelacruz.mca17@lania.edu.mx

Efrén Mezura-Montes
Artificial Intelligence Research Center

University of Veracruz
Sebastián Camacho 5, Centro

Xalapa, Veracruz, México
emezura@uv.mx

Abstract—This paper presents an experimental comparison
of nine boundary constraint-handling methods found in the
specialized literature added to differential evolution when solving
four mechanical design optimization problems. The experimental
part considers a comparison of final results besides performance
measures used in evolutionary constrained optimization as
well as the number of vectors and variables repaired. The
Kruskal-Wallis non-parametric test and the Bonferroni post-hoc
test are computed to validate the findings. The final results
suggest that the Projection method provides a better overall
performance when compared with other approaches. However,
Centroid 1+1 was the method which promotes less repairs.

Index Terms—Boundary Constraints, Differential Evolution,
Mechanical design

I. INTRODUCTION

Evolutionary computing (EC) provides different
optimization algorithms to solve complex search problems.
The process involved refers to a population of individuals
in a changing environment with limited resources where
they reproduce, evolve and compete to survive. Among
the different paradigms within EC, Differential Evolution
(DE) is one of the most recent and competitive to solve,
mainly, problems in continuous search spaces [1]. Its main
feature is the differential mutation, which is a variation
operator to extract information from a group of individuals
(called vectors) to lead the search to promising regions of
the search space. DE was originally proposed for solving
unconstrained optimization problems [1]. However, it has
shown a very competitive performance when dealing with
constrained search spaces [2]. Precisely in engineering,
it is quite common to solve problems in presence of
constraints. Therefore, DE has been added with different
constraint-handling techniques (CHT’s) to guide the search
to the best-known feasible solution [3]. A Constrained
Numerical Optimization Problem (CNOP) is stated, without
loss of generality, as to:

minimize f(~x)

subject to:

gi(~x) ≤ 0, i = 1, 2, ...,m

hj(~x) = 0, j = 1, 2, ..., r
(1)

where ~x = [x1, x2, ..., xn]ᵀ, ~x ∈ Rn is the design vector,
whose elements are known as design variables which must
satisfy boundary constraints, Ll

i ≤ xi ≤ Lu
i , i = 1 . . . , n,

n represents the dimensions of the problem, f(~x), gi(~x) and
hj(~x) are the objective function, the inequality constraints and
the equality constraints, respectively.

An important amount of research has been devoted to design
techniques to deal with the explicit equality and inequality
constraints in EC [2], as those expressed in Eq. (1). In contrast,
the satisfaction of boundary constraints seems to attract less
attention when an Evolutionary Algorithm (EA) is adopted to
solve a given optimization problem. As an example, in the
case of DE, once the differential mutation operator is applied,
the value of a given design variable may violate its upper or
lower bound.

To tackle the presence of such invalid values there
are boundary constraint-handling methods (BCHM’s) [4].
However, particularly for CNOPs, the effect of a given BCHM
is usually not analyzed and it is a common practice to just
adopt one of them without further information. There are some
works related with comparisons of different BCHM’s in DE
[5], [6] and also in Swarm Intelligence Algorithms (SIA’s)
such as Particle Swarm Optimization (PSO) [7]–[9]. However,
they are focused on unconstrained optimization. Regarding
CNOPs, the research is still scarce, only a few comparisons
can be found in the literature [10], [11], but mainly using
benchmark problems. In all the studies discussed, the authors
concluded that there is an impact in the search algorithm
regarding the BCHM adopted.

Motivated by the above mentioned, this paper presents an
empirical assessment of different BCHM’s in DE when solving
four real-world mechanical design constrained optimization
problems related to four-bar mechanisms. Besides final results,
performance measures for constrained optimization and the

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

number of repaired variables and vectors are reported and
discussed. The 95%-confidence Kruskal-Wallis and Bonferroni
post-hoc tests are used to validate the findings in this paper.

The document is organized as follows: Section II briefly
introduces DE. In Section III, the BCHM’s used in this
work are described. After that, Section IV presents the four
real-world constrained mechanical design problems. Next, the
settings performed to carry out the experiments are shown in
Section V. The results are analyzed and discussed in Section
VI. Finally, Section VII presents the conclusions and future
work of this research.

II. DIFFERENTIAL EVOLUTION

DE was proposed by Storn and Price [1], where three
user-defined parameters are required: the population size NP ,
a scale factor F and the crossover probability CR. The DE
steps are the following:

1) Create an initial population of NP vectors. A population
Px,g = xj,i,g , i = 0, . . . , NP − 1, g = 0, . . . , gmax,
j = 0, 1, ..., D − 1 is defined randomly with uniform
distribution, where g is the current generation, gmax is
the maximum number of generations and D is the length
(dimensionality) of the vector.

2) As long as the stop condition is not met, for each
vector xi,g in the population (target vector), the mutation
process is carried out. First, three integers are randomly
generated, r0 6= r1 6= r2 6= i ∈ [1, NP], which
represent the vectors indexes in the population. Vector
subtraction is performed (xr1,g−xr2,g) and the resultant
vector, called difference vector, is added to the third
vector, known as base vector (xr0,g), producing the
mutant vector vi,j . A complete representation of the
aforementioned operator is in Eq. (2).

vi,g = xr0,g + F ∗ (xr1,g − xr2,g) , F > 0 (2)

Precisely at this point, the values of the mutant vector
are verified so as they must be within the lower and
upper limits defined by the optimization problem. If such
values are outside the boundaries, the BCHM is then
activated.

3) After mutation, the crossover between xi,g and vi,g is
carried out to create the offspring ui,g called trial vector
as detailed in Eq. (3).

uj,i,g, =

{
vj,i,g if rand(0, 1) ≤ CR || j = jrand

xj,i,g otherwise (3)

where jrand ∈ [1...D] ensures that the trial vector is
different from the target vector by including in it at least
one of the vi,g elements.

4) For the survivor selection, check if the trial vector is
better than the target vector, selecting the one with the
best value of the objective function as in Eq. (4).

xi,g+1 =

{
ui,g if f(ui,g) ≤ f(xi,g)
xi,g otherwise (4)

Considering the fact that in this work CNOPs are solved,
a constraint-handling technique for the explicit constraints
must be added to DE. Based on [2], the set of feasibility
rules proposed by Deb [12] is one of the most suitable to
solve constrained problems. Therefore, they are adopted in
this research and detailed below:

• Between two feasible vectors, the one with the best
objective function value is selected.

• A feasible vector is preferred over an infeasible one.
• Between two infeasible vectors, the one with the smallest

sum of constraint violation φ(x), see Eq. (5), is selected.

φ(x) =

m∑
j=1

max(0, gj(x)) (5)

III. BOUNDARY CONSTRAINT-HANDLING METHODS

This section presents the BCHM’s used in this work. Their
details were taken from [6], [10]. Lu

j and Ll
j , represent the

upper and lower limits of variable j, respectively. For sake of
clarity in what follows in the paper, a vector xi,g or vi,g will
be represented as xi or vi i.e., the generation g is omitted as
it is not relevant for the BCHM’s.

A. MidPoint Target

This method uses the information of the target vector xi.
If a variable j of the mutant vector vi exceeds its limits, the
corrected value is computed using the variable j of the target
vector plus the violated limit divided by two, see Eq. (6):

vi,j =

{
(Ll

j + xj,i)/2 if vj,i < Ll
j

(Lu
j + xj,i)/2 if vj,i > Lu

j
(6)

B. Reflection

This method replaces the invalid value by computing the
scaled difference of the exceeded bound multiplied by two
minus the invalid value, see Eq. (7):

vj,i =

{
(Ll

j ∗ 2)− vj,i if vj,i < Ll
j

(Lu
j ∗ 2)− vj,i if vj,i > Lu

j
(7)

C. Projection

The invalid value is truncated to the nearest limit, see Eq.
(8):

vj,i =

{
Ll

j if vj,i < Ll
j

Lu
j if vj,i > Lu

j
(8)

D. Random Scheme

The invalid value is repaired by computing a random
number between its established limits as in Eq. (9):

vj,i = Ll
j + rand(0, 1) ∗ (Lu

j − Ll
j) (9)

where rand(0,1) is a random real number between 0 and 1
generated with uniform distribution.

E. Reinitialize All

If at least one variable is outside its limits, a new vector is
generated in a similar way as the Random Scheme in Eq. (9),
but now for all variables.

F. Conservatism

If at least one variable of the mutant vector vi exceeds its
limits, the target vector xi is preserved, see Eq. (10):

if ∃ vj,i ∈ vi : vj,i < Ll
j | vj,i > Lu

j

vi = xi

endif
(10)

G. Resampling

If one variable is outside of its limits the differential
mutation is carried out again, as in Eq. (11):

while ∃ vj,i ∈ vi : vj,i < Ll
j | vj,i > Lu

j

vi = differential mutation as in Eq. 2
end

(11)

H. Evolutionary

Using the best vector found so far xbest, the invalid value
is corrected as in Eq. (12):

vj,i =

{
β ∗ Ll

j + (1− β) ∗ xj,best if vj,i < Ll
j

α ∗ Lu
j + (1− α) ∗ xj,best if vj,i > Lu

j
(12)

where β and α are random numbers between 0 and 1 generated
with uniform distribution.

I. Centroid K+1

If one value of the mutant vector violates its bounds, the
centroid vc is computed as follows:

1) K + 1 vectors are required to compute the corrected
vector. The first vector, called Wp, is taken from the
current population as indicated in Eq. (13).

Wp =

{
xrand ∈ FS If FS 6= ∅ and rand(0,1) > 0.5
xbest ∈ IS otherwise

(13)
where FS and IS are the sets of feasible and infeasible
vectors in the current population, respectively; rand(0,1)
generates a real random number between 0 and 1
with uniform distribution, xrand is a randomly chosen
vector from the feasible solutions subset of the current
population and xbest is the best vector in the infeasible
set, i.e., the one with the lowest sum of constraint
violation as in Eq. (5). If all solutions are feasible, Wp

is taken from the FS set.
2) The remaining K vectors share the variables of the

mutant vector with valid values, while the violated ones
are replaced by randomly generated valid values. The
process is as follows.

for i = 1 to K do
wi = vi

for j = 1 to D do

if wi,j < Ll
j or wi,j > Lu

j then

wi,j = Ll
j + rand(0, 1) ∗ (Lu

j − Ll
j)

end if
end for

end for

3) Finally, to get the corrected vector Eq. (14) is applied:

vc = {wp + w1 + w2, ..., wk}/(K + 1); (14)

IV. MECHANICAL DESIGN OPTIMIZATION PROBLEMS

This section presents the four CNOPs (P01, P02, P03, P04)
solved in the experiments. As all of them are based on the
same type of mechanisms, the common features are described
first. After that, each problem is detailed.

A. Four-bar mechanism description

Based in Fig. 1, where the four-bar mechanism solved in
this work is presented, Eq. (15) includes the corresponding
9-dimension decision vector, where each variable is mapped
to a feature of the mechanism.

Fig. 1: Four-Bar mechanism.

−→p = [p1, p2, p3, p4, p5, p6, p7, p8, p9] ,

= [r1, r2, r3, r4, rcx, rcy, θ0, x0, y0] ,
(15)

Variables r1, r2, r3, r4 correspond to the bar lengths, rcx, rcy
correspond to the coupler position, θ0 is the mechanism
movement angle concerning the horizontal axis of the second
system, and O2(x0, y0) is the starting point of the system.

The task developed by the four-bar mechanism is to pass
through a set of precision points. Therefore the CNOP is
defined as follows:

Minimize error =

n∑
i=1

[(
Ci

xd − Ci
x

)2
+
(
Ci

yd − Ci
y

)2]
(16)

Subject to :

g1 (−→p) = p1 + p2 − p3 − p4 ≤ 0,

g2 (−→p) = p2 − p3 ≤ 0,

g3 (−→p) = p3 − p4 ≤ 0,

g4 (−→p) = p4 − p1 ≤ 0,

(17)

where Ci
d =

[
Ci

xd, C
i
yd

]T
is a precision point that defines the

trajectory, a set of them as Ω = {Ci
d|i ∈ N} where N is the

total number of points; and Ci =
[
Ci

x, C
i
y

]
, a generated point.

The kinematics of the mechanisms can be found in [13], [14].
For mechanisms that must pass through pairs of precision

points, the proposed function is as follows:

Minimize error = Error1 + Error2,

Error1 =

n∑
i=1

[(
Ci

1xd − Ci
x

)2
+
(
Ci

1yd − Ci
y

)2]
,

Error2 =
n∑

i=1

[(
Ci

2xd − Ci
x

)2
+
(
Ci

2yd − Ci
y

)2]
.

(18)
subject to the same constraints in Eq. (17). It is important to
remark that the calculations of the objective functions in Eq.
(16) and Eq. (18) require the computation of the mechanism
kinematics and such process is considered as nonlinear.

B. P01: mechanism that follows a vertical linear path

In this CNOP, taken from [15], the mechanism must follow
a vertical linear path defined by six precision points:

Ω = {(20, 20) , (20, 25) , (20, 30) , (20, 35) , (20, 40) , (20, 45)}
(19)

The boundaries defined for each one of the nine design
variables are:

r1, r2, r3, r4 ∈ [0, 60]

rcx, rcy, x0, y0 ∈ [−60, 60]

θ0 ∈ [0, 2π]

(20)

The objective function to this mechanical design problem
is presented in Eq. (16), subject to constraints in Eq. (17).

C. P02: mechanism that follows a curve path defined by five
precision points

In this CNOP the mechanism must follow five precision
points that form a curve. The precision points are:

Ω = {(3, 3) , (2.759, 3.363) , (2.372, 3.663) ,

(1.890, 3.862) , (1.355, 3.943)}
(21)

The boundaries of the nine variables are:

r1, r2, r3, r4 ∈ [0, 50]

rcx, rcy ∈ [−50, 50]

x0, y0, θ0 = 0

(22)

The objective function associated with this problem is found
in Eq. (16), subject to the constraints in Eq. (17).

D. P03: mechanism that follows a path defined by ten pairs
of precision points

In this case, the mechanism must pass through ten pairs of
precision points that form a circle. The precision points pairs
are presented in Table I.

TABLE I: Precision points pairs for problem P03

Pair C1d C2d

1 (1.768, 2.3311) (1.9592, 2.44973)
2 (1.947, 2.6271) (2.168, 2.675)
3 (1.595, 2.7951) (1.821, 2.804)
4 (1.019, 2.7241) (1.244, 2.720)
5 (0.479, 2.4281) (0.705, 2.437)
6 (0.126, 2.0521) (0.346, 2.104)
7 (−0.001, 1.720) (0.195, 1.833)
8 (0.103, 1.514) (0.356, 1.680)
9 (0.442, 1.549) (0.558, 1.742)
10 (1.055, 1.905) (1.186, 2.088)

The suggested upper and lower limits for each one of the
nine variables are the following:

r1, r2, r3, r4 ∈ [0, 60] ,

rcx, rcy, x0, y0 ∈ [−60, 60] ,

θ0 ∈ [0, 2π] .

(23)

The objective function considered in this problem is
described in Eq. (18), subject to the constraints in Eq. (17).

E. P04: mechanism that follows an elliptical path defined by
ten precision points

The mechanism in this CNOP must follow an elliptical path
defined by the next ten precision points:

Ω = { (20, 10) , (17.66, 15.142) , (11.736, 17.878) , (5, 16.928) ,

(0.60307, 12.736) , (0.60307, 7.2638) , (5, 3.0718) ,

(11.736, 2.1215) , (17.66, 4.8577) , (20, 10)}
(24)

The limits for each one of the nine decision variables are:

r1, r2, r3, r4 ∈ [5, 80] ,

rcx, rcy ∈ [0, 80] ,

x0, y0 ∈ [−80, 80] ,

θ0 ∈ [0, 2π] .

(25)

The objective function for this CNOP is described in Eq.
(16), subject to the constraints in Eq. (17).

V. EXPERIMENTAL DESIGN

In this work the nine BCHM’s were added to the DE variant
presented in Section II with the set of feasibility rules already
presented. For all DE versions, 30 independent runs were
performed using the following parameters: NP = 100, CR ∈
[0.8, 1] generated at random at each generation, and F ∈
[0.3, 0.9] generated also at random per individual. The stop
criterion was set to 400,000 solution evaluations (MAX NFE)
for P01, MAX NFE =15,000 for P02, MAX NFE =200,000
for P03 and MAX NFE =50,000 for P04. The 95%-confidence
Kruskal-Wallis and Bonferroni post-hoc tests were computed

to validate the obtained results. The number of variables and
individuals repaired were counted to get insights about the cost
associated to each BCHM.

The following concepts are considered in the performance
measures adopted [16]: a feasible solution is one that
satisfies all the constraints of a CNOP. A feasible run is
that with at least one feasible solution found. A successful
run is that with at least one successful solution, where a
successful solution is that close to the best known solution
i.e., |f(xgbest) − f(xbest)| ≤ 1 × 10−3, where f(xgbest)
corresponds to the best known feasible solution and f(xbest)
is the feasible solution found by the algorithm under study.
The value 10−3 was chosen because it is suitable for the type
of task made by the mechanisms optimized in this work. The
measures that help to complement the final statistical results
shown later in this paper are the following:

• Feasibility probability (FP): number of feasible runs
divided by the total number of independent runs. FP
values ∈ [0, 1] and a high value is desirable.

• Convergence probability (P): number of successful runs
divided by the total number of independent runs. P values
∈ [0, 1] and a high value is desirable.

• Average number of function evaluations (AFES):
average number of evaluations required to find the first
successful solution in a set of successful runs, see Eq.
(26), where a low value is preferable.

AFES =

∑
evaluations to find the first successful solution

number of successful runs
(26)

• Successful performance (SP): measures the capacity and
reliability of an algorithm. It is computed as indicated in
Eq. (27), where a low value is preferable.

SP =
AFES

P
(27)

• Progress ratio (PR): estimates the ability of an algorithm
to improve the solutions within the feasible region. It
is calculated by the difference between the value of the
objective function of the first (f(xfirst)) and the last
(f(xlast)) feasible solution found in a feasible run, a high
value is preferred, see Eq. (28):

PR = |f(xfirst)− f(xlast)| (28)

VI. RESULTS AND DISCUSSION

Tables II, III, IV and V show the final statistical results,
the number of feasible and successful runs and the number of
repaired variables and vectors, obtained by all DE versions
with different BCHM’s in the four CNOPs presented in
Section IV. Table VI presents the results obtained by
the 95%-confidence Kruskal-Wallis test, which indicates
significant differences in the last three problems, based on
final results, and in two problems regarding the PR measure.
Centroid K+1 was executed with two K values (K=1,2).
Moreover, the results of the Bonferroni post-hoc test, based

on the final results in Tables II, III, IV, V and on the
95%-confidence Kruskal-Wallis test results in Table VI, are
summarized in Fig. 2.

Fig. 2: Bonferroni post-hoc test results based on final results
in test problems where significant differences were found.

Regarding final results, in problem P01 no significant
differences were observed. In problem P02 Centroid
K+1 (K=1,2) achieved statistically significant better results
(confidence intervals located at the left part without
intersecting other intervals in the Bonferroni test graph) than
Random Scheme, Reinitialize all and Conservatism (Fig 2
and Table III). Similarly, in problem P03 the Projection
method provided statistically significant better results than
MidPoint, Reflection, Random Scheme, Reinitialize all,
Conservatism, Evolutionary and Centroid 2+1 (Fig 2 and
Table IV). Finally, in problem P04, Resampling statistically
outperformed MidPoint, Reflection, Projection, Random
Scheme, Reinitialize all and Conservatism (Fig 2 and Table
V).

It is interesting to note that, in all four test problems,
Centroid K+1 was the BCHM that repaired less variables and
vectors (see Fig. 4). Therefore, this BCHM promotes the usage
of the differential mutation operator with less repairs.

TABLE II: Final results and repair numbers obtained by all DE versions in problem P01

BCHM Best Worst Average Median Std. Feasible successful Repaired Repaired
runs runs variables vectors

MidPoint 2.1730E-04 4.0357E-02 4.8594E-03 3.1762E-03 7.2149E-03 30 5 1.9922E+06 1.5358E+06
Reflection 1.9054E-04 1.8598E-02 4.8286E-03 3.3671E-03 5.2071E-03 30 12 2.3120E+06 1.7043E+06
Projection 4.0060E-04 1.2712E+00 4.9071E-02 4.0454E-03 2.3101E-01 30 2 3.8435E+06 2.8819E+06

Random Scheme 2.0947E-04 1.4689E-02 3.8981E-03 2.4718E-03 3.5338E-03 30 4 1.5101E+06 1.2284E+06
Reinitialize All 2.8960E-04 2.0282E-02 5.4137E-03 3.5144E-03 5.0372E-03 30 7 N/A 1.3040E+06
Conservatism 1.1992E-04 1.5888E-02 3.1455E-03 2.5744E-03 3.3134E-03 30 11 N/A 1.3492E+06
Resampling 1.6872E-04 2.1291E-02 4.1678E-03 2.5183E-03 4.7358E-03 30 11 N/A 1.1231E+06
Evolutionary 2.4626E-04 1.5888E-02 3.6447E-03 2.9931E-03 3.9000E-03 30 9 2.0095E+06 1.5846E+06
Centroid 1+1 1.0564E-04 1.5273E-02 5.2491E-03 4.8037E-03 3.7495E-03 30 4 1.4621E+06 1.2777E+06
Centroid 2+1 1.6427E-04 9.8068E-03 2.9143E-03 2.2105E-03 2.6859E-03 30 8 2.3168E+06 9.9035E+05

TABLE III: Final results and repair numbers obtained by all DE versions in problem P02

BCHM Best Worst Average Median Std. Feasible successful Repaired Repaired
runs runs variables vectors

MidPoint 9.1274E-04 1.0489E-01 1.8448E-02 1.1895E-03 3.5243E-02 30 23 1.4810E+05 1.2052E+05
Reflection 9.2561E-04 1.0473E-01 1.0322E-02 1.0532E-03 2.6387E-02 30 25 1.8066E+05 1.4398E+05
Projection 7.7605E-04 1.0440E-01 1.4226E-02 1.0725E-03 3.3662E-02 30 25 2.9512E+05 2.1527E+05

Random Scheme 9.0323E-04 6.6662E-02 4.9995E-03 1.3000E-03 1.4201E-02 30 28 1.2378E+05 1.0256E+05
Reinitialize All 8.6312E-04 1.0372E-01 1.2072E-02 1.4958E-03 2.8039E-02 30 24 N/A 1.0335E+05
Conservatism 9.0596E-04 1.0517E-01 1.4353E-02 1.5734E-03 3.1497E-02 30 22 N/A 1.0204E+05
Resampling 5.5904E-04 6.4613E-02 5.2591E-03 1.0072E-03 1.5054E-02 30 27 N/A 9.0725E+04
Evolutionary 7.9034E-04 1.0341E-01 1.3447E-02 1.0550E-03 3.1503E-02 30 24 1.6367E+05 1.3045E+05
Centroid 1+1 6.2198E-04 9.2475E-02 5.5269E-03 1.0169E-03 1.8295E-02 30 28 7.5594E+04 6.4877E+04
Centroid 2+1 7.8352E-04 6.9362E-02 3.3124E-03 9.9181E-04 1.2476E-02 30 29 1.6065E+05 6.9170E+04

TABLE IV: Final results and repair numbers obtained by all DE versions in problem P03

BCHM Best Worst Average Median Std. Feasible successful Repaired Repaired
runs runs variables vectors

MidPoint 4.8616E-01 1.7845E+00 9.9770E-01 9.4558E-01 3.8521E-01 30 0 3.9284E+06 2.4737E+06
Reflection 4.0268E-01 1.7198E+00 8.3086E-01 7.7351E-01 3.0477E-01 30 0 6.1600E+06 3.2574E+06
Projection 4.3029E-01 9.4113E-01 5.1605E-01 5.0680E-01 8.8929E-02 30 0 5.5039E+06 2.6152E+06

Random Scheme 5.3791E-01 1.7658E+00 1.0621E+00 9.9627E-01 4.1314E-01 30 0 3.4898E+06 2.3580E+06
Reinitialize All 3.7041E-01 1.6888E+00 9.5691E-01 8.6221E-01 4.0538E-01 30 0 0.0000E+00 2.0478E+06
Conservatism 4.5717E-01 1.7956E+00 9.7326E-01 8.2090E-01 4.3638E-01 30 0 0.0000E+00 1.6520E+06
Resampling 4.3525E-01 1.6433E+00 6.7749E-01 5.6253E-01 2.9266E-01 30 0 0.0000E+00 1.4356E+06
Evolutionary 4.4428E-01 1.5859E+00 7.5892E-01 6.1503E-01 3.1117E-01 30 0 4.5470E+06 2.6830E+06
Centroid 1+1 4.4762E-01 1.5681E+00 7.0884E-01 5.7483E-01 3.2259E-01 30 0 1.0986E+06 8.8311E+05
Centroid 2+1 4.4851E-01 1.5316E+00 7.3719E-01 6.2618E-01 2.8712E-01 30 0 2.8502E+06 1.1062E+06

TABLE V: Final results and repair numbers obtained by all DE versions in problem P04

BCHM Best Worst Average Median Std. Feasible successful Repaired Repaired
runs runs variables vectors

MidPoint 3.8560E-02 2.3512E-01 7.6937E-02 6.6987E-02 4.3286E-02 30 0 7.4308E+05 4.8165E+05
Reflection 4.3135E-02 2.2850E+01 1.2433E+00 6.8099E-02 4.6689E+00 30 0 1.0182E+06 6.0597E+05
Projection 2.2631E-02 4.0253E-01 1.1089E-01 6.6208E-02 8.2078E-02 30 1 1.5105E+06 7.9320E+05

Random Scheme 3.8172E-02 1.7347E-01 7.6603E-02 6.6599E-02 3.1007E-02 30 0 6.7384E+05 4.5265E+05
Reinitialize All 4.1062E-02 2.6423E+01 1.0028E+00 6.5719E-02 4.8059E+00 30 0 N/A 4.8015E+05
Conservatism 4.9397E-02 1.2705E-01 7.0316E-02 6.9623E-02 1.7114E-02 30 0 N/A 3.9676E+05
Resampling 3.8304E-02 7.2765E-02 5.4795E-02 5.6195E-02 8.8884E-03 30 0 N/A 3.1403E+05
Evolutionary 3.9875E-02 5.2366E-01 8.2096E-02 6.1884E-02 8.7836E-02 30 0 7.2743E+05 4.7649E+05
Centroid 1+1 3.4263E-02 8.1309E-02 5.6076E-02 5.5074E-02 1.1234E-02 30 0 2.8603E+05 2.2622E+05
Centroid 2+1 4.4702E-02 1.0241E-01 5.7997E-02 5.6462E-02 1.2769E-02 30 0 6.8487E+05 2.6458E+05

Tables VII and VIII include the FP, AFES, P and SP
measures results in two out of four mechanical design
problems. Problem P03 was omitted because, even all runs
were feasible for all DE versions (i.e., FP = 1), no successful
runs were reported in all cases (i.e., P = 0), then AFES and
SP could not be computed. In problem P04 only Projection
reported values: FP = 1, AFES = 4.4642E+04, P = 0.03, and
SP = 1.3393E+06. Moreover, Tables IX, X, XI and XII include
the statistical results of the PR measure and Fig. 3 presents the

results of the 95%-confidence Kruskal-Wallis and Bonferroni
post-hoc tests based on the PR results.

The FP results indicate that all DE versions were able to
consistently reach the feasible region in the four test problems,
including P03 and P04. On the other hand, for the P measure
there is not a clear pattern, because Reflection was better in
problem P01, while Centroid 2+1 was better in problem P02
and Projection was the only method to provide successful runs
in problem P04.

A similar diverse behavior was observed for the AFES
measure because Resampling was better in problem P01,
Centroid 1+1 outperformed their counterparts in problem P02,
and Projection was the only method with results in problem
P04.

The results of the SP measure provide more clarity in the
performance presented by the compared BCHM’s. This is
because Resampling was better in problem P01 (similar to
the AFES results), Centroid 2+1 was better in problem P02
(similar to the P results), and Projection was the only method
with computed results in problem P04.

The PR results indicate that Projection was statistically
better (confidence intervals now located at the right part
without intersecting other intervals in the Bonferroni test
graph) in problem P02 (Fig. 3 and Table X), with respect
to almost all the compared methods, with the exception
of Reflection and Conservatism. Moreover, in problem
P03 Projection provided slightly better results, i.e., almost
significantly better than Centroid 1+1 but with no significant
differences with respect to the other methods.

From the above discussed overall results it was found that
Projection provided better quality results, while Centroid K+1
performed the lowest number of repairs.

TABLE VI: Kruskal-Wallis Test Results

p-value p-value
Problem (Problems) (Progress Ratio)

P01 9.6273E-02 7.0278E-02
P02 2.0283E-06 6.0518E-08
P03 1.6303E-12 2.6316E-02
P04 3.4748E-07 4.3929E-01

TABLE VII: FP, AFES, P and SP results in problem P01

BCHM FP AFES P SP
MidPoint 1 2.4647E+05 0.17 1.4788E+06
Reflection 1 1.8830E+05 0.40 4.7075E+05
Projection 1 2.2032E+05 0.07 3.3049E+06

Random Scheme 1 1.8697E+05 0.13 1.4023E+06
Reinitialize All 1 2.1451E+05 0.23 9.1931E+05
Conservatism 1 1.8762E+05 0.37 5.1170E+05
Resampling 1 1.6541E+05 0.37 4.5112E+05
Evolutionary 1 1.9300E+05 0.30 6.4334E+05
Centroid 1+1 1 1.9832E+05 0.13 1.4874E+06
Centroid 2+1 1 1.7339E+05 0.27 6.5021E+05

TABLE VIII: FP, AFES, P and SP results in problem P02

BCHM FP AFES P SP
MidPoint 1 1.0719E+04 0.77 1.3981E+04
Reflection 1 1.0422E+04 0.83 1.2506E+04
Projection 1 1.0718E+04 0.83 1.2861E+04

Random Scheme 1 1.1716E+04 0.93 1.2553E+04
Reinitialize All 1 1.1956E+04 0.80 1.4945E+04
Conservatism 1 1.1884E+04 0.73 1.6206E+04
Resampling 1 9.8455E+03 0.90 1.0939E+04
Evolutionary 1 1.0114E+04 0.80 1.2642E+04
Centroid 1+1 1 9.8376E+03 0.93 1.0540E+04
Centroid 2+1 1 1.0048E+04 0.97 1.0394E+04

TABLE IX: Progress ratio results in problem P01

BCHM Best Worst Mean Std.
MidPoint 7.86E+04 1.17E+02 1.61E+04 2.01E+04
Reflection 1.02E+05 3.27E+02 2.89E+04 2.73E+04
Projection 1.62E+05 9.60E+02 3.17E+04 3.42E+04

Random Scheme 1.16E+05 9.72E+01 2.61E+04 3.19E+04
Reinitialize All 6.39E+04 2.53E+02 1.86E+04 1.92E+04
Conservatism 1.14E+05 1.51E+02 2.88E+04 2.87E+04
Resampling 8.87E+04 5.11E+02 2.30E+04 2.14E+04
Evolutionary 8.29E+04 1.44E+02 1.97E+04 2.37E+04
Centroid 1+1 5.86E+04 4.56E+02 1.64E+04 1.84E+04
Centroid 2+1 7.75E+04 2.83E+02 1.89E+04 1.96E+04

Fig. 3: Bonferroni post-hoc test results for the Progress ratio
measure in test problems where significant differences were
found.

TABLE X: Progress ratio results in problem P02

BCHM Best Worst Mean Std.
MidPoint 1.09E+04 2.51E+00 3.57E+03 3.05E+03
Reflection 1.55E+04 2.05E+01 5.61E+03 4.78E+03
Projection 2.33E+04 2.50E+02 8.91E+03 5.57E+03

Random Scheme 2.38E+04 3.84E+01 4.53E+03 4.90E+03
Reinitialize All 1.41E+04 2.59E+00 4.55E+03 4.32E+03
Conservatism 1.79E+04 3.76E+00 6.30E+03 5.09E+03
Resampling 2.60E+04 1.71E+00 4.80E+03 5.83E+03
Evolutionary 1.68E+04 2.03E+02 4.67E+03 4.85E+03
Centroid+1 1.12E+04 1.46E+00 2.19E+03 2.81E+03
Centroid+2 1.01E+04 7.19E-01 2.18E+03 2.88E+03

VII. CONCLUSIONS AND FUTURE WORK

A set of Boundary Constraint-Handling Methods were
added to the Differential Evolution algorithm to solve
four real-world constrained mechanical design optimization
problems. Based on the final results and also in the number of
variables and vectors repaired, as well as in the results of five
performance measures for constrained optimization, it can be
concluded that the Projection method was the most consistent
BCHM in this study, i.e., better overall final results, more
successful runs and better improvement inside the feasible

TABLE XI: Progress ratio results in problem P03

BCHM Best Worst Mean Std.
MidPoint 1.88E+05 8.91E+01 4.54E+04 4.57E+04
Reflection 1.25E+05 4.27E+02 4.66E+04 3.54E+04
Projection 5.14E+05 2.24E+01 1.00E+05 1.25E+05

Random Scheme 2.31E+05 1.46E+01 6.12E+04 6.97E+04
Reinitialize All 2.25E+05 5.70E+01 6.96E+04 6.35E+04
Conservatism 2.42E+05 1.97E+01 6.66E+04 7.18E+04
Resampling 1.74E+05 3.34E+01 3.75E+04 4.76E+04
Evolutionary 3.06E+05 2.98E+02 5.56E+04 8.10E+04
Centroid+1 1.64E+05 1.14E+02 2.84E+04 3.71E+04
Centroid+2 1.12E+05 1.24E+02 3.58E+04 3.49E+04

TABLE XII: Progress ratio results in problem P04

BCHM Best Worst Mean Std.
MidPoint 1.63E+05 1.14E+03 3.97E+04 4.28E+04
Reflection 2.07E+05 4.21E+02 5.49E+04 4.88E+04
Projection 2.02E+05 4.22E+02 5.09E+04 5.22E+04

Random Scheme 1.75E+05 2.38E+02 4.33E+04 4.76E+04
Reinitialize All 1.37E+05 4.12E+02 4.25E+04 3.96E+04
Conservatism 1.44E+05 2.78E+02 4.96E+04 4.72E+04
Resampling 1.18E+05 4.52E+02 4.87E+04 3.50E+04
Evolutionary 1.87E+05 1.86E+02 5.39E+04 5.31E+04
Centroid+1 9.80E+04 5.81E+02 2.93E+04 2.72E+04

Fig. 4: Line graphs of variables and individuals repaired in all
optimization problems.

region. However, the method which promoted less repairs
was Centroid K+1 (particularly Centroid 1+1). Such findings
are important because, even in this particular set of test
problems, different behaviors were observed depending the
BCHM adopted and such effect may be more evident in a
wide range of optimization problems.

Part of the future work includes the combination of different
BCHM’s in the same algorithm with a suitable mechanism to
mix them, as well as using constrained optimization problems
of a different domain.

ACKNOWLEDGMENTS

The first author acknowledges support from the Mexican
National Council of Science and Technology (CONACyT)
through a scholarship to pursue graduate studies at LANIA.
The second author acknowledges support from the University
of Veracruz to carry out this research.

REFERENCES

[1] R. M. Storn and K. V. Price, “Differential Evolution – A Simple and
Efficient Heuristic for global Optimization over Continuous Spaces,”
Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, December
1997.

[2] E. Mezura-Montes and C. A. Coello Coello, “Constraint-Handling in
Nature-Inspired Numerical Optimization: Past, Present and Future,”
Swarm and Evolutionry Computation, vol. 1, no. 4, pp. 173–194, 2011.

[3] H. S. Bernardino, H. J. C. Barbosa, and J. S. Angelo, “Differential
evolution with adaptive penalty and tournament selection for
optimization including linear equality constraints,” in 2018 IEEE
Congress on Evolutionary Computation (CEC), 2018, pp. 1–8.

[4] E. Juárez-Castillo, H.-G. Acosta-Mesa, and E. Mezura-Montes,
“Adaptive boundary constraint-handling scheme for constrained
optimization,” Soft Computing, vol. 23, no. 17, pp. 8247–8280, 2019.

[5] J. Arabas, A. Szczepankiewicz, and T. Wroniak, “Experimental
comparison of methods to handle boundary constraints in differential
evolution,” in Parallel Problem Solving from Nature, PPSN XI,
R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 411–420.

[6] V. Kreischer, T. Tavares Magalhães, H. Barbosa, and E. Krempser,
“Evaluation of bound constraints handling methods in differential
evolution using the CEC2017 benchmark,” 10 2017.

[7] A. H. Gandomi and A. R. Kashani, “Evolutionary bound constraint
handling for particle swarm optimization,” in 2016 4th International
Symposium on Computational and Business Intelligence (ISCBI), Sep.
2016, pp. 148–152.

[8] E. T. Oldewage, A. P. Engelbrecht, and C. W. Cleghorn, “Boundary
constraint handling techniques for particle swarm optimization in
high dimensional problem spaces,” in Swarm Intelligence, M. Dorigo,
M. Birattari, C. Blum, A. L. Christensen, A. Reina, and V. Trianni, Eds.
Cham: Springer International Publishing, 2018, pp. 333–341.

[9] N. Padhye, K. Deb, and P. Mittal, “Boundary handling approaches in
particle swarm optimization,” in Proceedings of Seventh International
Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA 2012), J. C. Bansal, P. K. Singh, K. Deep, M. Pant, and A. K.
Nagar, Eds. India: Springer India, 2013, pp. 287–298.

[10] E. Juárez-Castillo, N. Pérez-Castro, and E. Mezura-Montes,
“An improved centroid-based boundary constraint-handling
method in differential evolution for constrained optimization,”
International Journal of Pattern Recognition and Artificial Intelligence,
vol. 31, no. 11, p. 1759023, 2017. [Online]. Available:
https://doi.org/10.1142/S0218001417590236

[11] S. Sapre and S. Mini, “Opposition-based moth flame optimization with
cauchy mutation and evolutionary boundary constraint handling for
global optimization,” Soft Computing, 10 2018.

[12] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186, no.
2-4, pp. 311–338, June 2000.

[13] M.-F. Zapata-Zapata, E. Mezura-Montes, and E.-A. Portilla-Flores,
“Differential Evolution with parameter-memory to optimize four-bar
mechanisms,” Research in Computing Science, vol. 134, pp. 9–22, 2017,
(in Spanish).

[14] B. Hernández, M. del P. Pozos, E. Mezura, E. A. Portilla, E. Vega, and
M. B. Calva, “Two-Swim Operators in the Modified Bacterial Foraging
Algorithm for the Optimal Synthesis of Four-Bar Mechanisms,” Hindawi
Publishing Corporation Computational Intelligence and Neuroscience,
p. 18, January 2016.

[15] S. Sleesongsom and S. Bureerat, “Four-bar linkage path generation
through self-adaptive population size teaching-learning based
optimization,” Knowledge-Based Systems, August 2017.

[16] H. Cervantes-Culebro, C. A. Cruz-Villar, M.-G. Martı́nez-Peñaloza, and
E. Mezura-Montes, “Constraint-Handling Techniques for the Concurrent
Design of a Five-Bar Parallel Robot,” IEEE Access, vol. 5, pp.
23 010–23 021, 2017.

