
Edge Assembly Crossover with Tabu for Traveling
Salesman Problem

1st Maaki Sakai
Graduate School of Science and
Engineering, Kansai University

Osaka, Japan
k697938@kansai-u.ac.jp

2nd Yoshiko Hanada
Faculty of Engineering Science

Kansai University
Osaka, Japan

hanada@kansai-u.ac.jp

3rd Yukiko Orito
Department of Economics

Hiroshima University
Hiroshima, Japan

orito@hiroshima-u.ac.jp

Abstract—This paper proposes a new tabu technique to en-
hance the search performance of edge assembly crossover (EAX).
EAX is known as the most promising recombination operator
for the traveling salesman problem (TSP) among population-
based evolutional approaches such as genetic algorithm (GA). It
succeeds in generating a sophisticated combination of parents’
traits and makes GA comparable to state-of-the-art heuristics
for the TSP. EAX can find the optimal in very large instances,
however, it sometimes does not work well on instances involving
a lattice pattern. This is because, in the instance including cities
that are arranged in a lattice pattern, it is difficult to find the best
tour due to the existence of many alternative candidate tours.
In instances that include such patterns, the diversity of edges
in the population is decreased because the EAX concentrates
and repeats exchanging edges in this local pattern, and pays
less attention to combinations of edge globally. In this paper,
we improve EAX itself by introducing a tabu scheme to inhibit
repeating the exchange of the same edges in order to reduce the
bias of edge to be exchanged between parents and enhance the
diversity in offspring. Numerical experiments show the search
performance of our new method in the instances selected from
TSPLIB and VLSI TSP.

Index Terms—traveling salesman problem, genetic algorithm,
crossover

I. INTRODUCTION

Traveling salesman problem (TSP) is the problem to find the
shortest Hamiltonian cycle, under given definitions of a list of
cities and the distances between each pair of cities. TSP is one
of the famous NP-hard combinatorial optimization problems,
and various heuristics or meta-heuristics such as evolutionary
computations have been developed to find or approximate the
optimum in large instances of TSP.

In optimizing TSP by genetic algorithm (GA), crossover
operators have been considered to play a central role since
its design strongly impacts on the search performance of
GA. To solve TSP effectively, it is important to design the
crossover operator that can handle problem-specific structures
and traits (building blocks), and various crossover operators
focusing on the inheritance of parents’ preferable traits have
been developed [1]–[8]. Among crossovers, edge assembly
crossover (EAX) [5] is the most effective crossover that has
succeeded in generating offspring which inherit edges from
two parents with keeping parents’ traits. In EAX, to combine
edges of two parents’ tours, first, EAX extracts some closed

cycles referred to AB-cycle that is constructed by tracing edges
of the two tours alternately. By applying Eset which consists
of a number of AB-cycles to each tour respectively, the tour is
then decomposed to a set of closed cycles (sub-tours). Finally,
all sub-tours are connected repeatedly with short edges one
by one until become one complete closed cycle. The closed
cycle constructed in this manner above is the offspring of
EAX. By using a small Eset to limit the number of edges
exchanged between parents in EAX, it has been shown the
local search performance improves [11]. In the optimization
of TSP using genetic algorithms, it is particularly important
to consider the exchange of various edges and to enhance the
diversity of edges in the population in order to improve the
search performance [9], [10]. Therefore, survival selection of
offspring for the next generation has been discussed to improve
the search performance of EAX [12], [13]. The latest EAX
[13] that introduces an entropy related to edge rarity in the
survival selection is one of the most successful EAXs. There
are edges which are difficult to be generated again, once they
lost from the population. In the latest EAX, it is possible to
select and to make such edges survive in the next population.
By this extensions, EAX has made GA comparable to or
outperform state-of-the-art heuristics for the TSP such as Lin-
Kernighan (LK) based algorithms [14]–[16].

EAXs have succeeded in finding the optimum in very large
TSP instances, however, a drawback exists in EAX that does
not work very well on instances involving a lattice pattern
of cities. In instance where cities are even partially arranged
in a lattice pattern, it is difficult to find the best tour due
to the existence of many alternative optimal or near-optimal
candidates. In such a pattern, the EAX may decrease the
search performance because it concentrates and repeats the
edge exchange in the lattice part and does not pay less attention
to exchange edges in other parts of the lattice pattern. This
issue is expected to be eased if we can avoid the edge exchange
that is concentrated in specific points in EAX. In this paper,
we improve the search performance of EAX in the lattice
pattern by introducing a tabu scheme into EAX to inhibit
repeating the exchange of the same edges based on an archive
of AB-cycles generated in the past generation. Here, as a
preliminary study, we implement our new method into the
original EAX to evaluate the effectiveness of our scheme.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Through the numerical experiments, we show the improvement
of the search performance in relatively small instances from
TSPLIB [17] and VLSI TSP [18].

II. EDGE ASSEMBLY CROSSOVER

EAX is a powerful crossover proposed by Nagata, for TSP.
It has been designed to generate offspring by combining edges
from two parents and adding relatively few new short edges.
The procedure of EAX is briefly described as following.

Step 1 Let pA and pB be an individual respectively selected
from the population. EAX first creates a multigraph
denoted by GAB consisting of all edges of pA and pB .
In GAB , the two paths are considered to be different
paths even if they have the same source and the same
destination.

Step 2 Find a closed cycle by tracing the edges of pA and
pB alternately from GAB . This closed cycle is called AB-
cycle, and the edges of generated AB-cycle are removed
from GAB . By repeating this operation, all the edges of
GAB can be divided into several AB-cycles.

Step 3 Construct Eset which consist of several AB-cycles
selected randomly from all AB-cycles extracted in the
step 2. In this selection, however, AB-cycles that have
only two edges are excluded.

Step 4 Edges of pA included in the Eset are deleted from pA.
Instead of deleting pA’s edges, edges of pB included in
Eset are added to pA. By these operations, pA becomes a
set of closed cycles (sub-tours) which partially includes
edges from pB .

Step 5 All sub-tours that constitute pA are connected repeat-
edly with short edges one by one as shown Fig. 1, until
one complete closed cycle is reassembled as an offspring.

e₁

e₂

e₃

e₄

v₁

U

V

v₂

v₃

v₄

Fig. 1. Connecting two closed cycles: Find the edge combination {e1, e2, e3,
e4} where the value of {−w(e1)−w(e2)+w(e3)+w(e4)} is the smallest,
where w(·) means the path length. Connect the cycle U and the cycle V by
deleting e1, e2 and adding e3, e4. Here U and v1 are the smallest closed
cycle and one of its cities, respectively. The city v3 is v1’s neighborhood city
that not included in the cycle U , and V is the closed cycle includes v3. The
cities v2 and v4 are adjacent cities of v1 and v3, respectively.

The complete closed cycle obtained in the manner above is
an offspring based on pA. By applying these operations to pB ,
in a similar way to pA, an offspring is generated based on pB .
EAX can generate a wide variety of offspring that keep both
parents’ traits, by constructing various Esets from two parents.
Offspring which have shortest tour length are selected as the

next populations, so that preferable traits are inherited to the
next generation.

At step 3 of EAX, there are several manner to construct
Eset. In this paper, as a preliminary study, we adopt the
original EAX (EAX-Rand) [11] that all generated AB-cycles
are selected with the probability of 1/2 to constitude the Eset.

III. PROPOSAL OF EAX-TABU

A. Edge Assembly Crossover using tabu scheme

One of structures which make difficult for GA to find the
optimal solution is a lattice pattern. In cities arrangement of
this pattern, there are many alternative tours that have the same
or almost equivalent path lengths, so that GA cannot identify
the best easily even if the lattice pattern partially exists. The
same applies to GA with EAX. When an instance partially
includes the lattice pattern, there are many paths, i.e., many
variations of edge pattern, in the pattern compared to other
parts where cities do not arrange in the lattice pattern. Thus
the diversity of edges is an imbalance in whole cities. This
causes that many edge candidates inside lattice pattern have
possible to occupy AB-cycles, which EAX concentrates on and
repeats exchanging edges in this lattice pattern while pays less
attention to combinations of edges in other parts.

In this study, to ease the imbalance in exchanging edges
in EAX, we newly introduce a tabu scheme into EAX to
inhibit repeating the exchange of the same edges based on an
archive of AB-cycles. In our tabu scheme, each individual in
the population has an archive that keeps a history of exchanged
edges. At t-th generation, a current individual is an offspring
generated by applying an Eset, a set of AB-cycles, of two
parents in (t-1)-th generation. Thus the edges newly added to
the current individual have been recorded by the Eset. The
archive of exchanged edges for each individual is constructed
as a union set of Eset up to past tenure generations. Here, we
denote such an archive by pre-Eset. The parameter tenure is
the period for keeping the Eset. The procedure of EAX with
a tabu scheme (EAX-tabu for short) is described as following.
As shown in the procedure, here, we incorporate the tabu
scheme to the original EAX of which Eset is constructed
by AB-cycles selected with the probability of 1/2. Figure 2
illustrates the example of EAX-tabu.

Step 1 Let pA and pB be an individual respectively selected
from the population. Creates a multigraph GAB consist-
ing of all edges of pA and pB .

Step 2 Decompose GAB entirely to a set of AB-cycles.
Step 3 Select edges randomly from pre-Eset of pA and call

these edges tabu-edges.
Step 4 Exclude AB-cycles which include tabu-edges from the

set of AB-cycles obtained at step 2.
Step 5 Construct Eset which consist of several AB-cycles

selected randomly from available AB-cycles that consists
of more than four edges.

Step 6 Edges of pA included in the Eset are deleted from pA.
Instead of deleting pA’s edges, edges of pB included in
Eset are added to pA. By these operations, pA becomes a

③
①

②

①

③

③

①

②

G
AB

AB-cycles

pre-Eset tabu-edges

AB-cycles’ Eset sub-tours

offspring

parent

p
A

p
B

Step 1 Step 2

Step 3

Step 4 Step 5 Step 6

Step 7

Fig. 2. Example of EAX-tabu: GAB is decomposed to three AB-cycles. Four tabu-edges are selected from pre-Eset, and AB-cycle (2) involving tabu-edges is
excluded. Construct Eset from two available AB-cycles. Then apply Eset to pA to obtain a set of sub-tours. Finally connect them with short paths to generate
an offspring.

set of closed cycles (sub-tours) which partially includes
edges from pB .

Step 7 All sub-tours that constitute pA are connected repeat-
edly with short edges one by one until one complete
closed cycle is reassembled as an offspring.

The Eset generated at step 5 is newly added to the pre-
Eset of pA, and instead the oldest Eset are deleted. The
value of tenure is important. If it is set to small, that causes
a circulation, while the large value of tenure decreases the
number of available of AB-cycles.

B. Generation Alternation Model

In numerical experiments, we use the generation alternation
model used in the conventional EAX [11] described as follows.

Step 1 /initialization/ Generate Npop random tours (individ-
uals) and apply 2-opt to all individuals to compose the
initial population{p1, . . . , pNpop}.

Step 2 /selection for reproduction/ Reset indexes {1, 2, · · · ,
Npop} to each individual randomly. Then select Npop

pairs of parents {pi, pi+1} (1 ≤ i ≤ Npop) from the
population, where pNpop+1 = p1.

Step 3 /crossover/ Apply EAX-tabu to each pair of par-
ents {pi, pi+1} Noff times and generate offspring
{c1, . . . , cNoff

}.
Step 4 /selection for survival/ For each pair of parents, select

the best offspring, cbest, from {c1, . . . , cNoff
, pi} and

replace pi with cbest. Add the Eset used in the crossover
to the pre-Eset of pi. If the size of the pre-Eset is larger
than tenure, remove the oldest E-set from the pre-Eset.

Step 5 /terminal criterion/ Go to 2 until some terminal con-
dition is satisfied, e.g., generations and/or the number of
evaluations.

IV. NUMERICAL EXPERIMENTS

Here we evaluate the search performance of EAX-tabu.
In experiments, we used instances 14 instances up to 5915
cities from TSPLIB [17] and 10 instances up to 4355 cities
from VLSI TSP [18]. The former benchmarks have various

kinds of city arrangement, while the most instances in the
latter benchmarks include the lattice pattern found in the VLSI
design.

A. Performance of EAX-tabu

To evaluate the effectiveness of tabu in EAX, we compare
EAX-tabu with the original EAX (EAX-Rand) and verify
whether more optimal solutions can be obtained by increasing
the number of offspring generated in the crossover.

The population size Npop was set to 300, and the number
of offspring Noff was set to 50, 100 and 200. In the proposed
EAX-tabu, the parameter tenure, the period for keeping Eset,
was set to 1. The number of trials was set to 30. Each run
was terminated when all individuals in the population were
converged to the same solution, or no update of the best fitness
in the population is found through 30 generations.

The experimental results are shown in Table I and Table
II. In these results, opt. indicates the optimal value of the
instance, and #opt indicates the number of runs that reached
the optimum. The best performance among the settings of
offspring size is highlighted by bold.

From Table I and Table II, we can see that EAX-tabu
outperforms EAX-Rand and confirm that EAX-tabu improves
the search performance in most instances by enlarging the
number of offspring generated in the crossover. We also find
that a significant improvement of EAX by using the tabu
scheme on VLSI TSP instances where the most cities are
arranged in the lattice pattern. In the instance fnl4461 of
TSPLIB, both EAX cannot find optimal solution. In this
instance, it has been shown that small Eset to limit the number
of exchanged edges performs well compared to EAX-Rand
[11].

B. Effect of tabu period

Here, we verify the effect of the setting of parameter tenure
on the search performance of EAX-tabu. Here we use TSPLIB
instances to compare with one of the latest implements of
EAX. The parameter tenure was set to 1, 3, 5, 7 and 10.
The population size Npop was set to 300, and the number of

TABLE I
TSPLIB RESULT

#opt.

Noff = 50 Noff = 100 Noff = 200

instance
(#cities) opt. EAX-Rand EAX-Tabu EAX-Rand EAX-Tabu EAX-Rand EAX-Tabu

rat575 (575) 6773 15 17 17 21 22 22
u724 (724) 41910 20 20 21 23 22 29
vm1084 (1084) 239297 23 23 21 24 25 25
pcb1173 (1173) 56892 23 23 27 27 23 26
d1291 (1291) 50801 23 24 23 27 23 27
u1432 (1432) 152970 10 17 10 21 14 20
d1655 (1655) 62128 0 2 8 4 4 4
vm1748 (1748) 336556 4 20 7 22 7 17
u1817 (1817) 57201 3 5 1 5 0 10
u2152 (2152) 64253 4 10 6 22 7 22
pr2392 (2392) 378032 18 23 14 22 22 22
pcb3038 (3038) 137694 0 1 0 0 0 1
fnl4461 (4461) 182566 0 0 0 0 0 0
rl5915 (5915) 565530 0 4 1 3 2 5

TABLE II
VLSI RESULT

#opt.

Noff = 50 Noff = 100 Noff = 200

instance
(#cities) opt. EAX-Rand EAX-Tabu EAX-Rand EAX-Tabu EAX-Rand EAX-Tabu

xit1083 (1083) 3558 30 30 30 30 30 30
icw1483 (1483) 4416 29 30 30 30 29 30
djc1785 (1785) 6115 13 16 20 21 20 25
dcb2086 (2086) 6600 15 23 24 25 24 27
xpr2308 (2308) 7219 0 11 3 10 1 14
mlt2597 (2597) 8071 14 21 14 20 15 23
pia3056 (3056) 8258 0 1 0 0 0 1
fdp3256 (3256) 10008 0 0 0 2 0 3
ltb3729 (3729) 11821 1 1 2 4 2 5
bgb4355 (4355) 12723 0 1 0 7 8 8

offspring Noff was set to 200. The number of trials was set to
30, and terminal criteria were the same as the previous section.

The experimental results are shown in Table III. The results
of the latest version of EAX (EAX-Ent for short, in the result)
are also listed for reference [12]. EAX-Ent has introduced
an entropy relevant to edge occurrence into the selection for
survival for the next generation. Note that the condition of
the experiment is different in the results. The number of trials
was 20 in EAX-Ent and different from that of EAX-tabu, so
that we compare the ratio of runs that reach the optimal value.
In the results, %opt. indicates the ratio of success runs. Ave.
and Gene. are the averaged value of the best solution and the
averaged converegd generation out from 30 trials. The best
performance across the methods is highlighted by the bold,
and the best performance in our method is highlighted by the
underline.

From the result we can see that a larger value of tenure
improves the search performance of EAX-tabu. The appropri-
ate setting depends on the instance, however, a remarkable
improvement between when tenure=1 and tenure=3. A circu-

lation where the the gain and loss of the same edges repeat has
a possibility to occur when tenure is set to 1. It is supposed
that EAX-tabu suppresses the occurrence such a circulation by
enlarging the value of tenure.

V. CONCLUSION

In this paper, we proposed a new tabu scheme for EAX
in order to solve instances involving the lattice pattern. Our
tabu scheme inhibited repeating the exchange of the same
edges in order to reduce the bias of edge to be exchanged
between parents and enhance the diversity in offspring. We
implement the tabu scheme to the original EAX and evaluated
the effectiveness and the search performance of our method on
TSPLIB instances and VLSI TSP. Through the experiments,
we could find a significant improvement of EAX on VLSI
TSP instances where the most cities are arranged in the lattice
pattern. By enlarging the value of tenure, the search perfor-
mance improved, however its appropriate setting depends on
the instance. Further verification of the search performance
and behavior analysis of the method is required. In addition,
the effectiveness in large datasets including more than 10,000

TABLE III
COMPATISION OF EACH tenure PARMETER (TSPLIB INSTANCES)

instance
(#cities) opt. tenure %opt. Ave. Gene.

0* 0.73 6773.3 48.6
1 0.73 6773.3 57.1

rat575 3 0.87 6773.2 63.9
(575) 6773 5 0.90 6773.1 70.2

7 0.90 6773.1 76.8
10 0.97 6773.0 86.1
EAX-Ent - - -

0 0.73 41913.0 48.2
1 0.97 41910.2 58.0

u724 3 0.87 41911.0 63.8
(724) 41910 5 0.97 41910.2 70.2

7 0.97 41910.2 78.1
10 1.00 41910.0 84.7
EAX-Ent - - -

0 0.83 239303.0 48.1
1 0.83 239305.0 56.5

vm1084 3 0.97 239298.0 62.3
(1084) 239297 5 0.93 239299.0 67.1

7 1.00 239297.0 72.4
10 1.00 239297.0 80.8
EAX-Ent 1.00 239297.0 109.0

0 0.77 56893.5 51.7
1 0.87 239305.0 56.5

pcb1173 3 1.00 56892.0 73.2
(1173) 56892 5 0.97 56892.1 87.6

7 0.90 56892.2 97.8
10 0.80 56892.2 116.3
EAX-Ent 1.00 56892.0 137.0

0 0.77 50805.2 51.8
1 0.90 50803.8 52.9

d1291 3 0.93 50803.7 58.4
(1291) 50801 5 0.93 50803.4 64.7

7 0.97 50802.4 69.7
10 0.97 50803.3 77.3
EAX-Ent - - -

0 0.47 152977.8 70.6
1 0.67 152976.2 76.1

u1432 3 0.80 152973.6 87.1
(1432) 152970 5 0.57 152977.8 109.9

7 0.73 152974.8 132.2
10 0.63 152988.7 178.3
EAX-Ent 0.70 153505.4 132.0

0 0.13 62140.0 68.2
1 0.13 62142.8 72.8

d1655 3 0.43 62134.1 83.9
(1655) 62128 5 0.37 62134.2 103.2

7 0.37 62134.6 116.0
10 0.40 62132.9 143.0
EAX-Ent - - -

instance
(#cities) opt. tenure %opt. Ave. Gene.

0 0.23 336654.8 56.8
1 0.57 336592.2 75.0

vm1748 3 0.97 336556.9 80.3
(1748) 336556 5 0.97 336556.1 91.3

7 1.00 336556.0 99.3
10 1.00 336556.0 115.5
EAX-Ent 1.00 336556.0 164.0

0 0.00 57218.8 75.0
1 0.33 57211.1 87.2

u1817 3 0.57 57206.3 94.8
(1817) 57201 5 0.87 57202.3 125.1

7 0.80 57202.0 150.1
10 0.63 57207.4 166.2
EAX-Ent - - -

0 0.23 64263.3 72.4
1 0.73 64258.4 81.0

u2152 3 0.77 64254.7 89.5
(2152) 64253 5 0.73 64254.7 109.9

7 0.73 64254.6 131.6
10 0.80 64254.1 168.7
EAX-Ent - - -

0 0.73 378042.1 60.8
1 0.73 378043.0 82.3

pr2392 3 0.83 378037.0 99.0
(2392) 378032 5 0.97 378033.1 119.3

7 0.93 378034.0 137.5
10 0.97 378033.1 162.5
EAX-Ent 1.00 378032.0 263.0

0 0.00 137710.9 72.8
1 0.03 137705.4 107.6

pcb3038 3 0.20 137702.2 127.9
(3038) 137694 5 0.40 137696.6 161.0

7 0.47 137697.4 191.7
10 0.43 137697.4 234.7
EAX-Ent 1.00 137694.0 394.0

0 0.00 182642.0 101.4
1 0.00 182603.7 143.6

fnl4461 3 0.00 182591.5 177.4
(4461) 182566 5 0.00 182582.7 217.9

7 0.00 182577.9 264.7
10 0.00 182577.1 324.2
EAX-Ent 0.90 182584.3 825.0

0 0.07 565590.2 66.7
1 0.17 565562.1 92.8

rl5915 3 0.20 565558.1 111.6
(5915) 565530 5 0.13 565554.9 138.2

7 0.07 565556.8 157.2
10 0.13 565551.7 195.5
EAX-Ent 0.75 565925.9 319.0

*tenure = 0 means EAX-Rand.

cities should be evaluated. There are powerful techniques
introduced the latest EAX such as the block strategy in
combining AB-cycles and the entropy-based selection. More
improvement of search performance is expected by combining
of these techniques with the tabu scheme. These tasks are left
as a future goal.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 17K00352 and 18K11469.

REFERENCES

[1] Mathias, K. and Whitley, D.: Genetic operators, the fitness landscape
and the traveling salesman problem. Proc. 2nd Internat. Conf. Parallel
Problem Solving from Nature, Lecture Notes in Computer Science, Vol.
866, pp. 219–228 (1992).

[2] Maekawa, K., Mori, N., Tamaki,H., Kita, H. and Nishikawa, H.: A
Genetic Solution for the Traveling Salesman Problem by Means of
a Thermodynamical Selection Rule. Proc. 1996 IEEE International
Conference on Evolutionary Computation, pp. 529–534 (1996).

[3] Yamamura, M., Ono, I. and Kobayashi, S.: Emergent Search on Double
Circle TSPs using Subtour Exchange Crossvoer, Proc. of 1996 IEEE
International Conference on Evolutionary Computation, pp. 535–540
(1996).

[4] Merz, P. and Freisleben, B.: Genetic local search for the TSP: New
results. Proc. 1997 IEEE Internat. Conf. Evolutionary Comput., pp. 159–
164 (1997).

[5] Nagata, Y and Kobayashi, S.:Edge Assembly Crossover: A High-power
Genetic Algorithm for the Traveling Salesman Problem. Proceedings of
7th International Conference on Genetic Algorithms, Vol. 14, No. 5, pp.
450–457 (1997)

[6] Ikeda, K. and Kobayashi, S.: Deterministic Multi-step Crossover Fusion:
A Handy Crossover for GAs, Proc. of Parallel Problem Solving fron
Nature, PPSN VII , pp. 162–171 (2002).

[7] Hanada, Y., Hiroyasu, T. and Miki, M.: Genetic Multi-step Search
in Interpolation and Extrapolation domain, Proc. The Genetic and
Evolutionary Computation Conference 2007, pp. 1242–1249 (2007).

[8] Whitley, D., Hains, D. and Howe, A.: A hybrid genetic algorithm for
the traveling salesman problem using generalized partition crossover.
Proc. 11th Internat. Conf. Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, Vol. 6323, pp. 566–575 (2010)

[9] Ting, CK.: Improving Edge Recombination through Alternate Inheri-
tance and Greedy Manner, Evolutionary Computation in Combinatorial
Optimization, Vol. 3004, pp. 210-219 (2004)

[10] Segura, C., Betello Rionda, S., Hernández Aguirre, A., Valdez Peña, S.
I.: A Novel Diversity-based Evolutionary Algorithm for the Traveling
Salesman Problem, Proc. of the 2015 Annual Conf. on Genetic and
Evolutionary Computation, pp. 489-496 (2015)

[11] Nagata, Y.: New EAX crossover for large TSP instances, Proc. of Parallel
Problem Solving fron Nature, PPSN IX, pp. 372–381 (2006).

[12] Nagata, Y.: Fast EAX algorithm considering population diversity for
traveling salesman problems. Proc. 6th Internat. Conf. Evolutionary
Comput. Combinatorial Optim., Lecture Notes in Computer Science,
Vol. 3906, pp. 171–182 (2006).

[13] Nagata, Y and Kobayashi, S.: A powerful genetic algorithm using
edge assembly crossover for the traveling salesman problem, INFORMS
Journal on Computing, 25(2), pp. 346–363, (2013).

[14] Lin, S. and Kernighan, B. W.: An effective heuristic algorithm for the
traveling salesman problem. Oper. Res. 21(2), pp. 498–516 (1973).

[15] Applegate, D., Cook, W. and Rohe, A.: Chained Lin-Kernighan for large
traveling salesman problems. INFORMS J. Comput. 15(1), pp.82–92
(2003).

[16] Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP
heuristic. Math. Programming Comput. 1(2), pp. 119–163 (2009).

[17] TSPLIB 95 : http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
[18] VLSI TSP : http://www.tsp.gatech.edu/world/countries.html

