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Abstract—This paper proposes a new sequential estimation
method for simultaneously estimating states and parameters of
a state space model. Particle filter (PF) is known as a method
that can estimate states in difficult sequential state estimation
problems with nonlinearity and non-Gaussianity. PF updates an
ensemble consisting of multiple particles representing states of
a state space model in order to estimate the true state, based
on observation, at each time step. However, when PF estimates
not only states but also parameters of the state space model
at the same time, it is observed that the estimation accuracy
deteriorates. When estimating both states and parameters, PF
utilizes particles representing states and particles. In order to
overcome the problem of PF, we propose a new method that
sequentially estimates states by PF and parameters by the
separable natural evolution strategy (SNES). SNES is one of the
most powerful black-box function optimization methods. In order
to confirm the effectiveness of the proposed method, we compare
the performance of the proposed method and that of PF using
two nonlinear state space models, the Van der Pol model and
the Lorenz model. In the Van der Pol model, the median MSE
values of the state and the parameter of the proposed method
were 0.003610 and 0.01468 and those of PF were 4.228 and 6.520,
respectively. In the Lorenz model, the median MSE values of the
state and the parameter of the proposed method were 0.002639
and 0.003479 and those of PF were 309.5 and 1.470, respectively.
The smaller MSE is, the better the performance is.

Index Terms—Nonlinear state space model, State estimation,
Parameter estimation, Particle filter, Natural evolution strategy

I. INTRODUCTION

The sequential state estimation problem is an important
problem that appears in a wide range of fields such as
meteorology, oceanography and robotics. The sequential state
estimation problem is based on a state space model consisting
of two equations, a state equation representing the state of the
system and an observation equation representing the observa-
tion process of the state. The state equation and the observation
equation contain noise. If the state and observation equations
of a model are both linear, the model is called the linear model;
otherwise, it is called the nonlinear model. If the noise of the
state equation and/or the observation one follows the normal
distribution, the model is called the Gaussian model; otherwise
it is called the non-Gaussian model. Nonlinear models and

non-Gaussian ones are more difficult to estimate than linear
ones.

In sequential state estimation problems, it is sometimes nec-
essary to estimate not only states but also parameters that are
the coefficients of the state equations simultaneously, which
makes the estimation more difficult. Simultaneous estimation
of states and parameters is an important problem because it
appears in a wide range of fields such as parameter estimation
of internal resistance in lithium ion batteries [1], that of tracked
vehicle slip models [2] and that of hydraulic conductivity in
water flow models [3].

There have been proposed several promising sequential state
estimation methods for linear/non-linear and Gaussian/non-
Gaussian models. The Kalman filter (KF) [4] is for linear
and Gaussian models. The extended Kalman filter [5] (EKF),
the ensemble Kalman filter (EnKF) [6] and the unscented
Kalman filter (UKF) [7] can be applied to nonlinear and
Gaussian models. The particle filter (PF) [8] is a method that
is applicable to nonlinear models and non-Gaussian models.

PF is a powerful sequential state estimation method known
to show good estimation accuracy in nonlinear and non-
Gaussian models. PF expresses the probability distribution
of the true state using an ensemble composed of multiple
particles representing states. PF sequentially estimates the true
states at each time step by updating the ensemble. However,
PF has a serious problem in that the estimation accuracy
deteriorates when estimating parameter, i.e. coeficients, of the
state equation in addition to the states.

In this paper, in order to overcome the problem of PF, we
propose a new method that sequentially estimates parameters
and states by separately updating the ensemble of the states
and the probability distribution of parameter every time step.
The proposed method updates the state ensemble and the
probability distribution of parameters by PF and the natural
evolution strategy (NES) [9], [10], respectively. NES is one of
the most powerful black-box function optimization methods.
NES searches for the optimal hyper-parameters of a probability
distribution which minimizes the expected evaluation value of
an objective function by using the natural gradient method
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[11], instead of directly minimizing the evaluation value of
the objective function. In order to show the effectiveness of
the proposed method, we compare the performance of the
proposed method and that of PF through some experiments.

Section II explains the sequential state estimation problem.
In Section III, we introduce PF as a conventional method
and point out its problem. In order to remedy the problem
of PF, we propose a new method that updates the probability
distribution of parameter by NES in Section IV. Section V
shows the experimental results where the proposed method
outperformed PF on two famous benchmark problems. In
Section VI, we discuss the behavior of the proposed method
and PF by investigating the time transition diagram of the
estimated states and parameters of the proposed method and
PF. Section VII is a summary and future work.

II. SEQUENTIAL STATE ESTIMATION PROBLEM

The sequential state estimation problem is a problem of
estimating the state of a dynamic system from observation
online. The states are estimated from observations obtained se-
quentially because the true states cannot be directly observed.
The dynamic system is represented by a state-space model.
The state-space model is composed of a state equation and an
observation equation. The state equation and the observation
equation are given by (1) and (2), respectively.

xt = f (xt−1,a,vt) , (1)
yt = g (xt) +wt, (2)

where xt ∈ Rds is the state of the dynamic system at time
t ∈ Z, yt ∈ Rdm is the observation at time t, a ∈ Rdp

is the parameter of the state equation, ds is the dimension
of the state, dp is the dimension of the parameter, and vt

and wt are system noise and observation noise, respectively.
The system noise represents the stochastic fluctuation of the
dynamic system and the observation noise represents the noise
generated in the observation process. If f(·) and g(·) of
a state-space model are both linear functions, the model is
called the linear model; otherwise, it is called the nonlinear
model. If ps(v) and pm(w) of a state-space model follow the
normal distribution, the model is called the Gaussian model;
otherwise it is called the non-Gaussian model. Nonlinear or
non-Gaussian models are more difficult to estimate than linear
and Gaussian models. Furthermore, when the parameter in
addition to the state is required to be estimated at the same
time, the estimation becomes more difficult.

III. CONVENTIONAL METHOD AND ITS PROBLEM

A. Particle Filter (PF)

The particle filter (PF) [8], [12] is one of the most powerful
sequential state estimation methods that show good estimation
accuracy for nonlinear models and non-Gaussian models. PF
approximates the probability distribution of a state with an
ensemble. The ensemble {x(i)

t }Ni=1 is a set of particles x(i)
t that

represents a state. The PF sequentially updates the ensemble
by repeating the prediction step, the observation step, the

Algorithm 1 PF
Require: ps(·),f(·),a, p(·), N, T .
Input: {x(i)

0|0}
N
i=1.

Output: x̂t|t(t = 1, · · · , T ).
1: for t = 1, · · · , T do
2: for i = 1, · · · , N do
3: Generate v

(i)
t ∼ ps(v).

4: x
(i)
t|t−1

= f(x
(i)
t−1|t−1

,a,v
(i)
t ).

5: end for
6: Observe yt.
7: for i = 1, · · · , N do
8: λ(x

(i)
t|t−1

) = p(yt | x(i)
t|t−1

).
9: end for

10: for i = 1, · · · , N do
11: Choose a particle x

(i)
t|t from {x(k)

t|t−1
}Nk=1 with replacement with

probabilities propotional to {λ(x(k)
t|t−1

)}Nk=1.
12: end for
13: x̂t|t =

1
N

∑N
i=1 x

(i)
t−1|t−1

14: end for

filtering step and the step of calculating the estimation of
the true state from time 1 to time T . The ensemble after
the prediction step is called the prediction ensemble, and the
ensemble after the filtering step is called the filtering ensemble.
In the prediction step at time t, PF calculates a prediction
ensemble {x(i)

t|t−1}
N
i=1 by substituting the filtering ensemble

{x(i)
t−1|t−1}

N
i=1 of time t−1 to the state equation given by (3).

x
(i)
t|t−1 = f

(
x
(i)
t−1|t−1,a,v

(i)
t

)
. (3)

Next, in the observation step, PF obtains an observation yt

and calculates the likelihood λ(x
(i)
t|t−1) ∈ R of each particle

by (4).

λ
(
x
(i)
t|t−1

)
= p

(
yt | x(i)

t|t−1

)
, (4)

where p (y | x) is a likelihood function. Next, in the filtering
step, PF performs resampling to obtain a filtering ensemble
{x(i)

t|t}
N
i=1 at time t. In resampling, N particles are chosen

from the prediction ensemble {x(i)
t|t−1}

N
i=1 with a probability

proportional to the likelihood based on the observation, and a
filtering ensemble {x(i)

t|t}
N
i=1 is obtained. Finally, PF calculates

and outputs the estimation x̂t|t of the true state. In this paper,
the estimation is the mean of the filtering ensemble [13].

Algorithm 1 shows the algorithm of PF. PF requires the
items in the “Require” line; a probability distribution ps(·)
following a system noise, a function f(·) of the state equation,
a parameter a of the state equation, a likelihood function p(·),
the number of particles N , and a final time T . PF takes the
item in the “Input” line; a filtering ensemble {x(i)

0|0}
N
i=1 at

time t = 0. PF outputs the estimations of the true states
x̂t|t (t = 1, · · · , T ) in the “Output” line. State estimation from
time 1 to T is performed in line 1 to 14. The prediction is
performed in line 2 to 5. Line 3 generates a system noise
v
(i)
t ∼ ps (v), and line 4 calculates a particle x

(i)
t|t−1 of the

prediction on ensemble. In line 6, the observation yt is ob-
tained. In line 7 to 9, the likelihood λ(x

(i)
t|t−1) of each particle

is calculated by the likelihood function p(yt | x(i)
t|t−1). In line



10 to 12, resampling is performed. In resampling, particles
are extracted from the prediction ensemble {x(i)

t|t−1}
N
i=1 with

a probability proportional to the likelihood {λ(x(i)
t|t−1)}

N
i=1,

and a filtering ensemble {x(i)
t|t}

N
i=1 is obtained. In line 13, the

estimation of the true state is calculated.
If PF estimates a parameter a in addition to a state x, a

new state x̄ consisting of x and a is defined as in (5) [14].

x̄t ←
(
xt

at

)
. (5)

Then, prediction is performed using a model in which the state
equation is changed from (3) to (6) using a function f̄ that
returns the newly defined state x̄

(i)
t|t−1.

x̄
(i)
t|t−1 = f̄

(
x
(i)
t−1|t−1,a

(i)
t−1,v

(i)
t

)
,

=

f

(
x
(i)
t−1|t−1,a

(i)
t−1,v

(i),x
(i)

t−1|t−1

t

)
a
(i)
t−1 + v

(i),a
(i)
t−1

t

 , (6)

where v
(i),x

(i)

t−1|t−1

t , v
(i),a

(i)
t−1

t are noises applied to the state
and the parameter, respectively.

B. Problem of PF

PF has a serious problem in that the estimation accuracy
deteriorates when PF estimates not only states but also pa-
rameters of state space models. The reason is as follows.
The estimation accuracy of PF deteriorates if the diversity
of particles in an ensemble is lost. The diversity of particles
tends to lost when the particles include parameters because
the parameters hardly change with time according to the state
equation, (6), where the system noise v

(i),a
(i)
t

t is usually set
to small because the parameters are constant.

IV. THE PROPOSED METHOD

A. Basic Ideas

In this paper, we propose a method combining PF and
natural evolution strategy (NES) [9] in order to overcome the
problem of PF which is that the performance is degraded when
parameters are estimated together with states. As shown in
Fig. 1, the proposed method performs state estimation and
parameter estimation by PF and NES, respectively. In pa-
rameter estimation, the proposed method employs the normal
distribution as a probability distribution of parameter a and
updates the probability distribution by NES. Assume that a
filtering ensemble {x(i)

t−1|t−1}
N
i=1 and a probability distribution

of parameter p(a|µt−1, Dt−1) at time t − 1 as shown in
Fig. 1a are given. The proposed method, first, generates n

parameters {a(i)
t }ni=1 according to the probability distribution

of parameter p(a|µt−1, Dt−1) which is a normal distribution,
as shown in Fig. 1b, and makes each of them correspond to
the estimation of the true state x̂t−1|t−1 calculated from the
filtering ensemble at the time t − 1, {(x̂t−1|t−1,a

(i)
t )}ni=1,

where n is the number of individuals generated by NES and
µt−1 and Dt−1 are the mean vector and the covariance matrix

of the probability distribution of parameter at time t − 1,
respectively. In this paper, the estimation of the true state is the
mean of the filtering ensemble x̂t−1|t−1 = 1

N

∑N
i=1 x

(i)
t−1|t−1

[13]. Next, as shown in Fig. 1c, the proposed method calcu-
lates a prediction of the estimation of the true state x̂

a
(i)
t

t|t−1 =

f(x̂t−1|t−1,a
(i)
t ,v

(i)
t ) using a

(i)
t as a parameter. Next, as

shown in Fig. 1d, the proposed method calculates the like-
lihood λ(x̂

a
(i)
t

t|t−1) of particle x̂
a

(i)
t

t|t−1 based on the observation

to calculate the evaluation value h(a
(i)
t ) of parameters a

(i)
t .

The evaluation value h(a) is set to h(a
(i)
t ) = −λ(x̂a

(i)
t

t|t−1)
by regarding an individual having a high likelihood as a good
individual. The minus on the likelihood is to make the problem
a minimization one. Next, as shown in Fig. 1e, the proposed
method updates the probability distribution of parameter using
{(a(i)

t , h(a
(i)
t ))}ni=1 in order for parameters having higher

evaluation values to be more likely to be generated from the
probability distribution of parameter at the next time step.
As a result, the proposed method obtains the probability
distribution of parameter p(a | µt, Dt). A specific method
of updating the probability distribution of parameter will be
described in Section IV-B. Finally, as shown in Fig. 1f, the
proposed method calculates the filtering ensemble at time t,
{x(i)

t|t}
N
i=1, from the one at t − 1, {x(i)

t−1|t−1}
N
i=1. To do so,

the proposed method, first, performs the prediction step of
PF using µt as the parameter of the state equation to obtain
a prediction ensemble {x(i)

t|t−1 = f(x
(i)
t−1|t−1,µt,v

(i)
t )}Ni=1.

Then, the proposed method calculates the likelihood of each
particle in the prediction ensemble {x(i)

t|t−1}
N
i=1 and performs

the filtering step of PF to obtain a filtering ensemble {x(i)
t|t}

N
i=1

at time t. Finally, the proposed method calculates and outputs
the estimation of the true state x̂t|t =

1
N

∑N
i=1 x

(i)
t|t .

The proposed method repeats the above steps shown in Fig.
1a to Fig. 1f until time T .

B. Updating of Probability Distribution of Parameter by Nat-
ural Evolution Strategy

The proposed method updates the probability distribution of
parameter p(a | µ, D) using the Separable Natural Evolution
Strategy (SNES) [15].

NES is one of the most powerful black-box function op-
timization methods. Instead of directly finding the optimal
solution a∗ which minimizes the evaluation value of an
objective function h(a), NES searches for the optimal hyper-
parameter θ∗ of a probability distribution p(a | θ) which
minimizes the expected evaluation value J(θ) = Eθ[h(a)] =∫
h(a)p(a | θ)da by using the natural gradient method [11].

The update formula of θ by NES is as follows.

θt ← θt−1 − ηF−1(θt−1)∇θJ(θt−1), (7)

where t is an iteration number, η(> 0) is a learning
rate, F−1(θt−1) is the inverse matrix of the Fisher in-
formation matrix and F−1(θt−1)∇θJ(θt−1) is the natu-
ral gradient. ∇θJ(θ) can be approximated as ∇θJ(θ) ≃



(a) A filtering ensemble and a probability
distribution of parameter at time t− 1.
x̂t−1|t−1 = 1

N

∑N
i=1 x

(i)
t−1|t−1

represents the
estimation of the true state at time t− 1.

(b) The proposed method generates n parameters
{a(i)

t }ni=1 according to the probability distribution
of parameter p(a|µt−1, Dt−1) and makes each of
them correspond to x̂t−1|t−1.

(c) The proposed method calculates a prediction

x̂
a
(i)
t

t|t−1
= f(x̂t−1|t−1,a

(i)
t ,v

(i)
t ) using parameter

a
(i)
t .

(d) Based on the observation, the proposed method

calculates the likelihood λ(x̂
a
(i)
t

t|t−1
) of x̂

a
(i)
t

t|t−1
and

the evaluation value h(a
(i)
t ) of parameter a(i)

t .

(e) The proposed method updates the probability
distribution of parameter p by NES using
{a(i)

t , h(a
(i)
t )}ni=1.

(f) The proposed method calculates the filtering
ensemble at time t, {x(i)

t|t}
N
i=1, from the one at

t− 1, {x(i)
t−1|t−1

}Ni=1, by performing the
prediction step of PF using µt as the parameter of
the state equation and the filtering step of PF using
the likelihood based on the observation.

Fig. 1. An overview of the proposed method. The horizontal and vertical axes represent the state and the parameter, respectively. The probability distribution
to the left of the vertical axis represents the probability distribution of parameter used by NES to generate offspring parameters. The yellow-green vertical
line represents the observation.

1
n

∑n
i=1 h(a

(i))∇θ ln p(a
(i) | θ) using n solutions {a(i)}ni=1

generated according to p(a | θ).
SNES uses a multivariate normal distribution N (µ, D) as

a probability distribution p where the covariance matrix D is
a diagonal matrix in order to improve the convergence speed
in variable-separable objective functions. SNES updates the
mean vector µ and the covariance matrix D of the multivariate
normal distribution as follows.

µt = µt−1 + ηµ ·D
1
2
t−1∇µJ, (8)

D
1
2
t = D

1
2
t−1exp(ηD/2 · ∇DJ). (9)

where ηµ and ηD are learning rates and ∇µJ and ∇DJ are

the gradients given by

∇µJ =

n∑
i=1

u(i) · s(i), (10)

∇DJ =

n∑
i=1

u(i) · diag(s(i:n) ⊙ s(i:n) − 1), (11)

s(i) ∼ N (0, I), (12)

where ⊙ is the element product and s(i:N) is the ith solution
when a

(i)
t = µt−1 +D

1
2
t−1s

(i) are arranged in the descending
order of evaluation value h(a

(i)
t ). In this paper, we use a linear

weight instead of the weight using log used in SNES [15] so
as not to trust too much a good solution in consideration of
the existence of noise. Specifically, letting u(i) be the weight



of the i-th solution,

u(i) =
1.0− i

n
n∑

j=1

(
1.0− j

n

)− 1

n
. (13)

The recommended value of ηD is given by ηD =
3 + log(dp)

5
√
dp

[15], where dp is the dimension of the solution a.

C. Algorithm

Algorithm 2 shows the algorithm of the proposed method. In
this section, only the difference from PF shown in Algorithm
1 is explained. In line 2 to 5, the proposed method generates
parameters a

(i)
t according to the probability distribution of

parameter p(a | µt−1, Dt−1). In line 3, vector s(i) is generated
according to the standard normal distribution N (0, I). In
line 4, parameter a

(i)
t is calculated from s(i). In line 6, the

proposed method gets an observation yt. In line 7 to 12,
the proposed method calculates the evaluation value h(a

(i)
t )

of each parameter a
(i)
t . In line 8, the system noise v

(i)
t is

generated. In line 9, x̂a
(i)
t

t|t−1 is calculated as the prediction of

x̂t−1|t−1 using each parameter a(i)
t . In line 10, the likelihood

λ(x̂
a

(i)
t

t|t−1) of the prediction x̂
a

(i)
t

t|t−1 is calculated. In line 11, the

evaluation value h(a
(i)
t ) of each parameter a(i)

t is calculated.
In line 13 to 16, the proposed method updates the probability
distribution of parameter p. In line 13 and 14, the gradients of
the mean vector and the covariance matrix of the probability
distribution of parameter are calculated. In line 15 and 16,
the mean vector and the covariance matrix are updated. In
line 17 to 21, the proposed method calculates the prediction
ensemble {x(i)

t|t−1}
N
i=1 and the likelihood λ(x

(i)
t|t−1) of each

prediction particle x
(i)
t|t−1. In line 19, the prediction ensemble

{x(i)
t|t−1}

N
i=1 at time t is calculated from the filtering ensemble

{x(i)
t−1|t−1}

N
i=1 at time t− 1 using the mean vector µt of the

updated probability distribution of parameter as the parameter
of the state equation.

V. EXPERIMENTS

In this section, we conduct some experiments in order to
confirm that the proposed method shows better estimation
performance than the original PF in problems where state and
parameter are estimated simultaneously. We use two problems
of estimating the states and the parameters of the Van der Pol
model [16] and the Lorenz model [17].

A. Van der Pol Model

In this problem, the state x =
(
x1, x2

)T
and the parameter

a =
(
a1, a2, a3, a4

)T
of the Van der Pol model are estimated.

Algorithm 2 The Proposed Method
Require: ps(·), pv(·),f(·), p(·), N, n,µ0, D0, ηµ, ηD, T

Input: {x(i)
0|0}

N
i=1

Output: x̂t|t (t = 1, · · · , T )
1: for t = 1, · · · , T do
2: for i = 1, · · · , n do
3: Draw sample s(i) ∼ N (0, I)

4: a
(i)
t = µt−1 +D

1
2
t−1s

(i)

5: end for
6: Observe yt
7: for i = 1, · · · , n do
8: Generate v

(i)
t ∼ ps (v)

9: x̂
a
(i)
t

t|t−1
= f(x̂t−1|t−1,a

(i)
t ,v

(i)
t )

10: Calculate λ(x̂
a
(i)
t

t|t−1
) using yt

11: Calculate h(a
(i)
t )

12: end for
13: ∇µJ = Σn

i=1u
(i) · s(i:n)

14: ∇DJ = Σn
i=1u

(i) · diag(s(i:n) ⊙ s(i:n) − 1)

15: µt = µt−1 + ηµ ·D
1
2
t−1∇µJ

16: D
1
2
t = D

1
2
t−1 · exp(ηD/2 · ∇DJ)

17: for i = 1, · · · , N do
18: Generate v

(i)
t ∼ ps (v)

19: x
(i)
t|t−1

= f(x
(i)
t−1|t−1

,µt,v
(i)
t )

20: Calculate λ(x
(i)
t|t−1

) using yt

21: end for
22: for i = 1, · · · , N do
23: Choose a particle x

(i)
t|t from {x(k)

t|t−1
}Nk=1 with replacement with

probabilities propotional to {λ(x(k)
t|t−1

)}Nk=1．
24: end for
25: x̂t|t =

1
N

N∑
i=1

x
(i)
t|t

26: end for

The state equation for the Van der Pol model is given by (14)
and (15) and the observation equation is given by (16).

xt = f (xt−1,at−1,vt)

= xt−1 +∆Tg (xt−1,at−1 ) +
√
∆Tvt, (14)

g (x,a) =

(
a1x2

a2x2 − a3x
2
1x2 − a4x1

)
, (15)

yt = xt +wt, (16)

where x =
(
x1, x2

)T
is a state, a =

(
a1, a2, a3, a4

)T
is a

parameter and ∆T is the step size of the discretization for the
Euler method. In this experiment, the initial true state is x0 =(
0.2, 0.1

)T
, the true parameter is a∗ =

(
1.0, 1.0, 1.0, 1.0

)T
and ∆T = 10−1.

B. Lorenz Model

In this problem, the state x =
(
x1, x2, x3

)T
and the pa-

rameter a =
(
a1, a2, a3

)T
of the Lorenz model are estimated.

The state equation for the Van der Pol model is given by (17)



and (18) and the observation equation is given by (19).

xt = f(xt−1,at−1,vt)

= xt−1 +∆Tg(xt−1,at−1) +
√
∆Tvt, (17)

g (x,a) =

 −a1 (x1 − x2)
−x1x3 + a2x1 − x2

x1x2 − a3x3

 , (18)

yt = xt +wt, (19)

where x =
(
x1, x2, x3

)T
is a state, a =

(
a1, a2, a3

)T
is a

parameter and ∆T is the step size of the discretization for
the Euler method. In this experiment, the initial true state is
x0 =

(
−16.0,−21.6, 34.2

)T
, the true parameters is a∗ =(

10, 28, 8
3

)T
and ∆T = 10−2.

C. Experimental Method

The experimental method is the identical-twin experiment
[18]. The experiment is performed in the following procedure.

1) Give an initial true state x∗
0 and a true parameter a∗.

2) Generate a true state sequence {x∗
0,x

∗
1, · · · ,x∗

T } and
an observation sequence {y0,y1, · · · ,yT } by the state
equation and the observation equation.

3) Generate a filtering ensemble {x(i)
0|0}

N
i=1 at time t =

0 from the initial ensemble generation distribution
pinit (x) and perform state estimation from t = 1 to
t = T .

4) Perform 100 trials changing random seeds, where a trial
is to perform step 3.

D. Evaluation criterion

The mean square error (MSE) in successful trials is used
as a criterion. A successful trial is a trial in which the state
does not diverge during the trial. If the norm of the center of
gravity of the ensemble exceeds the threshold value lthreshold,
it is determined that the state diverges. The smaller MSE is,
the better the performance is.

MSE is the average of the square errors between the true
state x∗

t and its estimation x̂t|t from the start time to the end
time. MSE is given by (20).

MSE =
1

T

T∑
t=1

(
x∗
t − x̂t|t

)2
. (20)

The estimation of the true state is the mean of the filtering
ensemble x̂t|t =

1
N

∑N
i=1 x

(i)
t|t .

E. Settings

1) Common: The common settings are as follows. Since,
in most real-world applications, calculating the state equation
is the most expensive calculation in PF and the proposed
method, the numbers of calculations of the state equation
for prediction in the proposed method and PF should be the
same, which means that NPF = n+Nproposed, where NPF is
N in PF and Nproposed is N in the proposed method. The
final time is T = 20, 000. The threshold for determining
whether the state diverges or not is lthreshold = 1.0 × 105.

The probability density functions of the system noise vt

and the observation noise ωt are ps (v) = N
(
0,

√
0.01

2
I
)

and pm (w) = N
(
0,
√
0.01

2
I
)

, respectively. The likelihood

function is λ(x)=N (y − x,
√
0.01

2
I). Since there is not the

recommended value for ηµ, ηµ = 0.1 is used in this paper.
2) Experimenting Van der Pol Model: NPF, Nproposed

and n are set to 80, 50 and 30, respectively. The states in
the initial ensemble are generated according to the normal
distribution pinit (x) = N

((
0.2, 0.1

)T
,
√
0.5

2
I
)

. The system

noise of the parameter a =
(
a1, a2, a3, a4

)T
in PF follows

N (0,
√
10−5

2
I). a in the initial ensemble is generated ac-

cording to N
(
0,
√
2.0

2
I
)

in PF. The initial values of µ and
D0 of the probability distribution of parameter p(a|µ, D) in
the proposed method are µ0 = 0 and D = 2.0I , respectively.

3) Experimenting Lorenz Model: NPF, Nproposed and n are
set to 400, 200 and 200, respectively. The states in the initial
ensemble are generated according to the normal distribution
pinit (x) = N

((
−16.0,−21.6, 34.2

)T
,
√
1.0

2
I
)

. The system
noise of the parameter a =

(
a1, a2, a3

)
in PF follows

N (0,
√
10−5

2
I). a in the initial ensemble is generated ac-

cording to N
((

10.0 + 0.5, 28.0 + 0.5, 8
3 + 0.5

)T
,
√
1.0

2
I
)

.
The initial values of µ and D of the probability distribu-
tion of parameter p(a|µ, D) in the proposed method are
µ0 =

(
10.0 + 0.5, 28.0 + 0.5, 8

3 + 0.5
)T

and D0 = 1.0I ,
respectively.

F. Results

Fig. 2 and Fig. 3 show the box plots of the MSE values
of the states and the parameters in successful trials out of
100 trials in the experiments using the Van der Pol model
and the Lorenz model, respectively. From Fig. 2 and Fig.
3, it is confirmed that the proposed method was superior to
PF in terms of MSE. The numbers of successful trials of
the proposed method and PF in the experiments using the
Van der Pol model were 100 and 57, respectively, and those
in the experiments using the Lorenz model were both 100.
From the above two experiments, it can be confirmed that the
proposed method achieves better estimation performance than
the existing method, PF.

VI. DISCUSSION

Fig. 4 shows the time transition of the states and that of the
parameters estimated by the proposed method and PF in the
median trial of the experiment using the Van der Pol model.
Fig. 5 shows the time transition of the states and that of
the parameters estimated by the proposed method and PF in
the median trial of the experiment using the Lorenz model.
The median trial is the trial with the better evaluation value
between the trials with the closest values from the median.
From Fig. 4b and Fig. 5b, in PF, the diversity of particles was
lost as early as around time t = 5 and the estimated parameter
converged at the position far from the true parameter. As a
result, the estimation accuracy of the PF was degraded. On



(a) MSE of states (b) MSE of parameters

Fig. 2. The box plots of MSE values of the states and the parameters in the successful trials out of 100 trials of the proposed method and PF in the experiment
using the Van der Pol model. The smaller MSE is, the better performance is. The numbers of success trials of the proposed method and PF are 100 and 57,
respectively. The range between the bottom of the whisker and that of the box represents the best 25% trials. The range between the bottom of the box and
the orange line represents the best 25% to 50% trials. The range between the orange line and the top of the box represents the best 50% to 75% trial. The
range between the top of the box and the top of the whisker represents the best 75% to 100% trials. The points represent outliers.

(a) MSE of states (b) MSE of parameters

Fig. 3. The box plots of MSE values of the states and the parameters in the successful trials out of 100 trials of the proposed method and PF in the experiment
using the Lorenz model. The smaller MSE is, the better performance is. The numbers of success trials of the proposed method and PF are both 100. The
range between the bottom of the whisker and that of the box represents the best 25% trials. The range between the bottom of the box and the orange line
represents the best 25% to 50% trials. The range between the orange line and the top of the box represents the best 50% to 75% trial. The range between the
top of the box and the top of the whisker represents the best 75% to 100% trials. The points represent outliers.

the other hand, the proposed method succeeded in finding a
parameter closer to the true parameter than PF.

VII. CONCLUSION

In this paper, we proposed a new sequential estimation
method that overcomes a problem of the particle filter (PF)
that is one of the most powerful sequential estimation methods
and demonstrated that the proposed method showed better
performance than PF in terms of estimation accuracy on
two benchmark problems. The problem of PF is that the
estimation accuracy deteriorates when PF estimates parameters
in addition to states simultaneously. The proposed method
estimates states by PF and parameters by the separable natural
evolution strategy (SNES). In order to show the effectiveness
of the proposed method, we compared the performance of the
proposed method and that of PF on two problems. One is to
estimate the state whose dimension is two and the parameter
whose dimension is four of the Van der Pol model. The other
is to estimate the state whose dimension is three and the
parameter whose dimension is three of the Lorenz model. In
the Van der Pol model, the median MSE values of the state
and the parameter of the proposed method were 0.003610 and
0.01468 and those of PF were 4.228 and 6.520, respectively.
In the Lorenz model, the median MSE values of the state
and the parameter of the proposed method were 0.002639 and
0.003479 and those of PF were 309.5 and 1.470, respectively.

As future work, we would like to propose a new method that
employs SNES for estimating parameters and the ensemble
Kalman filter (EnKF) [6] for estimating states because EnKF

can be applied to higher-dimensional problems than PF. In
addition, we would like to consider to use xNES [19] that
employs a normal distribution with a full-rank covariance
matrix instead of SNES. Furthermore, we would like to apply
the proposed method to some real-world estimation problems.
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