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Abstract—Whale Optimization Algorithm (WOA), as a novel
nature-inspired swarm optimization algorithm, has demonstrated
superior performance in solving optimization problems. How-
ever, the performance deteriorates when applied to large-scale
complex problems due to rapidly increasing running time re-
quired for huge computational tasks. Based on interactions
within population, WOA is naturally amenable to parallelism,
prompting an effective approach to mitigate the drawbacks of
sequential WOA. Field Programmable Gate Array (FPGA) is
an acceleration device of high parallelism and programmability.
Meanwhile, Open Computing Language (OpenCL) provides a
general architecture for heterogeneous development. In this
paper, an efficient implementation of parallel WOA on FPGA
is proposed named FPWOA. Experiment studies are conducted
by performing WOA on CPU and FPWOA on FPGA respectively
to solve ten well known benchmark functions. Numerical results
show that our approach achieves a favourable speedup while
maintaining optimization performance.

Index Terms—Whale Optimization Algorithm (WOA), paral-
lelism, Field Programmable Gate Array (FPGA), heterogeneous
computing, Open Computing Language (OpenCL).

I. INTRODUCTION

Swarm intelligence algorithms have become a significant
methodology to solve optimization problems and utilized in
a wide range of scientific researches and practical applica-
tions. Whale optimization algorithm (WOA), a novel swarm
intelligence based meta-heuristic algorithm, was proposed by
Mirjalili and Lewis in 2016 [1]. Inspired by the special hunting
behavior of humpback whales, the WOA algorithm shows
better performance compared with several existing popular
methods and has drawn great research interests. Mohamed
et al.[2] integrated the WOA with a locals search strategy
for tackling the permutation flow shop scheduling problem.
Mafarja and Mirjalili [3] proposed a hybrid WOA with
simulated annealing for feature selection. Aljarah et al.[4]
introduced WOA-based trainer to train multilayer perceptron
(MLP) neural networks. There are also some works that tried
to solve multi-objective problems using the WOA algorithm
[5], [6], [7], [8].

Nevertheless, when solving problems with high-dimension
or complex mathematical model, swarm intelligence algo-
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rithms including WOA may encounter difficulties that the
optimization performance decreases due to extensive com-
putational cost. In the light of this, a growing number of
scholars have started to study and design parallel swarm
algorithms and implement them under various accelerating
platforms. In the recent years, distributed and parallel Particle
Swarm Optimization (PSO) has been implemented. Some
studies [9], [10], [11], [12], [13] applied GPU to parallel
PSO implementation for specific problems, putting forward
diverse parallel strategies. Hajewski et al. [14] developed fast
cache-aware parallel PSO relying on OpenMP. Ant Colony
Optimization (ACO) [15] and Artificial Bee Colony (ABC)
[16] were also parallelized by GPU. With respect to Brain
Storm Optimization (BSO), Chen et al.[17] presented GPU-
based manner while Ma et al.[18] proposed parallelized BSO
algorithm based on Spark framework for association rule
mining. Similar works [19] and [20] used GPU and FPGA
to accelerate Genetic Algorithm (GA). What deserve attention
is that Garcia et al. [21] achieved parallel implementation
and comparison of Teaching-Learning Based Optimization
(TLBO) and Jaya on many-core GPU. As for WOA, Khalil et
al. [22] proposed a simple and robust distributed WOA using
Hadoop MapReduce, reaching a promising speedup.

After investigating above-mentioned studies for parallel
swarm algorithms, we can discover that there are several typ-
ical kinds of parallel techniques including OpenMP, MapRe-
duce, Spark, and heterogeneous architecture based on dedi-
cated accelerators, such as GPU and FPGA. GPU has become
popular for general purpose computing and and great success
has been achieved in developing parallel swarm intelligence
algorithms, gaining remarkable performance[23]. With high-
parallelism and flexible programmability, FPGA is gradually
widely applied to heterogeneous computing with OpenCL and
algorithms accelerating[24], [25], [26], [27], [28].

The experiments conducted by [29] showed that swarm
algorithm on FPGAs achieved a better speedup than that
on GPUs and multi-core CPUs. However, designing a near-
optimal accelerator is not an easy task. Implementing CPU-
oriented codes on FPGA rarely increases the performance and
even reduces the performance compared to CPU. Therefore, it
requires not only the hardware architecture design experience,
but also the knowledge of how to write appropriate OpenCL
codes to implement the desired architecture on an FPGA [30].
To the best of our knowledge, very few research works have
been investigated on FPGA implementation of swarm intelli-
gence algorithms, especially WOA. In this paper, inspired by
the previous studies, a parallel WOA on FPGA is proposed
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aiming to obtaining computation performance for large-scale
complex problems.

The rest of the paper is organized as follows: the OpenCL-
based FPGA heterogeneous computing is introduced in Sec-
tion II; Section III presents the theory of WOA. In Section
IV, we propose the FPGA implementation of parallel WOA,
and it is followed by the experimental results and statistical
analysis in Section V. Finally, some conclusions are made in
Section VI.

II. OPENCL-BASED FPGA HETEROGENEOUS COMPUTING

A. OpenCL and FPGA

Open Computing Language (OpenCL), maintained by
Khronos Group, is an open standard for general purpose par-
allel computing [31]. Various hardware devices, such as CPU,
FPGA, GPU, DSP and other accelerators, can be supported
in OpenCL, making it possible to implement high efficacy al-
gorithms across powerful heterogeneous computing platform.
Additionally, OpenCL specifies a C99 based programming
API for developers. A typical OpenCL program consists of
a host source code an a kernel source code.

Field Programmable Gate Array (FPGA) is a configurable
integrated circuit that can be reconfigured repeatedly to per-
form an infinite number of functions. It generally includes
programmable core logics, hierarchical reconfigurable inter-
connects, I/O elements, memory blocks, DSPs and etc. With
these substantial logical resources, FPGA achieves a high
level of programmability and flexibility. However, traditional
development on FPGA is mainly describing hardware at
register transfer level (RTL) or even at the gate level using
hardware description languages (HDL) such as Verilog and
VHDL, which is a high-cost and time-consuming process. To
address this problem, FPGA vendors like Intel and Xilinx
released OpenCL framework with FPGA support, endowing
software developers the possibility to design FPGA applica-
tions effectively.

B. Intel FPGA SDK for OpenCL

The Intel FPGA SDK for OpenCL [32] allows users to
create high-level FPGA implementation with OpenCL. The
SDK generates a heterogeneous computing environment where
OpenCL kernels are compiled by an off-line compiler (AOC)
for programming FPGA at runtime. In this paradigm, Intel
achieves design optimization while hiding low-level hardware
details of FPGA. OpenCL-based FPGA logic framework is
illustrated in Fig.1 where several modules are specifically
explained as follows:
• Kernel Pipeline: The core module of the entire frame-

work, which is an implementation of specific functions.
The kernel code is compiled by AOC off-line compiler,
and will be synthesized into highly parallel optimized
logic circuit referring to the internal architecture of
FPGA.

• Processor: A host processor, typically CPU, used to
control programs running on FPGA device.

Fig. 1. OpenCL-based FPGA logic framework figure

• DDR: Off-chip memory, including global and constant
memory in OpenCL memory model. Intel Cyclone V
FPGA device used in this context, has a DDR3 with the
capacity of 1GB. By default, the constant cache size is
16KB and can be modified in accordance with practical
requirements.

• PCI-e: High-speed data exchanging interface, responsible
for transporting data and instruction between host and
device.

• On-chip Memory: Internal memory of the FPGA de-
vice, equivalent to local and private memory in OpenCL
memory model. With small capacity but high speed, it is
mainly used for storing input and output temporary data,
reducing the number of accesses to global memory. Thus,
we may take advantage of on-chip memory to improve
the efficiency of OpenCL program.

• Local Memory Interconnect: A bridge between execut-
ing unit and memory.

• External Memory Controller & PHY: A controller
which is in charge of controlling data sending and re-
ceiving via DDR.

III. WHALE OPTIMIZATION ALGORITHM

Inspired by the hunting behavior of humpback whales, the
WOA algorithm implements two main phases, exploitation and
exploration, through emulating shrinking encircling, bubble-
net attacking and searching for prey. The following subsections
explain in details the mathematical models of each phase.

A. Exploitation phase (encircling and bubble-net attacking)

To hunt preys, humpback whales first recognize the location
of preys and encircle them. The mathematical model of



shrinking encircling behavior is represented by the following
equations:

D =
∣∣∣C ·X∗(t) −X(t)

∣∣∣ (1)

X(t+1) = X∗(t) −A ·D (2)

where X is the position vector, X∗ represents the position
of the best solution obtained so far, t indicates the current
number of iteration, | | denotes the absolute operation and ·
means an element-by-element multiplication.
A and C are two parameters, which are calculated as

follows:

A = 2a · r − a (3)

C = 2 · r (4)

where a is linearly decreasing from 2 to 0 over the course of
iterations (in both exploitation and exploration phases) and r
is a random number in [0, 1]. The value of a is calculated by
a = 2− t 2

MaxIter and MaxIter is the maximum number of
iterations.

Another method used in the exploitation phase is spiral
updating position, which in coordination with aforementioned
shrinking encircling constitutes the bubble-net attacking strat-
egy of humpback whales. The mathematical equations are as
follows:

D′ =
∣∣∣X∗(t) −X(t)

∣∣∣ (5)

X(t+1) = D′ · ebl · cos (2πl) +X∗(t) (6)

where b is a constant for determining the shape of the
logarithmic spiral, l is a random number in [−1, 1]. Shrinking
encircling and spiral updating position are used simultaneously
during exploitation phase. The mathematical model is as
follows:

X(t+1) =

{
X∗(t) −A ·D, p < 0.5

D′ · ebl · cos (2πl) +X∗(t), p ≥ 0.5
(7)

where p is a random value in [−1, 1] which stands for that
there is a probability of 50% to choose either the shrinking
encircling method or the spiral-shaped mechanism to update
the position of whales during optimization process.

B. Exploration phase (searching for preys)

In addition to exploitation phase, a stochastic searching
technique is also adopted to enhance the exploration in WOA.
Unlike exploitation, a random whale Xrand is selected from
swarm to navigate the search space, so as to find a better
optimal solution (prey) than the existing one. This phase can
efficiently prevents the algorithm from falling into local optima
stagnation. Subsequently, based on the parameter A, a decision
is made on which mechanism to be used for updating the
position of whales. Exploration is done if |A| ≥ 1, meanwhile

if |A| < 1. This methodology is mathematically modelled as
follows,

D =
∣∣C ·Xrand −X(t)

∣∣ (8)

X(t+1) = Xrand −A ·D (9)

where Xrand is a random position of the whale chosen
from the current population, and C is calculated by Eq.(4).
Algorithm 1 presents the pseudo code of the WOA algorithm.

Algorithm 1 Whale Optimization Algorithm
1: Generate initial population Xi(i = 1, 2, · · · , n)
2: Evaluate the fitness of each search agent
3: X∗=the best search agent
4: while (t < MaxIter) do
5: for each search agent do
6: Update a, A, C, l and p
7: if (p < 0.5) then
8: if (|A| < 1) then
9: Update the position of the current search

agent by Eq.(2)
10: else if (|A| ≥ 1) then
11: Select a random search agent (Xrand)
12: Update the position of the current search

agent by Eq.(9)
13: end if
14: else if (p ≥ 0.5) then
15: Update the position of the current search agent

by Eq.(6)
16: end if
17: end for
18: Amend search agents which go beyond the search

space
19: Calculate the fitness of each search agent
20: Replace X∗ with a better solution (if found)
21: t = t+ 1
22: end while
23: return X∗

At the beginning of the algorithm, an initial random population
is generated, and each individual gets evaluated by fitness
function and X∗ is the current best solution. Then, the al-
gorithm repeatedly executes until the end criterion is satisfied.
At each iteration, search agents update their position according
to either a random chosen individual when |A| ≥ 1, or the
optimum solution obtained so far when |A| < 1. Depending on
p, the WOA algorithm makes decision between using circular
or spiral movement.

IV. FPGA IMPLEMENTATION OF PARALLEL WOA

WOA naturally has the speciality of being parallelized.
Such an intrinsic property of WOA makes it very suitable
to be deployed on heterogeneous platforms with the ability of
parallel computing.



Fig. 2. Dataflow of parallel WOA between host and kernel

A. Parallel analysis on WOA

For implementing a high performance parallel algorithm,
a parallel analysis on original algorithm is essential. Similar
to other swarm optimization algorithms, WOA unavoidably
suffers from the drawback of intensive computation caused
by the time-consuming fitness evaluation, which greatly limits
its execution speed[29]. As demonstrated in line 2, 18 and 19
from Algorithm 1, the process of evaluation as well as amend-
ment can be operated simultaneously in parallelization to the
computation efficiency of WOA. On top of that, the codes in
line 5 ∼ 17 can be executed concurrently as well, which means
that the positions of all search agents are updated separately by
corresponding moving mechanism, more specifically reflecting
the real hunting of humpback whales.

B. Dataflow analysis on parallel WOA between host and
kernel

In the proposed implementation, the dataflow between host
and FPGA kernel is mainly depended on global memory by
means of PCI-e interface. As illustrated in Fig.2, the set of
data contains the position and fitness of all search agents, the
global optima X∗, and four parameters comprising A, C, l
and p. On the host side, memory buffers are created and the
data used is mapped to these buffers, which will be further
sent to kernel by global memory. On the kernel side, each
work-item seen as a basic processing element, reads the data
from global memory and complete the kernel function.

In that global memory access has a great influence on
performance, realizing optimization for global memory access
can be beneficial. We utilize aggregate data type (float4)
to wrap above-mentioned parameters up and static memory
coalescing methodology for the position and fitness infor-
mation during global memory operation. Additionally, local
memory is considerably smaller than global memory, but it
has significantly higher throughput and much lower latency.
Using local memory to pre-load data will reduce the num-
ber of times the kernel accesses global memory, effectually
enhancing the performance of data transportation[33]. Hence,
the development in this work reads the current optima (X∗)

Fig. 3. Flow of parallel WOA

and parameters (A, C, l and p) from global memory and load
it to local memory blocks, preparing for next steps.

C. Design and implementation of parallel WOA

In consideration of OpenCL-based FPGA computing frame-
work and WOA theory, a parallel scheme for WOA is de-
signed, shown in Fig.3.

1) Host logic flow: In terms of host (CPU), it undertakes
non-computation-intensive tasks or runs these codes which
need to be sequentially performed or cannot be parallelized,
and the remaining tasks of algorithm are offloaded and per-
formed by kernel program. Meanwhile, host program gener-
ates and organizes the data set required in the computation
offloaded. Afterwards, it apply for memory buffers for the set
of data, finally transported to kernel through global memory.

Since OpenCL does not implement random number gener-
ator and plenty of random numbers are used in WOA, C/C++
library about random number will be applied at host side
to generate initial population and parameters (A, C, l and
p). The random numbers appear in each iteration of WOA,
namely data transportation between host and kernel in each
iteration is required. It will become a bottleneck for the
running speed due to mountains of data to be transported[9].
To alleviate this drawback, we generate all random numbers
on CPU, and then send them to FPGA once by global memory.
Furthermore, atomic function is considered to be expensive to
implement in FPGA, which might degrade kernel performance
and lead to hardware resources waste[33]. Hence, the process
of estimating if a better solution is found, is also scheduled in
host program, highly taking advantage of the computational
horsepower of CPU.

2) Kernel logic flow: FPGA device in our algorithm acts
as an accelerator to execute kernel program. Host offloads



computationally intensive tasks onto FPGA for paralleling
running. With OpenCL programming model, the parallel parts
of algorithm are mapped to kernel function to be executed
by each work-item independently [23], [29]. In the proposed
implementation, each work-item takes charge of a search
agent, which calculates their respective fitness, update and
amend respective position in parallelization. Fig.3 illustrates
that, according to the parameters (A and p), each work-item
(search agent) performs different mechanisms simultaneously:
shrinking encircling, spiral updating and stochastic searching.
Once the kernel has finished executing, the results related will
be sent back to host.

To optimize the processing efficiency of kernel on the
FPGA, some strategies can be adopted [34]. First of all,
restrict keyword is inserted into pointer arguments, avoiding
pointer aliasing. In addition, in order to mitigate latency and
overhead on the FPGA, we use loop unrolling pragma on
the loop part where there are no loop-carried dependencies,
and private memory implemented by FPGA registers or block
RAMs to store intermediate variables during updating posi-
tions. At last, when the kernel is defined, we make it specified
with required work-group size to optimize hardware usage
without involving excess logic resources.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental setup

Our experimental platform contains two main hardware
devices: CPU and FPGA. For the CPU platform, we use Intel
Core i5-7200 CPU with 8GB RAM. For the FPGA platform,
we use Intel FPGA Cyclone V GT with 1GB DDR3 and 64MB
SDRAM. The entire development environment is based on
Microsoft Windows 10 and Intel FPGA SDK for OpenCL 17.1
version.

In this paper, ten benchmark functions [35], listed in Table
1, are used to make performance comparisons between serial
WOA (CPU implementation) and parallel WOA (FPGA imple-
mentation). Among these benchmark functions, f1 ∼ f5 are
unimodal functions and f6 ∼ f10 are multimodal functions.
The dimensions of all functions tested are set to be 256.

Concerning other parameters in the WOA algorithm, the
spiral coefficient b in spiral updating model and the maximum
number of iterations MaxIter are held constant in the whole
evaluations and set to be 1 and 500, respectively. The popu-
lation sizes are set to 256, 512, 1024 and 2048 for each test
case. Additionally, for each implementation with a specific
parameter setting, 30 independently runs are executed and the
average performance is considered.

B. Running times and computation results

In this section, speedup is calculated from the running time
of different population sizes and defined as follows:

Speedup =
TWOA

TFPWOA
(10)

where TWOA and TFPWOA denote the running times of
serial WOA and FPGA implementation of parallel WOA

TABLE I
BENCHMARK FUNCTIONS WITH THE DIMENSION SET TO 256

Func Expression Range fmin

f1 f(x) =
D∑
i=1

x2i [−100, 100]D 0

f2 f(x) =
D∑
i=1
|xi|+

D∏
i=1
|xi| [−10, 10]D 0

f3 f(x) =
D∑
i=1

ix2i [−10, 10]D 0

f4 f(x) = max
1≤i≤D

|xi| [−100, 100]D 0

f5 f(x) =
D∑
i=1

(bxi + 0.5c)2 [−100, 100]D 0

f6 f(x) =
D∑
i=1

[
x2i − 10 cos (2πxi) + 10

]
[−5.12, 5.12]D 0

f7
f(x) = −20e−0.02

√
D−1

∑D
i=1

[−32, 32]D 0
−eD−1 ∑D

i=1 cos (2πxi) + 20 + e

f8 f(x) =
D∑
i=1

x2i
4000

−
D∏
i=1

cos ( xi√
i
) + 1 [−600, 600]D 0

f9 f(x) =
D∑
i=1
|xi sin (xi) + 0.1xi| [−10, 10]D 0

f10 f(x) =
D∑
i=1

x6i (2 + sin 1
xi

) [−1, 1]D 0

TABLE II
COMPARISON FOR THE RUNNING TIMES AND RESULTS OF WOA AND

FPWOA (POPULATION SIZE IS 256)

function
WOA FPWOA

Speedup
Mean Time(s) Mean Time(s)

f1 3.19E-112 2.2382 2.11E-110 0.4195 5.3354
f2 1.54E-62 2.3048 1.63E-62 0.4190 5.5008
f3 2.02E-112 2.2862 1.56E-111 0.4737 4.8262
f4 2.10E-16 2.2599 1.50E-16 0.4129 5.4733
f5 0 2.7232 0 0.4317 6.3082
f6 0 4.4341 0 0.5741 7.7236
f7 2.11E-16 4.3771 2.69E-15 0.5260 8.3216
f8 0 5.3035 0 0.5385 9.8486
f9 7.03E-64 3.9881 9.58E-63 0.5500 7.2511
f10 4.04E-281 5.7846 4.54E-281 0.6007 9.6297

TABLE III
COMPARISON FOR THE RUNNING TIMES AND RESULTS OF WOA AND

FPWOA (POPULATION SIZE IS 512)

function
WOA FPWOA

Speedup
Mean Time(s) Mean Time(s)

f1 1.47E-117 4.3858 1.02E-119 0.6648 6.5973
f2 3.78E-65 4.5478 2.49E-66 0.7048 6.4526
f3 6.73E-119 4.5307 8.76E-120 0.6534 6.9341
f4 6.45E-21 4.4472 5.01E-24 0.6843 6.4986
f5 0 5.3459 0 0.6556 8.1542
f6 0 8.9344 0 1.0893 8.2020
f7 3.30E-16 8.7900 1.60E-15 0.9821 8.9502
f8 0 10.6067 0 1.0220 10.3784
f9 2.33E-66 7.9469 1.79E-67 1.0608 7.4914
f10 4.63E-288 9.6482 2.75E-287 1.1735 8.2218

simplified as FPWOA, respectively. As per the results obtained
in TableII-V, several analysis and conclusions can be made



TABLE IV
COMPARISON FOR THE RUNNING TIMES AND RESULTS OF WOA AND

FPWOA (POPULATION SIZE IS 1024)

function
WOA FPWOA

Speedup
Mean Time(s) Mean Time(s)

f1 3.20E-124 8.8261 1.22E-124 1.3132 6.7211
f2 9.62E-68 9.0653 1.52E-68 1.3267 6.8330
f3 1.09E-123 8.9422 9.18E-124 1.3361 6.6928
f4 5.72E-23 8.7697 9.18E-29 1.3219 6.6342
f5 0 10.5293 0 1.3135 8.0162
f6 0 17.6137 0 1.6786 10.4931
f7 2.56E-17 17.5276 2.19E-16 1.5690 11.1712
f8 0 20.1839 0 1.5915 12.6823
f9 3.28E-69 15.9423 1.22E-69 1.5964 9.9864
f10 1.40E-296 18.5671 5.77E-296 1.7976 10.3287

TABLE V
COMPARISON FOR THE RUNNING TIMES AND RESULTS OF WOA AND

FPWOA (POPULATION SIZE IS 2048)

function
WOA FPWOA

Speedup
Mean Time(s) Mean Time(s)

f1 1.31E-128 18.3651 1.26E-129 3.2094 5.7223
f2 1.66E-70 18.1968 5.14E-71 3.1821 5.7185
f3 3.91E-128 17.7379 2.00E-129 3.0552 5.8058
f4 2.02E-26 17.6620 1.98E-30 3.1473 5.6118
f5 0 21.1211 0 3.1566 6.6911
f6 0 35.2745 0 3.2029 11.0133
f7 9.18E-16 34.9231 1.05E-16 3.4867 10.0161
f8 0 39.5615 0 3.2190 12.2900
f9 1.05E-70 31.9132 4.06E-71 3.2230 9.9017
f10 0 36.8537 0 3.4097 10.8085

below.
1) Statistical results and comparison: The Mean and

Time in each table refer to the average values of results
and running times obtained after the algorithm runs 30 times
for each benchmark function. With the increasing of the
population size, both WOA and FPWOA can find better
solutions, which indicates that the population size affects the
optimization performance to some extent. When the population
size is 256, on the tests that almost all functions except
for f4, WOA provides more effective optimization ability
than FPWOA. On the contrary, FPWOA shows preferable
solving efficacy as the population size grows (from 512 to
2048). For details, FPWOA transcends and outperforms WOA
under the benchmark functions with population = 512 and
population = 1024, except for f7 and f10, and has an
absolute advantage in all test cases when the population size
is 2048. From a whole, comparisons of FPWOA and WOA
utilized to solve ten benchmark functions, reveal the efficient
optimization of FPWOA (even better than original WOA,
especially with large population size).

2) Running time and speedup: It can be seen from tables
that the running times of WOA and FPWOA for each test case
raise by nearly 2 times with the two folds of the population
size. With the same population size, it takes more time for

both WOA and FPWOA to optimize multimodal functions
(f6 ∼ f10) than unimodal functions (f1 ∼ f5), which is more
obvious for WOA, but gets gradually negligible for FPWOA
as the population size becomes larger, especially with the
population size being 2048. That is because multimodal func-
tions are frequently linked with higher arithmetical complexity
than unimodal functions [9], [10]. Thus, facing larger-scale
complex problems, FPGA might display better performance
by means of outstanding parallel power.

After analyzing the running times given in TableII-V,
comparing with WOA on different test cases, a speedup
of FPWOA can be obtained. For unimodal functions, the
speedups can reach around 5 to 7 and be more than 8 in terms
of multimodal functions. In the best condition, FPWOA can
achieve a maximum speedup of 12.68 when the population
size is 1024, settling multimodal function f8. It is obvious
to notice that a competitive speedup can be obtained under
the cases of multimodal funtions and larger population size
(population = 1024 and 2048). Generally speaking, with
powerful parallel computing feature, FPWOA would run faster
than WOA for all test cases.

C. Convergence analysis for FPWOA

In this part, we investigate the best solution found by
FPWOA at each iteration under different population size and
ten benchmark functions. From Fig.4(a)-4(j), where N means
the population size. It can be noticed that the population size
is a crucial factor for the rate of convergence. As the number
of whales increases, the proposed algorithm converges faster.
In other words, a better optimal output can be gained at the
same number of iterations. The curve starts to converge after
around 20 iterations when solving the f1 with N = 256, f3
withN = 256 and f4 with N = 512, respectively shown in
Fig.4(a), 4(c) and 4(d), which might be the slowest conver-
gence rate in all test cases. The fastest rate of convergence,
in contrast, appears after 5 iterations under f10 function
and N = 2048. It is noteworthy that the algorithm behaves
unstable for f4 function, which in turn affects its convergence
rate to some extent. Besides, f8 and f10 are special cases
where convergence rate of the algorithm is less affected by
population size. In short, the conducted experiment indicates
that the proposed algorithm for all benchmark functions in the
context can achieve a promising performance in terms of the
rate of convergence.

VI. CONCLUSION

In this work, a parallel implementation of WOA on FPGA
is presented for large swarm and high dimensional problems.
After analysing sequential model of WOA and FPGA architec-
ture, we take some programming strategies for optimizing data
processing efficiency, referring to OpenCL based development
paradigm for FPGA. Moreover, several changes considering
WOA have been made to adjust to parallel framework. Numer-
ical experiments are conducted to draw comparisons about the
running time and optimization performance between WOA and
the proposed FPWOA, utilizing ten benchmarks. Experimental
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Fig. 4. Convergence curves for ten benchmark functions (f1 ∼ 10)

results obtained show that significant improvement in execut-
ing efficiency can be achieved for FPWOA which also holds
great solving quality and a fast convergence rate. However,
it should be pointed that only one kind of heterogeneous
platform based on FPGA is used to implement parallel WOA.
Future work will be addressing the design and implement
parallel WOA on other heterogeneous platforms such as GPU
and multiple devices.
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