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Abstract—The introduction of success-history based adaptation
in SHADE, a variant of JADE, resulted in a significant advance in
the performance of adaptive differential evolution. Many variants
of SHADE which use the same success history mechanism
have been proposed, but the success history mechanism has
remained poorly understood. We revisit use of the success history
based adaptation, and show experimentally that the standard
approach to sampling from the success history in SHADE may
not be as vital to performance as previously assumed. We
show that EnJADE, a simple, new variant of JADE which
maintains an ensemble of control parameter distribution means,
can outperform SHADE on the CEC14 benchmark suite. We also
show the effectiveness of the new ensemble-based approach when
combined with linear population reduction.

Index Terms—adaptive differential evolution, SHADE, JADE,
ensemble methods

I. INTRODUCTION

In continuous function optimization problems, the task is to

find a real-valued vector x = (x1, · · · , xD)T which minimizes

the value of an objective function f = R
D → R. In many

real-world applications, the objective function f is provided

as a “black box” (e.g,. simulation code) without access to its

internal structure. Evolutionary algorithms are often applied to

such continuous function optimization problems. Differential

Evolution [1] is a widely used class of evolutionary algorithms

where new individuals (candidate solution vectors for the func-

tion optimization problem) are generated based on difference

vectors between previously generated individuals. DE has been

applied to many real-world applications, and many variants of

DE have been widely studied [2]–[4]. In recent years, there

has been significant advances in adaptive DE methods which

adapt their control parameters during runtime [5].

A widely used approach to control parameter adaptation

chooses new parameter values based on parameter values

which are deemed to have been useful earlier during the

search. For example, JADE [6] stores the means of past,

successful parameter values, and uses these means as the basis

of a probability distribution from which new control parameter

values are generated.

One particularly successful class of adaptive DE descended

from JADE is based on SHADE [7]. The key difference

between JADE and SHADE is that SHADE and its vari-

ants use a success-history, MF = (MF1, · · · ,MFH) and

MC = (MC1, · · · ,MCH), a per-generation record of the

means of scale factor (F ) and crossover rate (C) parameter

values which resulted in highly fit new vector generations,

Despite the success of SHADE and its many variants, the

success history mechanism, which was the core contribution of

SHADE, remains relatively poorly understood. In the original

paper introducing SHADE, the primary intuitive motivation

for success history mechanism was robustness: “In contrast to

JADE, which uses a single pair (µC ,µF ) to guide parameter

adaptation, SHADE maintains a diverse set of parameters to

guide control parameter adaptation as search progresses. Thus,

even if [the success histories] for some particular generation

contains a poor set of values, the parameters stored in memory

from previous generations can not be directly, negatively

impacted. This should result in SHADE being more robust

than JADE.” [7](p.73,col 2, par 4). However, to our knowledge,

the “robustness” aspect of the success history mechanism

(in particular, the robustness vs. “poor” parameter values as

described above) has not been empirically investigated.

Instead of robustness, most previous work on SHADE and

its variants has focused on search performance, as it turned

out that SHADE and its variants performed quite well on

benchmark competitions (DEs which used the SHADE success

history mechanism have been the top-ranked algorithms in the

IEEE CEC single-objective benchmark optimization competi-

tions from 2014-2017).

While theoretical analysis of adaptive DE mechanisms is

difficult, it has been experimentally shown that compared

to an oracle with access to optimal 1-step lookahead, the

SHADE parameter adaptation mechanism generates (F,C)
values closer to the values selected by a 1-step lookahead

oracle than the JADE and jDE mechanisms [8]. However, the

same study also showed that while the SHADE adaptation

mechanism tracked the oracular values more closely than other

mechanisms, there was still a large gap between SHADE and

the oracle, i.e., there is still much room for improvement in

DE parameter adaptation.

It is hypothesized in [8] that the desired, “correct” behavior

of a DE parameter adaptation mechanism is to approximate

the optimal (oracular) parameter values as closely as possi-

ble. However, if we consider the success-history mechanism

with respect to this objective, the storage of per-generation
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means for many generations (typically D/2, where D is the

dimensionality of the problem), is somewhat contradictory –

it is not clear that generating the next pair of (F,C) based a

random pair of (F,C) parameters which happened to be useful

many generations ago results in better tracking of an ideal

parameter sequence. This suggests that it may be useful to seek

a different framework for interpreting the array of parameters

used by SHADE’s success history mechanism from a different

perspective, possibly leading to a better intuitive understanding

and perhaps allowing a better usage of the same data structure

resulting in improved search performance.

This paper revisits the success history mechanism of

SHADE. We first review the difference between the adaptation

mechanisms of SHADE and its predecessor, JADE [6] (Sec.

II. We evaluate alternate approaches to sampling the success

history array in SHADE, and show always sampling from a

fixed index in the history array can significantly outperform

the standard approach of uniformly sampling from the history

(Sec. III). We observe that this can be reinterpreted as a type

of ensemble diversification mechanism built on top of the

JADE adaptation mechanism, and propose Ensemble JADE

(EnJADE), a variation of JADE which maintains an ensemble

of independent parameter mean values (Sec. IV) among which

search effort is allocated equally in a round-robin manner. We

show experimentally that EnJADE is competitive with SHADE

(Sec. V). Furthermore, we show that the ensemble strategy

remains competitive when linear population reduction [9], a

standard enhancement to SHADE, is used (Sec. VI). Finally,

we consider robustness, the original motivation for the success

history mechanism, and show experimentally a setting with

noise injection, SHADE has considerably more stable search

performance than JADE and EnJADE (Sec. VII).

II. BACKGROUND

The basic DE algorithm proposed in [1] is as follows. A

population P = x1, ..., xN with N members, where each

candidate individual xi ∈ P is a D-dimensional vector, is

initialized randomly. At each iteration t, for each xi,t, a mutant

vector vi,t is generated. The mutant vi,t is recombined with

its parent xi,t using some crossover operator to generate a

trial vector ui,t. After all trial vectors are generated, each trial

vector ui,t is compared with its parent xi,t, and the better of

these two individuals is kept as the i-th individual in the next

generation Pt+1. A trial vector ui,t is called successful if it

has a better fitness value than its parent xi,t.

Most of the widely used parameter adaptation mechanisms

for DE adjust one or both of two parameters, F and C [5].

The Scale Factor F controls the magnitude of the mutation

applied to to the parent xi,t to generate the mutant vector vi,t.
The Crossover Rate C controls the number of values in a new

trial vector ui,t which are copied from its parent xi,t.

There are many approaches for adapting these parameters.

In one common approach, the generation of new (F,C)
values is biased according to whether previous (F,C) values

resulted in successful trial vectors. For example, JADE gener-

ates (F,C) values for the next iteration using a probability

distribution based on the mean values of parameter values

which have previously resulted in successful trial vectors [6].

cDE [10] maintains a pool of (F,C) parameter value pairs,

and at each iteration, for each individual, it selects one of

these pairs, where the probability of selection is based on their

past successes. See [5] for an extensive survey of parameter

adaptation mechanisms.

Algorithm 1 JADE

1: t← 1, Initialize population P ;

2: µF = 0.5, µC = 0.5;

3: while not termination condition do

4: SF ← ∅, SC ← ∅;
5: for i = 1 to N do

6: Fi,t = randc(µF , 0.1);
7: Ci,t = randn(µC , 0.1);
8: generate vi,t using current-to-pbest mutation;

9: generate ui,t using binomial crossover;

10: for i = 1 to N do

11: if f(ui,t) ≤ f(xi,t) then

12: xi,t+1 ← ui,t;

13: SF ← SF ∪ Fi,t, SC ← SC ∪ Ci,t;

14: else

15: xi,t+1 ← xi,t;

16: if SF , SC 6= ∅ then

17: µF ← (1 − c) ∗ µF + c ∗meanL(SF );
18: µC ← (1− c) ∗ µC + c ∗meanL(SC);

19: t← t+ 1;

A. JADE

JADE [6], shown in Alg. 1, is an adaptive DE which

had several distinguishing features that influenced many later

adaptive DEs: (1) a new mutation strategy, the current-to-pbest,

(2) the use of an (optional) external archive which stored failed

parent vectors in order to maintain a source of diversity, and

(3) the control parameter adaptation strategy for F and C
described below. Due to space, we review in detail only the

parameter adaptation mechanism.

The parameters µF and µC are initialized to 0.5 at the

beginning of the run (line 2). In each generation t, the sets SF

and SC are initialized to the empty set (line 4). During trial

vector generation (lines 5-9), for each xi in the population, a

trial vector is generated using current-to-pbest mutation and

binomial crossover. For each such trial vector generation, a

different Fi,t = randc(µF , 0.1) and Ci,t = randn(µC , 0.1)
is used (lines 6-7), where randc is the Cauchy distribution

(randc is repeatedly called until value > 0 is generated, and

then capped at 1), and randn is the normal distribution. If

the trial vector ui,t is successful (has a better fitness than its

parent xi,t), Fi,t and Ci,t are added to the sets SF and SC ,

respectively (line 13). At the end of a generation, after all of

the trial vectors are generated and evaluated, the µF and µC

parameters are updated as: µF ← (1−c)∗µF+c∗meanL(SF )



and µC ← (1 − c) ∗ µC + c ∗ meanL(SC), where meanL

computes the Lehmer mean (lines 17-18).

The original JADE used the arithmetic mean instead of the

Lehmer mean for updating µC in line 18.

B. SHADE

SHADE, shown in Alg. 2 [7] is based on JADE. The main

difference is the parameter adaptation mechanisms. Instead of

using a single pair of mean values µF and µC summarizing

all past successful (F,C) parameters, SHADE success history

data structure which stores the means of successful F and

C values per generation, and uses this structure for (F,C)
parameter generation.1.

The success history for F , MF = (MF1, · · · ,MFH), and

the success history for C, MC = (MC1, · · · ,MCH), are

arrays of length H (H is usually set to D/2, where D is the

dimensionality of the problem). Initially, all elements of MF
and MC are initialized to 0.5 (line 2).

During search, the success histories are used and updated as

follows. For each trial vector generation, an ri, an index into

the history vector is selected uniformly randomly from [1, H ]
(line 7). Then, the Fi,t and Ci,t, the F and C values used for

the successor generation for xi,t are generated in lines 8-9 as:

Fi,t = min(randc(MFr , 0.1), 1)

Ci,t = max(0,min(randn(MCr, 0.1), 1))

C is generated using the normal distribution with mean

MC and restricted to [0, 1]. F is generated using the Cauchy

distribution with mean MF .

After all trial vectors are generated and evaluated, the suc-

cess histories MF and MC are updated (lines 19-20) as fol-

lows. MFk = meanL(SF ), and MCk = meanL(SC), where

meanL(X) is the Lehmer mean of X , and k ∈ {1, ..., H} is an

index which is initialized to 1 at the beginning of search (line

3), and incremented (modulo H), whenever a new element is

inserted into the history (line 21).

Comparing Algorithm 1 and 2, it can be seen that overall,

JADE and its descendant, SHADE are quite similar, except for

the use of the µF and µC means for Fi,t and Ci,t generation

by JADE, and the use of the success history arrays MF and

MC by SHADE. (In this paper, we focus on the parameter

adaptation mechanisms, so we do not show archive-related

details, which have some differences, in Algorithms 1-2). In

this context, JADE can be seen as a special case of SHADE

where H , the size of the success history array, is 1.

III. EVALUATING ALTERNATIVE METHODS FOR

SAMPLING THE SUCCESS-HISTORY

As described in Sec. II, the standard method for using the

success history during search is to first randomly select an

index i ∈ [1, H ] (H is the size of the success history array),

1An earlier algorithm, SaDE [11] adapted its C parameter values using a
similar historical memory, but unlike SHADE, which stores per-generation
means of successful F and C, SaDE explicitly stored all successful C

parameters

Algorithm 2 SHADE

1: t← 1, Initialize population P ;

2: Initialize contents of success histories MF and MC to

0.5;

3: k ← 1;

4: while not termination condition do

5: SF ← ∅, SC ← ∅;
6: for i = 1 to N do

7: select ri randomly from {1, · · · , H}
8: Fi,t = randc(MFri

, 0.1);
9: Ci,t = randn(MCri

, 0.1);
10: generate vi,t using current-to-pbest mutation;

11: generate ui,t using binomial crossover;

12: for i = 1 to N do

13: if f(ui,t) ≤ f(xi,t) then

14: xi,t+1 ← ui,t;

15: SF ← SF ∪ Fi,t, SC ← SC ∪ Ci,t;

16: else

17: xi,t+1 ← xi,t;

18: if SF , SC 6= ∅ then

19: MFk ← meanL(SF );
20: MCk ← meanL(SC);
21: k ← (k modulo H) + 1;

22: t← t+ 1;

and use the i’th element of MF and MC to generate a

(F,C) pair. Below, we consider a simple, alternative sampling

strategy, with some surprising results.

A. Evaluating a Fixed Sampling Strategy

We first consider a fixed sampling strategy, which in Alg.

2, line 7, always sets ri to a fixed index value a, i.e., always

pick the a’th elements from the MF and MC arrays.

We evaluate the fixed sampling strategy using functions

F1∼F30 from the CEC2014 benchmark set [12], for di-

mensionality D = 10 and 30. We ran 48 trials per algo-

rithm configuration per function, with 10, 000 × D fitness

evaluations per trial. The fixed samping positions evaluated

were a ∈ {1, 5, 10, 15, 20, 30, 60, 90} for D = 30, and

a ∈ {1, 3, 5, 7, 10} for D = 10. The success history sizes

were H = 10 for D = 10, and H = 90 for D = 30. Although

this differs from the standard setting of H = D/2, this allows

us to observe the effect of large values of a.

Figure 1 shows the cumulative probability of achieving

target fitness (y) vs. number of fitness evaluations (x), for

CEC2014 problems on D = 10 and D = 30 (48× 30 = 1440
trials total). The target fitness is the median fitness achieved

among all trials for each problem (48 × k), where the k,

the number of fixed values evaluated was 8 for D = 30,

5 for D = 10. It can be seen that the performance varies

significantly depending on the fixed sampling location a,

particularly for D = 30. In particular, a = 15 (for D = 30)

and a = 5 (for D = 10) performed well. Interestingly, these

successful a-values correspond to D/2.



Algorithm 3 EnJADE

1: t← 1, Initialize population;

2: Initialize contents of MF and MC arrays;

3: k ← 1;

4: while not termination condition do

5: SF ← ∅, SC ← ∅;
6: for i = 1 to N do

7: Fi,t = randc(MFk, 0.1);
8: Ci,t = randn(MCk, 0.1);
9: generate vi,t using current-to-pbest mutation;

10: generate ui,t using binomial crossover;

11: for i = 1 to N do

12: if f(ui,t) ≤ f(xi,t) then

13: xi,t+1 ← ui,t;

14: SF ← SF ∪ Fi,t, SC ← SC ∪ Ci,t;

15: else

16: xi,t+1 ← xi,t;

17: if SF , SC 6= ∅ then

18: MFk ← meanL(SF );
19: MCk ← meanL(SC);
20: k ← (k modulo H) + 1;

21: t← t+ 1;

Fig. 1: Cumulative probability of achieving target fitness (y) vs.
number of fitness evaluations (x), for CEC2014 problems, D = 10
and D = 30 dimensions (48trials × 30problems = 1440 trials per
algorithm). The target fitness is the median fitness achieved among
all trials for each problem (48trials/algorithm×k), where the k, the
number of fixed values evaluated was 8 for D = 30, 5 for D = 10.

To assess whether the overall peformance differences in-

dicated in Figure 1 are statistically significant, the left side

of Table I compares, for each problem in F1∼F30, the best

fitness values found on each trial using the fixed sampling

index a = 15 vs. other values of a, for D = 30, using the

Wilcoxon rank sum test. Similarly, the right side of Table I

compares a = 5 vs. other values of a for D = 10. Table I

shows that overall, using the fixed index a = D/2 performs

well compared to other fixed index a-values.

As explained in Sec. II, JADE can be seen as a special case

of SHADE with history size H = 1, which is also equivalent

to SHADE which always uses the first (a = 1) element of the

success history. Our data shows that always using a = 1 is

significantly worse than always using a = D/2, i.e., greedily

D = 30 dimensions D = 10 dimensions

a= 1 5 10 15 20 30 60 90 1 3 5 7 10

F1 ≈ ≈ ≈ ≈ ≈ - - ≈ ≈ ≈ ≈

F2 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F3 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F4 - ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F5 - - ≈ ≈ - - - ≈ ≈ ≈ ≈

F6 - - - ≈ + + + - ≈ ≈ -

F7 - ≈ ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈

F8 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F9 ≈ + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F10 - ≈ ≈ ≈ ≈ - - - ≈ ≈ ≈

F11 - - ≈ ≈ + ≈ - - ≈ ≈ ≈

F12 - - ≈ ≈ - - - ≈ ≈ ≈ ≈

F13 - ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈ ≈

F14 - - ≈ - ≈ - - - ≈ ≈ ≈

F15 - ≈ ≈ ≈ ≈ ≈ - ≈ ≈ - -

F16 - - ≈ ≈ - - - ≈ ≈ + ≈

F17 ≈ ≈ + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F18 - - ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈

F19 - - ≈ ≈ + + ≈ - - ≈ ≈

F20 - - - ≈ ≈ + + - ≈ ≈ +

F21 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ -

F22 + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F23 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F24 - - ≈ ≈ + ≈ + ≈ ≈ ≈ ≈

F25 ≈ ≈ + + ≈ ≈ ≈ - ≈ ≈ ≈

F26 - ≈ + ≈ ≈ - - + ≈ ≈ ≈

F27 - - - ≈ ≈ ≈ + ≈ ≈ ≈ ≈

F28 - - ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈

F29 - ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈ ≈

F30 - - ≈ ≈ + + ≈ - ≈ - -

TABLE I: Comparison of fixed success-history sampling strategies
(always using the a-th element in the history) for CEC2014 problems,
D = 30 and D = 10 dimensions. The Wilcoxon ranked sum test
results（+: better, -: worse, ≈: no significant difference） are shown
for comparisons between D/2 and other values of a (for D = 30,
comparisons vs. a = 15; for D = 10, comparisons are vs. a = 5).

continuing to generate parameter values similar to the most

recent successful parameter values as JADE does is not a

particularly good strategy in this context.

B. Sampling a subrange of the history around a index a

The previous experiment showed that a fixed sampling

strategy using the D/2-th element in the success histories per-

formed well compared to other fixed sampling strategies. Next,

we consider sampling indices around the D/2-th element –

i.e., we test whether sampling randomly from a range more

restricted than SHADE is helpful.

We used the same experimental settings as the previous

experiment, but instead of a fixed strategy which always used

the a-th element of the success histories, each sample (Alg. 2,

line 7) is from a range r centered around D/2, where the width

of the ranges is varied. For D = 30 dimensions, we evaluated

r = 10 ∼ 15, 13 ∼ 15, 14 ∼ 15, 15, 15 ∼ 16, 15 ∼ 17 と
15 ∼ 20. For D = 15 dimensions, we evaluated r = 1 ∼
5, 4 ∼ 5, 5, 5 ∼ 6, 5 ∼ 10.

Figure 2 shows the cumulative probability of achieving

target fitness (y) vs. number of fitness evaluations (x), for

CEC2014 problems on D = 10 and D = 30 (48× 30 = 1440
trials total). The target fitness is the median fitness achieved

among all trials for each problem (48 × k), where the k,

the number of ranges evlauated was 7 for D = 30, 5 for

D = 10. For D = 10, there is no clear difference among

the sampling ranges. On the other hand, for D = 30, there

are significant differences in overall performances among the

sampling ranges. Notably, the fixed a = 15 strategy clearly

outperforms all of the other sampling ranges – there does not

appear to be an advantage to sampling a wider range than the

fixed a = 15 strategy.



Fig. 2: Cumulative probability of achieving target fitness (y) vs.
number of fitness evaluations (x), for CEC2014 problems on D =
10 and D = 30 (48trials × 30problems = 1440 trials total). The
target fitness is the median fitness achieved among all trials for each
problem (48trials/algorithm×k), where the k, the number of ranges
used for sampling the success history values evaluated was 7 for
D = 30, 5 for D = 10.

IV. ENSEMBLE JADE: REINTERPRETING FIXED INDEX

SUCCESS HISTORY SAMPLING AS CYCLIC ALLOCATION OF

RESOURCES AMONG AN ENSEMBLE

In Sec. II, we noted that JADE can be seen as a special

case of SHADE with history size H = 1, and furthermore,

we noted in Sec. III, JADE can also be seen as a variant of

SHADE which in Alg. 2, Line 7 deterministically chooses the

1st element. We also observed experimentally in Sec. III that a

variation of SHADE which deterministically selects the H/2-

th index in Alg. 2, Line 7 performs quite well (better than the

standard uniform sampling from H). It turns out that we can

also reinterpret this deterministic variant of SHADE in terms

of JADE.

Ensemble JADE (EnJADE), shown in Alg. 3, is a variant

of JADE which, instead of a single pair of µF and µC

parameters, has an arrays MF = (MF1, · · · ,MFH) and

MC = (MC1, · · · ,MCH). These arrays store MFi and

MCi values which are used to generate Fi,t and Ci,t val-

ues in lines 7-8. Unlike SHADE in Alg. 2, which samples

uniformly randomly from MF and MC arrays, EnJADE

deterministically accesses the k-th element, where k is simply

incremented at each iteration (modulo H). In other words,

EnJADE has an ensembles of parameters MF and MC,

and cycles deterministically, sequentially using each of the

ensemble members in turn. This is exactly equivalent to the

deterministic variant of SHADE which always chooses the H-

th elements of the history arrays.2

Note that we are not claiming that EnJADE is a particularly

novel algorithm. The significane of EnJADE is the new

perspective provided by considering MF and MC not as a

“history” which implies the importance of temporal ordering,

but as H completely independent members of a parameter

ensemble among which the search allocates effort. enabling a

new, simple intuitive understanding of its behavior. It is not

2The use of an ensemble of parameters is related to [13], but EPSDE does
not update its pool of F and C values.

clear that “Maintaining a history and always using the H-

th index” has an obvious intuitive motivation/interpretation –

why H , as opposed to some other index? In contrast, “cycling

among independent H sets of parameters” has an obvious

intuitive interpretation – In contrast to standard JADE, which

relies on a single µF , µC parameter pair and may fail if

µF and µC are inappropriate for the given search space,

EnJADE diversifies search among H different µF and µC

pairs, allocating equal effort to each such pair in a round-robin

manner.

Importantly, we can also reinterpret SHADE (with random

history sampling) in terms of the new framework provided

by EnJADE. Original SHADE can be viewed as a variant of

EnJADE, but instead of allocating resources equally among

the ensemble elements equally in a round-robin manner (1

member selected each generation), original SHADE schedules

effort in randomized order, where many members are selected

each generation (each individual uses a possibly different

element, Alg. 2, line 7. If this ordering (round-robin/cyclic vs.

randomized) was the only difference between original SHADE

and EnJADE, there should not be such a significant difference

between original SHADE vs. EnJADE (SHADE with deter-

minsitic history sampling), as in the long-run, randomized

sampling and round-robin allocation (1 member used each

generation) should converge to roughly the same allocation.

In addition to the order in which the ensemble members

are selected/sampled, another, important difference between

original SHADE and EnJADE is the index of the ensemble

members which are updated after trial vector generation.

EnJADE selects (round-robin) the k-th pair MFk and MCk

from the ensemble, uses them to generate (F,C) pairs which

are then used for trial vector generation, and then, the Lehmer

means of successful pairs are used to update MFk and MCk,

i.e., each generation, we update the k-th pair in the ensemble

based on successes in that generation of the previous values

in that k-th pair.

In contrast, original SHADE randomly selects for each

individual the ri’th pair from the ensemble (history) and

uses the pair to generate (F,C) pairs used for trial vector

generation. However, instead of updating the ri-th element of

the ensemble/history, the k-th element (where k incremented

per generation cyclically from 1.,,,H) is updated. Thus, in

original SHADE, the ensemble/history element (k-th) which is

updated/overwritten at the end of the generation is not likely

to be strongly related to the (ri-th) ensemble/history elements

used to generate (F,C) values during the generation.

V. EXPERIMENTAL EVALUATION OF ENJADE

We experimentally compared the performance of the follow-

ing configurations of JADE and SHADE. The implementation

of SHADE evaluated is SHADE 1.1.1, the code from the

original author of SHADE [14]. All of the other evaluated

algorithms were implemented by modifying SHADE 1.1.1.

• JADE: Population 100, archive rate 2 and pbest rate 0.1.

• SHADE: history sizes H = 15. Other parameters are the

same as JADE.



• SHADE with Restarts (R4): Same as SHADE, except that

R4 restarts 4 times (every 300,000/4 generations).

• EnJADE: Ensemble JADE with ensemble size 15.

R4 is a simple control configuration to test whether the

proposed ensemble methods perform differently than simply

restarting the search at fixed intervals (we also tried sev-

eral other restart configurations and this R4 was the best-

performing among them).

Table II compares the mean best fitnesses found by each of

the algorithms/configurations above vs. EnJADE, according to

the Wilcoxson ranked-sum test（p = 0.05; +: better than En-

JADE, -: worse than EnJADE, ≈: no significant difference）.

Figure 3 compares the overall performance of EnJADE,

SHADE (H15, corresponds to the standard H = D/2 setting),

SHADE with Restarts and JADE, on D = 30 dimensional

problems, according to the cumulative probability of achieving

a target fitness, where the target fitness is the median fitness

achieved among all trials for each problem (48×4algorithms).

Fig. 3: Comparison of EnJADE, SHADE, and JADE. Cumulative
probability of achieving target fitness (y) vs. number of fitness
evaluations (x), for CEC2014 problems, D = 30 dimensions
(48trials × 30problems = 1440 trials per algorithm). The target
fitness is the median fitness achieved among all trials for each
problems (48trials/algorithm × 4algorithms = 192).

Overall, Figure 3 and Table II show that EnJADE out-

performs SHADE, JADE, and SHADE with restarts. Table

II shows that EnJADE tends to outperform SHADE on the

multimodal and hybrid functions (F12∼F30). SHADE with

restarts performs worse than SHADE and EnJADE. Thus,

adding an ensemble to JADE (EnJADE) seems to result in

better performance overall than success history and restarts

(SHADE with restarts).

A. Analysis of Search Behavior

In addition to the search performance, we analyzed the

difference in search behavior, as indicated by the distribution

of (F,C) parameter values generated by the parameter adap-

tation mechanisms during search. In the same experimental

runs as the performance comparison below, we collected all

(F,C) values for all algorithms, all problems, and all trials.

From this, we obtained sample probability distributions Pa,i

for algorithm configuration a and problem i (data from all 48

trials is included in Pa,i.

TABLE II: Comparison of EnJADE(H=15), JADE(H=1),
SHADE(H=15), and SHADE(H=15, 4 times a quarter evaluations)
with Restarts on CEC14 benchmark problems (D=30 dimensions).
Mean of best objective function values found (48 runs) The +/-/≈
symbols indicate result of Wilcoxon ranked-sum est vs. our proposed
method, EnJADE. (+: better than EnJADE, -: worse than EnJADE,
≈: no significant difference).

EnJADE JADE Restarts SHADE

F1 4.39E+2 ≈ 2.02E+2 - 2.14E+4 ≈ 1.39E+2

F2 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00

F3 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00

F4 0.00 ≈ 2.64 - 7.47 ≈ 1.32

F5 2.01E+1 - 2.02E+1 - 2.04E+1 - 2.01E+1

F6 2.59E-1 - 1.62 - 8.41E-1 - 9.19E-1

F7 1.54E-4 - 2.21E-3 ≈ 3.08E-4 ≈ 3.59E-4

F8 0.00 ≈ 0.00 - 1.41E+1 ≈ 0.00

F9 1.74E+1 ≈ 1.83E+1 - 5.37E+1 + 1.37E+1

F10 6.94E-3 + 3.04E-3 - 3.15E+2 ≈ 5.21E-3

F11 1.31E+3 - 1.50E+3 - 3.10E+3 ≈ 1.43E+3

F12 1.15E-1 - 2.13E-1 - 5.52E-1 - 1.57E-1

F13 1.90E-1 - 2.13E-1 - 2.29E-1 - 2.13E-1

F14 2.38E-1 - 2.60E-1 - 2.53E-1 ≈ 2.46E-1

F15 2.50 - 2.76 - 6.27 ≈ 2.50

F16 8.13 - 9.22 - 1.05E+1 - 9.16

F17 1.10E+3 ≈ 1.07E+3 ≈ 1.06E+3 ≈ 1.03E+3

F18 5.48E+1 - 8.04E+1 - 6.53E+1 ≈ 5.07E+1

F19 3.09 - 5.50 - 5.39 - 4.60

F20 1.04E+1 - 1.52E+1 - 2.11E+1 - 1.44E+1

F21 2.76E+2 ≈ 3.14E+2 ≈ 2.54E+2 ≈ 2.74E+2

F22 1.19E+2 ≈ 8.85E+1 - 2.15E+2 ≈ 9.96E+1

F23 3.15E+2 ≈ 3.15E+2 ≈ 3.15E+2 ≈ 3.15E+2

F24 2.25E+2 - 2.33E+2 - 2.27E+2 - 2.27E+2

F25 2.03E+2 ≈ 2.03E+2 ≈ 2.03E+2 ≈ 2.03E+2

F26 1.02E+2 - 1.00E+2 - 1.00E+2 ≈ 1.00E+2

F27 3.29E+2 - 3.68E+2 - 3.29E+2 - 3.29E+2

F28 8.31E+2 - 8.64E+2 - 8.47E+2 - 8.48E+2

F29 7.25E+2 ≈ 7.16E+2 - 7.57E+2 ≈ 7.24E+2

F30 1.80E+3 - 2.56E+3 ≈ 1.93E+3 ≈ 1.98E+3

We computed KL(Pa,i, Pb,i), the Kullback-Leibler diver-

gence between distributions Pa,i vs. Pb,j , for each prob-

lem, between algorithm pairs a and b. The KL-divergence

KL(Pa,i, Pb,i) indicates the similarity in the distribution of

(F,C) values in Pa,i and Pb,i and is therefore a rough

indicator of the difference in search behavior between algo-

rithms a and b on problem i. We further compute the sum of

these KL-divergences between algorithms a and b across all

problems,
∑

i∈F1,...,F30
KL(Pa,i, Pb,i), which indicates the

overall difference in search behavior between algorithms a
and b on the 30 problems in the CEC14 benchmark set.

(a) (b)

Fig. 4: Comparison of (F,C) values generated by EnJADE, JADE,
SHADE, and SHADE with Restarts (“Re-SHADE”). The numbers
indicate the sum of the KL-divergence between the distribution of F
and C values generated during search.

Figure 4 shows pairwise comparisons of∑
i∈F1,...,F30

KL(Pa,i, Pb,i) for both F and C. The

differences between EnJADE vs. SHADE and EnJADE vs.

JADE are much bigger than SHADE vs. JADE, indicating

that although EnJADE can be viewed as a small modification



to SHADE, the behavior is quite different. Overall, for both

F and C, SHADE with restarts has the largest divergence

from SHADE and JADE.

VI. ENSEMBLES AND POPULATION REDUCTION

LSHADE [9] is a variant of SHADE which reduces the

size of the population during search according to a linear

reduction schedule. The intuitive motivation for population

reduction is that initially, the search uses a standard population

size to avoid committing too early to one area of the search

space (possible traps), but as the search progresses, search is

intensified by reducing population size so that it searches for

a (local) optimum in a smaller region.

LSHADE has been shown to perform significantly better

than SHADE, and most of the SHADE variants which have

ranked highly on recent CEC competitions have been based

on LSHADE. As population reduction is orthogonal to the

parameter adaptation mechanism, EnJADE can be straight-

forwardly to LEnJADE (EnJADE with linear populatoin re-

duction). Thus, we evaluate our proposed ensemble scheme

with population reduction, to verify whether the performance

improvement observed in the previous section can also be

obtained when the base algorithm is more competitive.

We evaluate LEnJADE using the same population reduction

schedule as in [9]. For LSHADE, we use the LSHADE 1.0.1

C++ code by the original author of LSHADE [15]. LEnJADE

was implemented by modifying LSHADE 1.0.1. We used

the same CEC14 benchmarks (D = 10, 30 dimensions) and

experimental settings as in Sec. V and compared (1) LSHADE:

success history sizes H = 15. Population 100, archive rate 1.4

and pbest rate 0.11. (2) LJADE: same parameters as LSHADE.

(3) LEnJADE: Ensemble JADE with ensemble size 15.

Table III compares the mean best fitnesses found by each of

the algorithms above vs. LJADE, according to the Wilcoxson

ranked-sum test（p = 0.05; +: better than LSHADE, -: worse

than LSHADE, ≈: no significant difference）.

Figure 5 compares the overall performance of LEnJADE, as

well as EnJADE, LSHADE, and SHADE (EnJADE, LSHADE,

and SHADE data are reused from the experiment in Sec. V),

according to the cumulative probability of achieving a target

fitness, where the target fitness is the median fitness achieved

among all trials for each problems (48××4algorithms).

Figure 5 and Table III show that LEnJADE has the best

overall performance among all of the evaluated algorithms.

VII. SUCCESS HISTORIES AND ROBUSTNESS

We have shown above that on the standard CEC2014

benchmarks, the use of success histories is not necessary in

order to improve upon the performance of JADE, and that

the performance benefits from the diversity provided by the

success history mechanism in SHADE can be achieved (and

even exceeded in some cases) by applying a straightforward

ensemble mechanism to JADE. A natural question is whether

the success history mechanism can be entirely replaced by

ensembles, or whether there are some cases where success

histories offer a clear advantage compared to ensembles.

Fig. 5: Comparison of LEnJADE, LSHADE, and LJADE. Cu-
mulative probability of achieving target fitness (y) vs. number of
fitness evaluations (x), for CEC2014 problems, D = 30 dimensions
(48trials × 30problems = 1440 trials total per algorithm). The
target fitness is the median fitness achieved among all trials for each
problem (48trials/algorithm × 4algorithms = 192 trials).

TABLE III: Comparison of LEnJADE vs. LSHADE (CEC2014
benchmarks, D = 30 dimension). Mean of best objective function
values found (48 runs) The +/-/≈ symbols indicate result of Wilcoxon
ranked-sum test vs. our proposed method LEnJADE (p=0.05) (+:
better, -: worse, ≈: no significant difference).

LEnJADE LJADE LSHADE LEnJADE LJADE LSHADE

F1 5.13E+02 + 3.52E+02 + 4.40E+02 F16 8.53 ≈ 8.48E+00 - 8.79

F2 0 ≈ 0 ≈ 0 F17 1.05E+03 ≈ 1.13E+03 ≈ 1.05E+3

F3 0 ≈ 0 ≈ 0 F18 5.40E+01 - 6.45E+01 ≈ 5.91E+1

F4 1.35 ≈ 6.6 ≈ 0 F19 3.18 - 4.77E+00 - 4.01

F5 2.00E+01 - 2.00E+01 - 2.00E+01 F20 1.07E+01 - 1.77E+01 - 1.79E+1

F6 3.50E-01 - 2.9 - 1.40E+00 F21 2.35E+02 ≈ 2.60E+02 ≈ 2.52E+2

F7 2.06E-04 - 2.92E-03 ≈ 5.14E-04 F22 9.76E+01 ≈ 8.46E+01 ≈ 8.95E+1

F8 0 ≈ 0 ≈ 0 F23 3.15E+02 ≈ 3.15E+02 ≈ 3.15E+2

F9 1.80E+01 + 1.55E+01 + 1.33E+01 F24 2.25E+02 - 2.32E+02 - 2.27E+2

F10 1.30E-02 + 3.90E-03 ≈ 1.82E-02 F25 2.03E+02 + 2.03E+02 ≈ 2.03E+2

F11 1.39E+03 ≈ 1.33E+03 ≈ 1.40E+03 F26 1.00E+02 - 1.00E+02 - 1.00E+2

F12 4.79E-02 - 1.08E-01 - 9.03E-02 F27 3.24E+02 - 3.68E+02 - 3.25E+2

F13 1.46E-01 - 1.99E-01 - 1.88E-01 F28 8.27E+02 - 8.56E+02 - 8.41E+2

F14 2.28E-01 - 2.60E-01 - 2.44E-01 F29 7.28E+02 ≈ 7.25E+02 ≈ 7.28E+2

F15 2.41 + 2.11E+00 + 1.92E+00 F30 1.49E+03 - 2.17E+03 ≈ 1.65E+3

One possible advantage of success histories over ensembles

of distributions is robustness during search. In JADE/SHADE

and their variants, the parameters controlling F,C generation

are updated when successful trial vectors are generated. How-

ever, in some situations, it is possible that such a success is

“accidental”, e.g., in problems with noisy fitness functions, a

“bad” (F,C) might result in a successful trial generation.

We evaluated the robustness of EnSHADE, SHADE, and

JADE, by injecting noise as follows, every N generations

(N = 100). instead of inserting the successful meanL(SF )
and meanL(SC) into sets MFk and MCk in Alg. 2, lines 19-

20 (and similarly for JADE and EnJADE), we inject extreme

F and C values, Fext → MFk, Cext → MCk. In the “NL”

noise setting, Fext and Cext are 0.1. In the “NH” noise setting,

Fext and Cext are 0.9.

Each column in Table IV compares the result (best objective

function values found, 48 runs) of an algorithm configuration

with artificial noise injection vs. the noiseless algorithm,

e.g., The (SHADE, population 20, NL) column compares

SHADE with population 20, NL noise injection vs. SHADE

with population 20. Comparison results are according to the

Wilcoxson ranked-sum test（p = 0.05; +: noisy configuration

performed better than standard configuration, -: noisy config-



uratoin performed worse than standard configuration, ≈: no

significant difference. For both population sizes 20 and 100,

as well as both NL and NH noise, the performance of SHADE

is affected less by the injected noise, compared to JADE and

EnJADE, as indicated by the larger number of “≈” results.

This shows that maintaining a discrete success history results

in more stable/robust behavior than maintaining a smaller

set of distribution means. However, note that in some cases,

noise improves performance, as indicated by the ’+’ results,

so although stability is often desirable, it does not necessarily

mean “better performance”. Intentional noise injection aimed

to improve performance is a direction for future work.

TABLE IV: Evaluating the stability/robustness of EnJADE, JADE,
and SHADE: Each column compares the result (best objective
function values found, 48 runs) vs. the noiseless algorithm, e.g.,
the (SHADE, population 20, NL) column compares SHADE with
population 20, NL noise injection vs. SHADE with population 20.
Comparison according to Wilcoxson ranked-sum test（p = 0.05; +:
noisy configuration performed better than standard configuration, -:
noisy configuratoin performed worse than standard configuration, ≈:
no significant difference）. Noise is injected every 100 generations.
NL: inject F ,C=0.1, NH: inject F ,C=0.9.

population size 20 population size 100

EnJADE JADE SHADE EnJADE JADE SHADE

noise NL NH NL NH NL NH NL NH NL NH NL NH

≈ 24 21 24 18 30 25 24 22 22 20 22 28

+ 5 1 6 2 0 1 0 2 3 6 0 1

- 1 8 0 10 0 4 6 6 5 4 8 1

F1 ≈ + s ≈ ≈ ≈ - - - + - ≈

F2 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F3 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F4 + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F5 ≈ - ≈ - ≈ - - ≈ ≈ + ≈ ≈

F6 ≈ - + - ≈ ≈ ≈ ≈ ≈ + ≈ ≈

F7 ≈ ≈ + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F8 + - ≈ - ≈ ≈ ≈ ≈ ≈ - ≈ ≈

F9 ≈ - ≈ - ≈ ≈ ≈ - ≈ - - ≈

F10 ≈ - ≈ - ≈ ≈ ≈ - + - ≈ ≈

F11 ≈ - ≈ - ≈ - ≈ ≈ ≈ - - ≈

F12 ≈ ≈ + - ≈ - - + ≈ + ≈ ≈

F13 + ≈ ≈ ≈ ≈ ≈ - ≈ ≈ + - ≈

F14 ≈ - ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ - ≈

F15 ≈ ≈ ≈ ≈ ≈ ≈ - ≈ - ≈ ≈ -

F16 + - ≈ - ≈ - - - - ≈ ≈ ≈

F17 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ + ≈ ≈ ≈

F18 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ + ≈ - ≈

F19 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ + ≈ ≈

F20 ≈ ≈ + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F21 ≈ ≈ + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F22 ≈ ≈ ≈ - ≈ ≈ ≈ ≈ ≈ ≈ ≈ +

F23 ≈ ≈ + + ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F24 ≈ ≈ ≈ ≈ ≈ ≈ ≈ - ≈ ≈ ≈ ≈

F25 ≈ ≈ ≈ - ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F26 - ≈ ≈ ≈ ≈ ≈ ≈ + - + - ≈

F27 + ≈ ≈ ≈ ≈ + ≈ ≈ ≈ ≈ ≈ ≈

F28 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈

F29 ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ - ≈ - ≈

F30 ≈ ≈ ≈ + ≈ ≈ ≈ - ≈ ≈ ≈ ≈

VIII. CONCLUSION

Despite the success of SHADE-based adaptive DE and pro-

liferation of SHADE variants, its main, distinguishing feature,

the success history, has not been well-understood, and most

SHADE variants continue to use the success history in the

same way as the original SHADE. We reinvestigated the use

of success history, and showed that:

(1) The standard approach of uniform random sampling

from the history does not result in the best performance –

sampling from a fixed location in the history performs surpris-

ingly well. (2) This fixed sampling strategy is equivalent to and

can be reinterpreted more simply as EnJADE, which is JADE

with an ensemble of µC and µF pairs, among which effort

is allocated equally in a round-robin strategy (1 member per

generation), and the ensemble member used in that generation

is updated. (3) EnJADE is competitive with SHADE; per-

formance continues to be competitive when linear population

reduction is used. (4) With respectness of robustness/stability

of search behavior, which was the original motivation given for

the success history [7], SHADE performance was more stable

than JADE and EnJADE when noise was artificially injected

into the parameter adaptation mechanisms.

Thus, we have shown that the “history” arrays used by

SHADE can be reinterpreted and used with a different

sampling/update policy, resulting in significant improvement

compared to SHADE. Although it seems that the update

policy (updating the same element which is used during that

generation to generate F,C pairs) is likely important, it is

less clear whether round-robin, equal allocation of sampling

is important. More in-depth investigations of the update and

sampling policies is a direction for future work.
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