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Abstract—In this paper, we propose an enhanced feature
selection algorithm able to cope with feature drift problem
that may occur in data streams, where the set of relevant
features change over time. We utilize a dynamic multi-objective
evolutionary algorithm to continuously search for the updated
set of relevant features after the occurrence of every change in
the environment. An artificial neural network is employed to
classify the new instances based on the up-to-date obtained set
of relevant features efficiently. Our algorithm exploits a detection
mechanism for the severity of changes to estimate the severity
level of occurred changes and adaptively replies to these changes
by introducing diversity to algorithm solutions. Furthermore,
a fixed-size memory is used to store the good solutions and
reuse them after each change to accelerate the convergence and
searching process of the algorithm. The experimental results
using three datasets and different environmental parameters
show that the combination of our improved feature selection
algorithm with the artificial neural network outperforms related
work.

Index Terms—dynamic multi-objective evolutionary algo-
rithms, learning in non-stationary environments, severity of
changes, feature drift, memory-based algorithms

I. INTRODUCTION

Dynamic Multi-Objective Optimization Problems (DMOPs)
are increasingly being used to tackle real-world multi-objective
optimization problems that have non-stationary nature [1].
The existence of dynamism is the main difference between
a normal Multi-Objective Optimization Problem (MOP) and
a Dynamic Multi-Objective Optimization Problem (DMOP),
where it can occur due to various factors such as changes in
objective functions, changes in problem variables, or changes
in constraints [2]. In real life, there are various exam-
ples from different domains for multi-objective optimization
problems which are dynamic in nature including scheduling
problems [3], routing problems in networking [4], resource
management systems [5], control problems [6], hydro-thermal
power systems [7], and mobile ad-hoc networks [8].

Population-based meta-heuristic optimization algorithms in-
spired by the evolution of the species are among the com-
mon and popular techniques that have been adapted to solve
dynamic multi-objective optimization problems [1]. The exis-
tence of dynamism in the environment makes solving DMOPs
more challenging since the main goal becomes to obtain a
diverse set of candidates/non-dominated solutions and to track
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them after each environmental change. This is because the set
of good solutions that the algorithm obtained before a change
may not be good or valid solutions for the new environment
after the change. In multi-objective optimization environments,
the set of candidates/non-dominated solutions is called the
Pareto Optimal Set (POS) in the decision space and the Pareto
Optimal Front (POF) in the objective space. In literature, there
are a large number of Dynamic Multi-Objective Evolutionary
Algorithms (DMOEASs) that are proposed to solve DMOPs,
where these algorithms can be classified as diversity introduc-
tion [7], [9], diversity maintenance [10], memory-based [11],
[12], prediction-based [13], [14], and multi-population ap-
proaches [15], [16].

In this paper, we propose an enhanced dynamic multi-
objective evolutionary algorithm to solve the dynamic feature
selection problem that occurs in data streams. The proposed
DMOEA keeps searching for the set of relevant features that
change over time after each environmental change and send
it to the predictive model to readapt on the new coming
environments during data stream classification. We proposed
the Dynamic Filter-Based Feature Selection (DFBFS) [17]
algorithm for handling this problem which selects the set
of up-to-date relevant features using a filter-based feature
selection mechanism and an Artificial Neural Network (ANN).
It was observed that while the performance and accuracy of
the DFBES algorithm are better than other related algorithms,
it needs a relatively higher time to accomplish the same task.
The proposed algorithm in this paper is an enhanced version
of the DFBFS algorithm to overcome the high execution time
and enhance the classification accuracy. In our new proposed
evolutionary algorithm, we exploit a detection mechanism for
severity of changes to estimate the extent of occurred feature
drift and adaptively reply to it by introducing diversity to
solutions. Moreover, a fixed size memory is used to store the
good solutions and reuse them after each change to accelerate
the searching process of the algorithm and rapidly find the
relevant features in the case of cyclic or repeated feature drifts
that possibly occur in data streams. To classify the new arrived
samples, an ANN model is incorporated with our proposed
DMOEA.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a background for the feature drift problem and



DMOPs. Our algorithm is presented in Section 3. Section 4
presents the experiment settings, benchmarks, and the results
of our empirical study for evaluating the performance of the
proposed algorithm. Finally, the paper conclusion and future
research work are given in Section 5.

II. BACKGROUND
A. Feature Selection in Data Streams

Data streams have been attracting the attention of data
experts due to its widespread use in different areas including
fraud detection, internet search logs, network monitoring,
social networks, video surveillance, and sensor networks [18].
Usually, data samples of data streams arrive rapidly and con-
tinuously which makes it very difficult to store the upcoming
samples. Therefore, this data needs to be processed online and
sequentially on a sample-by-sample basis or over sliding time
windows. The non-stationary nature of newly arriving data is
one of the common challenges of data streams; since in many
real-world applications, the arriving data keep changing over
time as in the problem of spam detection given in [19], [20].
As a result, to derive an efficient classifier for non-stationary
data streams, the classifier should be continuously updated to
cope with new arriving data samples.

To process or classify the samples of data streams, a
machine learning model usually needs a set of features or
attributes. These features may have varied significance levels
which require a suitable selection mechanism called feature
selection to choose the relevant features only from the original
feature set [21]. Feature selection mechanisms have a signifi-
cant role in minimizing the dimensionality of data and enhanc-
ing the performance of classifiers. Feature drift is a type of
data stream drifts that occur when a subset of features switches
partially/completely from relevant to irrelevant/redundant or
vice versa. Therefore, to keep processing the new arriving
instances correctly, the used classifier should be periodically
updated with the new subset of relevant features after every
feature drift [22]. In addition, since the samples of data
continuously arrive, the classifier should re-adapt its model
as fast as possible to minimize the number of misclassified
samples after feature drift occurs [23]. In literature, feature
selection methods are divided into two main categories which
are filter-based and wrapper-based [21]. The filter-based meth-
ods [24], [25] apply one or more statistical techniques to
rank the features, and then select features with high ranks
to represent the set of relevant features. Their main advantage
is the low computational costs. In wrapper-based methods, a
classification algorithm is used to evaluate the relevance of the
tested features [26], [27]. While wrapper-based methods are
computationally more expensive than the filter-based methods,
they usually achieve better performance [28].

B. Dynamic Multi-objective Optimization Problems

A dynamic multi-objective optimization problem (DMOP)
is an optimization problem with two or more objective func-
tions and at least two of them are conflicting with each other,
where the objective(s), variables, constraints, and parameters

of the problem may change over time. The following equation
gives the formal definition of a DMOP:

minimize f(x,t) = {f1(z,t), fa(z, ), ....fp(x, )}
subject to

g(z,t) <0,
h(z,t) =0, (D

x = (21,22, ...2,) and T € [Tmin, Tmaz)

where x is the vector of problem input variables, and M is
the number of objectives in the problem. f(x,t) is the set
of dynamic objectives with respect to time t. g(x,t) and
h(x,t) represent the inequality and equality constraints of the
problem.

For a DMOP, a change in the landscape may affect the
Pareto Optimal Set (POS), the Pareto Optimal Front (POF)
or both of them. Therefore, a dynamic multi-objective evo-
lutionary algorithm (DMOEA) should track the dynamic POF
after each environmental change. Specifically, a good DMOEA
should be able to evolve a diverse set of solutions to converge
to the new POF rapidly before the next change occurs. Based
on where the change happens, Farina et al. [29] classified the
DMOPs into four types as follow:

e Type I. The POF remains static where the POS changes.

e Type II. The POF and the POS change over time.

e Type Ill. The POF changes over time where the POS
remains static.

e Type IV. The POF and the POS do not change over time.

III. MEMORY-ASSISTED DYNAMIC MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

Our proposed algorithm is a Dynamic Multi-Objective Evo-
lutionary Algorithm (DMOEA) that uses a dynamic change
response mechanism, and memory for collecting a set of
previous good solutions to select the dynamic set of relevant
features, where the population is dynamically updated with
respect to the severity of environmental changes. It basically
employs a feature drift detection mechanism to check if there
are any significant changes in the current set of relevant
features that used by the classifier and enhances the population
of the DMOEA to quickly search for the new set of relevant
features for the new environment. It can efficiently handle
a variety of non-stationary environments that may occur as
a result of different types of feature drift, such as slow or
fast feature drifts, variable rate or cyclical feature drifts, and
low or high severity of feature drifts. Moreover, it is one of
the few evolutionary algorithms that developed to handle the
dynamic feature selection problem. Incorporating a memory
scheme and a dynamic change response mechanism enables
our proposed algorithm to overcome the limitations of the
DFBFS algorithm [17], which requires relatively higher time
and has no mechanism to store the best solutions from previous
environments (set of relevant features for old environments).

Figure 1 presents the flow of our algorithm. As shown
in the figure, a change detection mechanism is continuously
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Fig. 1. The flow of our dynamic multi-objective evolutionary algorithm.

performed to detect if there is any feature drift. If a feature
drift is detected, then the severity of the change is computed by
comparing the extent of the change in the old and the current
environments. In this paper, we used our previously proposed
detection mechanism for severity of changes which developed
to deal with changes of DMOPs [30]. It randomly selects a set
of solutions called (sensors), then, for each objective function,
the difference between the values of each sensor before and
after the change is computed separately. The severity for each
objective function is estimated first and then the maximum
severity is selected to be the overall severity of the current
environmental change. According to results given in [30],
this method outperforms the other methods that detect the
severity of change and overcomes their problems. According
to the severity of change value, a variable and a convenient
number of new randomly generated solutions are inserted
into the current population. Adding new random solutions to
the population helps the evolutionary algorithm in exploring
new areas in the fitness space during the searching process
of the new relevant features for the new environment. To
avoid misleading population or getting undesired results, the
number of newly inserted solutions is computed according
to the current change severity. As a result, if the severity
of change has a low value, then there is a slight change in
the environment and a small number of random solutions is
generated and added to the population. If the severity is high,
it indicates a sever change occurrence and a large number
of new random solutions are inserted. To control the number
of new randomly generated solutions and prevent the current
population from full replacement, we limit the number of
newly inserted solutions to be less than 20% of the population
size. The pseudocode of the proposed algorithm is given in
Algorithm 1.

To evaluate the solutions of the population, two objectives
are utilized which are reducing the number of features and
maximizing the relevance between the class label and fea-
tures. Because of the limited available processing time when

Algorithm 1 The Proposed Dynamic Multi-Objective Evolu-
tionary Algorithm for Feature Selection with Feature Drifts
begin
Initialize randomly parent and offspring populations;
while Data stream instances are still arriving do
if Change is detected in the stream (feature drift) then
Estimate the severity of feature drift;
Respond to change dynamically using the estimated severity by
replacing a number of population solutions;
Select the best solution for the new environment from memory and
insert it to population;
while Stop condition is not satisfied do
Evaluate population solutions;
Merge children and parents populations;
Rank population solutions using non-domination sorting and
crowding distance mechanisms;
Select the best N solutions for next-generation;
Apply the crossover and the mutation operators;
end while
Select the best solution from the non-dominating solutions of the last
generation to determine the optimal set of features;
Update the memory by adding the best solution to it;
Train the ANN model using the new selected set of relevant features
obtained from the best solution;
Classify the current instance using the trained ANN;
else
Classify this instance using the previously trained ANN model;
end if
end while
end

dealing with online data streams, it becomes unhelpful to use
a wrapper-based feature selection method since it requires
high computational time. Therefore, we utilized a filter-based
feature selection method to select the best set of relevant
features in the second objective of the proposed algorithm.
In our algorithm, the mutual information measure is used as
described in [17]. The solutions are encoded using the binary
representation where each solution represents N features by a
string of bits. For each bit, zero value indicates the exclusion of
the represented feature, and one value indicates the inclusion
of it. The stopping criterion of the proposed algorithm is
determined dynamically for each new environment during the



population evolving process. Using a dynamic stop criterion
is more suitable for online data streams than a fixed number
of generations using a constant value because the processing
time is very limited and in some cases, the same environment
may occur multiple times. As a result, if we have a new
change that occurred before, then we can use the memory
to fetch the set of relevant features for this change and run
the evolutionary algorithm for a small number of generations.
On the other hand, if the change occurs for the first time, then
more generations should be performed to find its new set of
relevant features. In this work, we stop the evolving process
if all solutions of the population become in rank one (non-
dominated) for 10 consecutive generations, which means that
the minimum number of executed generations is 10, and the
maximum number of generations is selected to be 100.

A. A Memory-Based Extension for Our Algorithm

Memory-based techniques are very effective when dealing
with optimization problems that have periodic environmental
changes. In data streams that exhibit feature drifts, it is
possible that a set of relevant features changes to redundant or
irrelevant features and then return again to be relevant after a
certain number of environmental changes. When a feature drift
occurs in the environment, the new set of relevant features can
be:-

« completely new feature set that did not occur before and

is not close to any previously used feature sets, or

« completely repeated set that occurred before in previous

environments, or

« a feature set that did not occur before but it is very close

to one of the previously used feature sets.

While in the first scenario the memory mechanisms do
not add any value to the performance of the algorithm, in
the second and third scenarios, the memory becomes very
effective and can significantly enhance the performance of the
evolutionary algorithms. Moreover, in data streams usually,
the set of relevant features has a high probability to reoccur
in the future since the data stream is continuously coming
and the size of features is relatively small or limited. In the
proposed algorithm an explicit memory scheme is utilized
to store the previous best solutions (set of relevant features
in old environments) and to reuse them later after other
environmental changes occur. As shown in Figure 1, the
memory updates itself after each change with good solutions
and provides the population with efficient solutions from
the previous environments. Specifically, after each change
detection, solutions of the memory are reevaluated and the best
one is inserted to the current population by replacing a random
solution. Then, the evolutionary algorithm starts evolving the
solutions of the population to find the best solution, where
the memory continuously stores the good solutions just before
the detection of the next change. The memory stores the
set of relevant features for each different environment during
data stream processing. Note that this memory scheme is not
utilized to handle the periodic changes only, but it can handle
all previously occurred changes if they recurred again even

if they are not periodic which is a common behavior in real-
world streaming problems.

IV. EXPERIMENTS AND DISCUSSION

Several datasets simulating different dynamic scenarios
(such as the severity of change denoted by n; and the
frequency of change denoted by 7;) have been generated to
validate the performance of our algorithm. Mainly, two well-
known benchmarks are used, which are the Binary Generator
with Feature Drift (BGFD) [22] and the SEA generator with
Feature Drift (SEAFD) [31]. The BGFD is a benchmark
designed based on Binary Generator (BG) [32] and used to
generate synthetic data streams with a dynamic set of relevant
features that change over time. In BGFD, at every different
environment, there is only a subset S of relevant features,
where S C F and F is the set of all available features.
Different datasets can be generated by considering different
relations between relevant features and class labels. Using
BGFD, we generated two datasets (BGFD1 and BGFD2) using
the following two equations:

1, if (X1 A X2)

Y, = 2

BGrDp1 {O, otherwise &
1, if (X1 VX

Yperp2 = U ) 2) 3)
0, otherwise

where S = { X1, X2}, is the set of relevant features. Ypgrp1
and Ypgrp2 are the class labels of the two generated datasets.

The third dataset is generated using SEAFD [31] which is an
extension of the SEA generator [33]. In SEAFD, the features
are numbers between 0 and 10, where the set of relevant fea-
tures are selected randomly after each environmental change
using the following Equation:

Lo if((Xi+ X2) <0)
0, otherwise

Ysparp = { “)
where 0 is a threshold determined once for all instances of the
generated stream.

We compared the performance of the proposed algorithm
with the performance of three algorithms which are the Very
Fast Decision Tree (VFDT) [34], the Hoeffding Adaptive
Tree (HAT) [35], and the DFBFS [17]. The VFDT is a fast
algorithm that is developed based on decision trees and it is
widely used in classifying data streams. The HAT algorithm
is designed based on ADWIN algorithm [36] and utilizes
a decision tree with a sliding window to classify the data
stream instances. The DFBFS algorithm is a recently proposed
algorithm that uses a DMOEA to handle feature drifts in data
streams.

Two metrics are used to measure the performance of
compared algorithms which are the average classification
accuracy and the average window classification accuracy.
The former computes the average classification accuracy for
all instances, whereas the latter computes the average accuracy
over a sliding window of arriving instances. The two metrics



TABLE I
COMPARING THE CLASSIFICATION ACCURACY OF ALGORITHMS FOR THE
BGFD1 DATASET

(T¢,m0t) Proposed HAT VFDT DFBFS
(1000,1) 96.52 90.73  85.74 94.42
(1000,2) 91.05 80.53  79.82 92.34
(2000,1) 95.71 92.69  87.81 90.33
(2000,2) 96.27 83.51 80.97 93.72
(4000,1) 97.24 95.61 89.97 94.41
(4000,2) 96.34 89.97  82.37 95.17
(6000,1) 94.94 96.42  89.89 95.83
(6000,2) 94.74 95.88  83.81 95.31
(8000,1) 97.31 96.05  90.72 96.45
(8000,2) 92.25 95.86  86.59 96.12

TABLE 11

COMPARING THE CLASSIFICATION ACCURACY OF ALGORITHMS FOR THE
BGFD2 DATASET

(Tt,n¢) Proposed HAT VFDT DFBFS
(1000,1) 94.37 92.04  87.32 92.22
(1000,2) 94.87 79.61 78.92 92.94
(2000,1) 96.78 93.07 87.98 96.29
(2000,2) 96.57 83.67 80.84 95.08
(4000,1) 96.31 9545  89.67 95.68
(4000,2) 94.54 88.42 8191 93.23
(6000,1) 96.79 96.49  89.78 96.44
(6000,2) 94.78 95.71 83.29 96.62
(8000,1) 97.24 96.18  91.02 96.48
(8000,2) 97.06 96.08  85.21 96.82

are applied based on the stream prequential test-then-train
mechanism [37] and computed using Equation 5 where TP,
FP, TN and F'N denote true positives, false positives, true
negatives, and false negatives, respectively.

TP+TN
(TP+TN + FP+ FN)

Tables 1, 2, and 3 present the results of comparing the
performance of the proposed algorithm with the other three
algorithms in our framework using the average classification
accuracy metric. The number of instances in each stream
is selected to be NC * 74, where NC is the number of
environmental changes and 7 is the frequency of change.

Accuracy Rate =

®)

TABLE III
COMPARING THE CLASSIFICATION ACCURACY OF ALGORITHMS FOR THE
SEAFD DATASET

(Tt,n¢) Proposed HAT VFDT DFBFS
(1000,1) 9291 8292 7821 86.79
(1000,2) 91.26 75.21 74.23 89.65
(2000,1) 93.06 87.42  80.27 91.37
(2000,2) 93.18 7875  75.88 92.68
(4000,1) 95.83 90.03  81.26 91.55
(4000,2) 94.43 8249  77.81 93.08
(6000,1) 94.57 91.44  82.72 92.96
(6000,2) 95.87 90.31 79.46 93.43
(8000,1) 94.81 91.03 8349 92.44
(8000,2) 96.03 90.72  81.51 93.78

TABLE IV
COMPARING THE AVERAGE EXECUTION TIME OF ALGORITHMS IN
SECONDS
Dataset  ny Proposed HAT VFDT DFBFS

T 318 337 311 1182
BGFDL 401 337 311 1182
T 317 334 305 1134
BGFD2 391 334 305 1134
T 345 473 45 1145
SEAFD 445 473 452 1145

In the proposed algorithm, the population size is set to 50
and the number of generations is dynamically fixed based on
the stability of non-dominated solutions as described in the
previous section. The number of features/variables is selected
to be 10 for all tested data streams. The proposed algorithm is
implemented based on the NSGA-II algorithm which uses the
bit-flip mutation and the single-point crossover and available
in [38]. For the HAT and the VFDT algorithms, we used
the implementation of the Massive Online Analysis (MOA)
framework [37].

The statistical significance between results is computed
using the Wilcoxon rank-sum test [39] with a 0.05 significance
level, and the best values in each test instance are bolded. To
test the performance of the compared algorithms in different
scenarios, five frequency of change values and two levels of
change severity are used for each dataset. In our experiments,
the frequency of change is defined as the number of new
arriving samples between two successive feature drifts, where
the severity of change is defined as the number of relevant
features that become irrelevant after feature drift occurs.

As illustrated in Table 1, the results of the BGFD1 dataset
show that the proposed algorithm obtains higher performance
than the other algorithms in 6 out of 10 cases, where both of
the HAT and the DFBFS algorithms obtain the best result in
two cases. The proposed algorithm shows a good performance
of adaption for slight changes where only one feature becomes
irrelevant. This observation can be explained by the dynamic
diversity adaptation mechanism in the proposed algorithm that
maintains the population diversity during the search process.
It can balance between the newly introduced solutions and the
level of severity for the occurred feature drift which prevents
the degradation of the population in the case of slight changes.
By examining the results of Table 1, we can also observe
that with more slow changes, the performance difference
between our algorithm and other algorithms becomes smaller
and smaller. This is due to the sufficient available time in the
case of slow changes (higher values of frequency of change)
which gives all algorithms enough time to adapt to the new
environment.

Table 2 shows the results of the BGFD2 dataset, where the
proposed algorithm obtains the best results in the majority
of tested cases. As in the results of Table 1, the proposed
algorithm shows better performance than other algorithms in
the fast environmental changes (low values of frequency of
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Fig. 2. Pareto front evolved by the proposed algorithm for five successive changes and using three datasets (the first row is for the BGFD1 dataset, the second
row is for the BGFD2 dataset, and the third row is for the SEAFD dataset).

change), and its performance becomes close to the HAT and

the DFBFS algorithms in slow changes. The results of Table 3
(SEAFD dataset) are similar to the results of Table 2 since the
proposed algorithm achieves the best results in all tested cases.
These results show the direct effect of the dynamic diversity
introduction and memory mechanism on the performance of
the proposed algorithm by making it converges rapidly to a
diverse set of solutions. Furthermore, the proposed algorithm
performance remains stable and does not affect by the level of
change severities between the old and the new environments.
Figure 2 shows the evolved Pareto front from our proposed
algorithm using the three tested datasets for five successive
changes. As shown in the figure, the Pareto front after each
feature drift changes slightly or significantly, which indicates
that this dynamic problem is Type 2 since both POS and POf

change. Additionally, we can note that the shape of Pareto
fronts is different for each dataset.

In online data streams, the processing time is another
important metric that should be minimized due to the limited
available time during the arrival of stream samples. Table 4
presents the comparison between algorithms in our framework
by considering the average execution time for each algorithm.
While the VFDT algorithm achieves the lowest execution time
in all cases, the proposed algorithm shows acceptable results.
Furthermore, we can observe that the proposed algorithm
achieves a significant enhancement over the DFBFS algorithm,
which may reflect the rapid convergence of proposed algo-
rithm after adding the dynamic change response and memory

mechanisms. Moreover, using a dynamic stopping criterion

100 T
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Fig. 3. Average window accuracy for compared algorithms using the BGFD1
dataset.

instead of using a constant number of generations during
the evolving process significantly decreases the number of
executed generations after each change occurrence.

In another experiment, the algorithms are compared using
the window accuracy of sample classification, where results
are given in Figures 3, 4, and 5. The number of samples is
set to 100000 for each dataset, and a feature drift occurs after
every 10000 samples. To avoid the degradation occurred in the
first generations and to test the performance of our algorithm
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after the memory becomes full, we first run our algorithm for
200 generations, and then start the evaluation process. As it
is expected, the classification accuracy of all algorithms drops
after the occurrence of feature drifts. However, the differences
between algorithms occur in two factors, the extent of accuracy
degradation, and the ability of rapid recovery after each feature
drift. Our proposed algorithm and the DFBFS algorithm show
rapid recovery and lower performance degradation than the
HAT and the VFDT algorithms. The VFDT algorithm is the
worst algorithm since it spends more time to recover its
performance than other algorithms. This result ensures the
active impact of the dynamic severity introduction and the
explicit memory scheme that incorporated with our dynamic
multi-objective evolutionary algorithm.

V. CONCLUSION

In this paper, we proposed an enhanced dynamic multi-
objective evolutionary algorithm for the dynamic feature se-
lection problem in data streams. The proposed DMOEA con-
tinuously searches for the set of relevant features that change
over time after each environmental change (i.e. feature drift).
We incorporated the proposed DMOEA with a dynamic sever-
ity introduction mechanism, and a memory scheme, and an
artificial neural network. A detection mechanism for severity
of changes is utilized to estimate the extent of feature drift
and adaptively respond to it by adding a suitable number of
random solutions to the population. The memory is used to
store the good solutions and reuse them after each change to
accelerate the convergence of solutions in the case of cyclic or
repeated feature drifts. The Artificial Neural Network (ANN)
model is incorporated with our proposed DMOEA to classify
the new arriving samples of the stream. The obtained results
for three datasets by using different environmental parameters
demonstrate the validity of the proposed algorithm for feature
drift problems in data steams. In our future work, we plan
to test the other alternatives in filter-based feature selection
algorithms and measure their performance for solving dynamic
feature selection problem.
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