
Parallel Differential Evolution Algorithms for
Stackelberg-Nash Bilevel Optimization Problems

1st Thiago Tavares Magalhães
National Laboratory for Scientific Computing

Petrópolis, Brazil
thiagotm@lncc.br

2nd Helio J. C. Barbosa
National Laboratory for Scientific Computing1

Federal University of Juiz de Fora2

{1Petropólis, 2Juiz de Fora}, Brazil
hcbm@lncc.br

Abstract—The Bilevel Programming Problems with inter-
dependent followers are characterized by three or more op-
timization problems nested in a hierarchical structure of the
type leader-followers whose solution configures a Stackelberg-
Nash equilibrium game. Their complexity and structure make
many of them almost impracticable for solving via classical
deterministic methods. Thus, population-based metaheuristics
have been used to handle this class of problems. However, while
the meta-models-based implementations are not indicated to
tackle the inter-dependent followers BLPs, their nested structure
can greatly increment the already high computational cost of
the metaheuristics. Thus, we offer and study the three first
parallel models for solving Stackelberg-Nash equilibrium BLPs
via metaheuristics. All our parallel approaches are scalable and
can be efficiently executed in individual multi-cores computing
nodes and in high-distributed computational clusters. We re-
ported relevant speedups for different computing architectures,
which endorsed the potential of the proposals of this work as
relevant tools to enable the study of increasingly larger and
complex inter-dependent followers BLPs.

Index Terms—Bilevel Programming, Stackelberg-Nash game,
Parallel Computing, Parallel Metaheuristics

I. INTRODUCTION

The Bilevel Programming Problems (BLPs) constitute a use-
ful class of models to describe many optimization problems,
involving multiple agents, frequent in the real world. In spite
of the additional challenges in handling BLPs, the literature
points out a wide set of applications. We can cite works
related to network problems [5], economics [6], agriculture
[7], biotechnology [8], among others. Surveys about BLP real-
world applications can be found in [9] and [10].

However, relating a diverse set of problems in a single hier-
archical structure, makes BLPs considerably more complex to
handle than the common single-level programming problems.
Thus, given some important limitations of the classical meth-
ods, BLPs are increasingly handled via metaheuristics, which
do not require strong conditions or prior knowledge about the
objective functions that describe the problem.

However, the use of iterative and stochastic methods such
as the populational metaheuristics to solve BLPs usually
leads to notably high computational costs. This barrier is
responsible for restricting the literature for solving BLPs of
few dimensions, in comparison with the traditional single-level

We thank the support from CAPES (grant 1577622/2016) and CNPq (grant
312337/2017-5).

optimization works [26]. Also, we rarely find in the literature
examples with a high number of followers being tackled. As an
alternative to transpose these challenges, in [2] we suggested
high-performance computing models aiming at exploiting both
the natural parallelism of the metaheuristics [1] as well as the
modern hardware resources available. Efforts of this nature
aim at enabling the proper solution of increasingly complex
and high-dimensional BLPs. In spite of that, the literature
still lacks parallel solutions to handle an important type of
BLPs: BLPs with inter-dependent followers, which arise in the
Stackelberg-Nash model, briefly described in the following.

II. BILEVEL PROGRAMMING PROBLEMS WITH
INTER-DEPENDENT FOLLOWERS

The Bilevel Programming Problems describe cases that
aggregate different agents aiming at different objectives that
mutually influence each other in a hierarchical structure. For
example, some competing companies making decisions aiming
at maximizing each one’s profit. Assuming that one of them
– the leader –, acts first, all others – the followers – react to
the leader’s decision. This hierarchical structure of a leader
influencing followers and be influenced by them characterizes
the Stackelberg Game Model. In addition, there are cases
where followers also influence each other. Those will be re-
ferred to here as the multiple inter-dependent followers cases.
Solving problems of this type implies finding the Stackelberg
Equilibrium – between leader and followers – and also the
Nash equilibrium – in the lower hierarchical level, among
followers. We refer to problems of this nature as Stackelberg-
Nash Problems [4]. Denoting by F (x, y1, . . . , ynf) the objec-
tive function to be optimized by the leader, fi(x, y1, . . . , ynf)
the objective function to be optimized by the i-th follower
and gi(x, y1, . . . , ynf) the constraint set for the i-th follower,
a Stackelberg-Nash model can be written as in the Eq. 1, and
an inter-dependent followers BLP arises.

minx∈XF (x, y1, . . . , ynf)

subject to G(x, y1, . . . , ynf) ≤ 0

minyi∈Yifi(x, y1, . . . , ynf)

subject to gi(x, y1, . . . , ynf) ≤ 0

(1)

In BLPs, we refer to the leader and follower optimization
functions as upper- and lower-level problems, respectively. For
the inter-dependent followers cases, any lower-level function
fi depends on the leader xi variables and also on all lower-
level y1, . . . , ynf. Thus, the followers share information with
each other, influencing and being influenced mutually.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

III. RELATED WORKS AND GOALS

Although many works employ deterministic methods to
handle BLPs, the complexity of these problems and some
limitations of the traditional methods justify the increasing
use of metaheuristics to solve problems of this class. In
this context, the literature reports a set of solvers that nest
two or more metaheuristics for solving independent-followers
[13] [14] [15] and inter-dependent-followers BLPs [22] [23]
[24] [25]. Also, there are approaches that hybridize exact
and stochastic methods [12], that modify multi-objective al-
gorithms in order to search for the Nash-equilibrium using
the Nash domination concept [32], and others that employ
meta-models aiming at reducing the high computational cost of
the nested-metaheuristics-based methods [16] [17]. However,
the literature still is restricted to BLPs with a few followers
and low dimensionality, in comparison to the single-level
optimization problems [26]. Especially concerning BLPs with
inter-dependent-followers, their structure makes it high costly
to solve via the aforementioned nested-based methods and
the computational complexity of the tasks required to find
a set of solutions based on the Nash domination concept
increases significantly as the number of followers increase.
Also, the complexity of BLPs is a barrier to the achievement
of satisfactory results via techniques based on approximations,
like the metamodel-based methods.

Thus, in [11] we indicated the feature known as natural par-
allelism of metaheuristics as a potentially important alternative
to enable the development of less execution time demanding
optimization algorithms without performing approximations
or reducing optimization capability. We offered two parallel
computing models based on the Bilevel Differential Evolu-
tion (BLDE), a recent nested metaheuristics method initially
developed to handle BLPs with independent followers [20].
Reporting promising performances in a single machine, our
models were later validated in a multiple-node environment
[2]. Those efforts seem to be the first ones in the literature
that associated modern high-computing resources with nested
metaheuristics aiming at improving the handling of BLPs. In
turn, the BLDE algorithm was improved in [21] to enable
the solution of BLPs with inter-dependent followers. However,
for this class of BLPs no proposal has been reported in the
literature in order to provide parallel computing solvers.

Therefore, in this work we design and validate three parallel
models also based on the BLDE algorithm, but able to achieve
the Stackelberg-Nash equilibrium that characterizes the inter-
dependent followers BLPs. Thus, jointly with our previous
proposals, we hope that the efforts of which this work is part
met an important need in the BLPs literature, employing high-
performance computing in order to enable the proper treatment
of increasingly complex and large BLPs, for both independent-
and inter-dependent followers cases.

IV. DIFFERENTIAL EVOLUTION ALGORITHMS FOR BLPS

A. Canonical Differential Evolution
Proposed by Storn & Price, the Differential Evolution (DE)

is a stochastic metaheuristic to solve optimization problems

[18]. The DE functioning is based on the evolution of a
population of candidate solutions that probabilistically tends
to become increasingly fitter to solve a given optimization
problem F (−→x). In this context, a candidate solution −→x is
considered promising according to F (−→x) value. We referred
to this evaluation value of a solution as fitness value. Thus,
the DE process occurs over a number gen of generations,
employing the DE movement operators known as mutation and
crossover (or recombination) and using a selection criterion
that maintains promising solutions for more generations in the
evolutionary process. For a population of np individuals, the
canonical DE algorithm is simply presented in the Alg. 1 and
in the Fig. 1.

Algorithm 1: Simplified DE algorithm
Create random initial population with np individuals
−→x i,G and evaluate all them doing F (−→x i,G);

for G← 1 to gen do
for i← 1 to np do

Generate trial vector −→u i,G+1 via DE operators;
Evaluate −→u i,G+1 doing F (−→u i,G+1);
Compare F (−→x i,G) and F (−→u i,G+1) and keep
only the best in the next generation;

Generate initial
population

Recombination

Evaluation

Mutation

Selection

Repeat this gen times

Evaluation

Fig. 1. Simple DE algorithm functioning

Controlled by the parameters F and CR, there are different
variants of mutation and crossover in DE [19] that are applied
to all individuals in the population, one at a time, for each
iteration. The current individual that is undergoing mutation
and recombination, xi, is named target vector, whilst the new
candidate solution that results from this operation, ui, is named
trial vector. In addition, note that the higher gen and np
parameters, more function evaluations, mutations, crossovers
and comparisons are performed, increasing the computational
cost of the DE.

Thus, characterized by its simplicity and robustness, DE
constitutes a population-based iterative technique useful to
satisfactorily solve a wide range of optimization problems,
being increasingly highlighted in the literature. However, the
canonical DE can only handle single-level optimization prob-
lems.

B. BLDE for Independent Followers Bilevel Problems

In order to enable the solution of BLPs via DE operators,
[20] proposed the Bilevel Differential Evolution (BLDE).

Basically this solution consists of hierarchically nested DE
algorithms, one handling the upper-level variables of the
BLP and others handling the lower-level variables of the
followers. Denoting by < −→x i,G,

−→y i,1,G, . . . ,
−→y i,nf,G > the i-

th candidate solution at the G-th iteration composed of upper-
level variables −→xi and nf −→y i,j,G lower-level variables, the
BLDE algorithm is presented in the Alg. 2.

Algorithm 2: Simplified BLDE algorithm
Create random initial population with np individuals;
< −→x i,G,

−→y i,1,G, . . . ,
−→y i,nf,G > and evaluate all them

doing F (−→x i,G,
−→y i,1,G, . . . ,

−→y i,nf,G);
for G← 1 to gen do

for i← 1 to np do
Generate trial vector −→u i,G+1 via DE operators;
for j ← 1 to nf do

Get the optimum −→y i,j,G+1 for
fj(
−→u i,G+1,

−→y i,j,G+1) via follower DE;
Evaluate < −→u i,G+1,

−→y i,1,G+1, . . . ,
−→y i,nf,G+1 >

doing F (−→u i,G+1,
−→y i,1,G+1, . . . ,

−→y i,nf,G+1);
Compare F (−→x i,G,

−→y i,1,G, . . . ,
−→y i,nf,G) and

F (−→u i,G+1,
−→y i,1,G+1, . . . ,

−→y i,nf,G+1) and
keep only the best in the next generation;

Thus, in comparison with the canonical DE algorithms,
the BLDE performs nf complete and self-contained DE
executions for each trial vector that arises along the itera-
tive process. It ensures that for each new candidate solution
< −→x ,−→y i, . . . ,

−→y nf > all lower-level variables −→y i are the ones
that optimize fi(−→x ,−→y i). Also, evaluating regarding the upper-
level problem this new trial with its optimized lower-level
variables, the BLDE alters the traditional DE behavior in order
to guide the search for solutions that tend to the Stackelberg
equilibrium.

C. BLDE for Inter-dependent Followers Bilevel Problems

For BLPs with inter-dependent followers, a BLDE able to
find the Nash equilibrium between the lower-level variables
was developed in [21]. The difference between this approach
and the BLDE for Independent Followers BLPs is that for
each trial vector, the lower-level variables also are evolved in
an additional iterative process that repeats Nash cycles times,
as presented in the Alg. 3.

Algorithm 3: Simplified Nash equilibrium algorithm
Generate trial vector −→u i,G+1 via DE operators;
for k ← 1 to n cycles do

for j ← 1 to nf do
Get the optimum −→y i,j,G+1 for
fj(
−→u i,G+1,

−→y i,j,G+1, . . .
−→y i,nf,G+1) via

follower DE;

Thus, for a BLP with two followers, for each new trial
vector < −→u ,−→y 1,

−→y 2 > from the upper level population, −→y 1

is first optimized for f1(−→u ,−→y 1,
−→y 2) considering a randomly

generated −→y 2. Then, this obtained −→y 1 is fixed and −→y 2 is
optimized for f2(

−→u ,−→y 1,
−→y 2). Thus, for nash cycles times,

the follower variables are alternately optimized in order to
provide lower-level variables in Nash equilibrium.

Considering all this structure, we can easily note the reasons
that make the interdependent-followers BLPs handling via
nested metaheuristics a high computing demanding task. For
each trial vector that arises in a given generation, a series
of other auto-complete DE algorithms need be performed in
order to achieve the Nash Equilibrium between the followers.
A simple and sensitive change of the budget parameters at
any hierarchical level has the potential to greatly intensify the
computational costs.

V. PARALLEL MODELS FOR INTER-DEPENDENT
FOLLOWERS PROBLEMS

Based on the BLDE for inter-dependent followers problems,
we implemented three scalable parallel models to achieve the
Stackelberg-Nash Equilibrium. All of them aim at exploring
the hierarchical BLP structure and the natural parallelism of
the population-based metaheuristics.

A. The Upper-level Parallel Model

The simpler approach is named upper-level parallel model
(P.M.1) and divides the upper-level population of trial vec-
tors in a distributed-memory environment. Firstly, the DE
movement operators are applied to the upper-level population
and a new population of trial vectors – with only the values
of the upper-level variables – is generated. Thus, denoting
by n proc the number of processing instances, the upper-
level population with its respective trial vectors is partitioned
into n proc sections of np/n proc individuals. More deeply,
a master process is designed to distribute the upper-level
population sending np/n proc individuals to each available
processing instance. After this, as each section is assigned to
one processing instance, the sections are handled in parallel.
Each processing instance evolves the lower-level variables for
all the trial vectors received, performing sequentially new DE
instances according to the Nash equilibrium routine. The Fig.
2 provides a simple logical flowchart of this procedure.

Fig. 2. Upper-level parallel model.

Thus, each trial vector with its optimized lower-level vari-
ables is evaluated regarding the upper-level problem and com-
pared with its respective target vector. After handling all its
received trial vectors, each process sends the best individuals
of its section – among target and trial vectors – back to the

master process, which aggregates all into a complete upper-
level population and again applies the DE movement operators.

B. The Upper- and Lower-level Parallel Models

Besides the upper-level parallel model, we implemented two
approaches that partition the upper-level population dedicating
some hardware resources to enable the concurrent solution of
the lower-level problems for each candidate solution. Thus, we
named them as upper- and lower-level parallel models. The
first one (P.M.2a) works in a completely distributed-memory
environment, while the second (P.M.2b) is a hybrid strategy
that handles the lower-level variables in a shared-memory
environment.

In the P.M.2a the population is partitioned into n proc
nf

sections of np
n proc/nf candidate solutions. Thus, a group of

nf processing instances are allocated for each section, one
per follower, which will enable the parallel optimization of
the follower’s variables inside each upper-level population
partition, differently from what occurs in P.M.1. The Fig. 3
presents a general view of this approach.

Fig. 3. Upper- and lower-level parallel model.

More deeply, an upper-level partition is assigned to nf
distributed-memory processing instances, each one of them
receiving a copy of the same np

n proc/nf individuals and treating
the lower-level variables of one follower. However, since
in P.M.2a the followers are handled by different processing
instances in a distributed-memory approach, a given follower
cannot access the lower-level variables assigned to another,
except through message passing. Thus, considering that our
solvers are handling Stackelberg-Nash BLPs, at the end of
each Nash cycle an all-to-all communication between the pro-
cessing instances of the same partition will be needed to share
the lower-level variables and enable the Nash-equilibrium
computing. Also, as the upper-level objective function value
depends of all the lower-level variables, an additional all-to-
all communication is performed at the end of the last Nash
cycle to provide all the evolved lower-level variables for each
process by the same section. This occurs in order to enable
that each processing instance can evaluate regarding to the
upper-level problem, compare and select in parallel np

n proc
individuals of its respective section. Finally, the master process
can receive all individuals and aggregate them into a complete
upper-level population, as occurs in P.M.1.

In turn, for P.M.2b the upper-level is sectioned in a
distributed-memory environment exactly as occurs in P.M.1.
Are assigned np/n proc upper-level trial vectors for each one
of n proc processing instances. However, at the lower-level
each process forks into nf processing threads. Thus each
thread evolves via DE the lower-level variables corresponding

to one follower, in parallel and in a shared-memory environ-
ment. As a result, at the end of each Nash cycle, the followers
can share information without the need to pass messages. The
same occurs after the last Nash cycle to enable that the trial
vectors can be evaluated in parallel regarding to the upper-
level problem. Briefly, the P.M.2b is a hybrid upper- and lower-
level parallel model that employs the shared-memory paradigm
as an alternative to provide the concurrently handling of the
followers eliminating the all-to-all communications that are
part of the P.M.2a.

For all models, we employed the method proposed by Deb
for constraints handling, which establishes the following crite-
ria: (i) feasible solutions are preferred to infeasible solutions,
(ii) among feasible solutions the one having better fitness is
preferred and (iii) among infeasible solutions the one having
smaller constraints violation is preferred [27]. Also, regarding
to the DE movement operators, for each target vector, we
perform a draw to select one of the traditional mutation and
recombination configurations rand/1/bin, best/1/bin, target-to-
rand/1/bin and target-to-best/1/bin. For scope reasons, we do
not detail them in this work, but all are exposed in [19].

VI. EXPERIMENTS

Our three suggested parallel models were implemented
using MPI [29] and OpenMP [30] technologies to provide
the distributed- and shared-memory environments, when nec-
essary. A set of experiments was designed in order to study
the time performances of the parallel models, enabling com-
parisons between our strategies considering both a single com-
puting multi-core node and also a highly distributed multiple-
nodes computing architecture.

Thus, to measure execution times, we submitted the models
to the task of handling each one of the Stackelberg-Nash
BLPs described in the Eq. 2 to 5. In the following, we give a
brief description of these problems, and refrain from providing
a detailed discussion about them, in order to maintain the
focus on the execution times and parallelism issues. Deeper
considerations about the problems can be found in [21].

All problems have two followers, where x is the leader’s
variables vector, and y, z the decision variable vectors respec-
tively controlled by the followers. For F1 [21], x ∈ [−5, 5]2,
y, z ∈ [0, 10] and the best solution from the literature gives
F1∗ = 3, f∗

1 = 1, and f∗
2 = 1. For F2 [28], the best solution

reported in the literature gives F2∗ = 22, f∗
1 = 1, f∗

2 = −1.
For F3 [28], the best solution gives F3∗ = 23, f∗

1 = 0,
f∗
2 = 8, better than the first reference solution and obtained in

[21]. Finally, for F4 and F5 [22], x ∈ [0, 1] and y, z ∈ [0, 1].
We named F4 the problem described in the Eq. 5 considering
a maximization problem at the upper-level, with the optimum
solution reported in the literature leading to F4∗ = 0.0185,
f∗
1 = 0, and f∗

2 = 0. In turn, as F5 we consider the problem
denoted by the Eq. 5 in its original formulation, having two

optimum solutions giving F4∗ = 0, f∗
1 = 0, and f∗

2 = 0.

minxF1(x, y, z) = −(x1 + x2)2 +
1

2
(y2 + z2)

s.t. minyf1(x, y, z) = (y − (x1 + 2))2 + ((x2 + 1))2

minzf2(x, y, z) = (y − (x1 + 1))2 + ((x2 + 2))2

(2)

maxxF2(x, y, z) = 7x+ 5y + 8z

s.t. maxyf1(x, y, z) = 3y + z

maxzf2(x, y, z) = y − z

s.t. x+ y + z ≤ 3, −x+ y ≤ 0, y + z ≤ 2,

x− y − z ≤ 1, x, y, z ≥ 0

(3)

maxxF3(x, y, z) = 7x+ 5y + 8z

s.t. maxyf1(x, y, z) = −2y2 − 2yz + 3y

maxzf2(x, y, z) = −yz − z2 + 6z

s.t. x+ y + z ≤ 3, −x+ y ≤ 0, y + z ≤ 2,

x− y − z ≤ 1, x, y, z ≥ 0

(4)

minxF4(x, y, z) = z(x− y − 1

2
)2

s.t. minyf1(x, y, z) = (z − y)2 + (2y − x)2

minzf2(x, y, z) = (y − z)2 +
(2z − x)2

2

(5)

We opted to set the control parameters as close as possible to
the values in the literature. We set F = 0.7 and CR = 0.9. For
all the lower-level problems, we established Nash cycles and
genf as 10× (10+10) in order to maintain 200 generations at
the lower-level (10 iterations for each follower, performed for
10 Nash cycles), and npf = 30. For the upper-level problems,
we configured the leaders with gen = 32 and np = 48. These
values ensure a budget similar to the literature and provide
an upper-level population size that can be equally divided for
various number of sections, which is important to maintain the
load balancing for different configurations of experiments.

Thus, for each problem, we executed the P.M.1 with
{2, 4, 8, 12} processing instances, the P.M.2a with {4, 8, 12}
processing instances and the P.M.2b with {1, 2, 4, 8, 12}
distributed-memory processing instances – which fork into 2
shared-memory processing threads each one. The executions
were performed in a cluster architecture composed by com-
puting nodes with 2 CPUs Intel Xeon E5-2695v2 Ivy Bridge
of 2.4 GHZ and 12 processing cores per CPU. To allow
for performance comparisons between different computing
architectures, we performed all experiments as follows:

• Single node (sn): each test was assigned to a single com-
puting node that executes the complete parallel model.
The parallelism occurs intra-node, according to the 24
processing cores that exist per computing node;

• Multiple nodes (mn): assigning each distributed-memory
processing instance of a parallel model to a different
computing node. Each test was performed by a varied
number of computing nodes, distributing its upper-level
population sections for them.

In addition, we performed sequential BLDE executions for
all problems in order to compute speedups and efficiencies.
The speedup measures the ratio between the sequential and
the parallel execution times, while the efficiency measures
the ratio between the speedup and the number of processing
instances. Each experiment involved 30 independent runs, and
the results are displayed in this work in terms of the medians
of these multiple executions.

VII. RESULTS AND DISCUSSION

Firstly, for all problems, Table I presents the execution
times and the fitness values of the best solutions obtained
by the sequential BLDE implementation. Regarding to the
optimum fitness recorded, similar results were achieved by all
the parallel configurations. This is important as it indicates the
validity of the suggested parallel models as Stackelberg-Nash
problems solvers. However, also for this reason, we focus our
discussion and the next data on execution time variations.

TABLE I
EXPERIMENTS FOR SEQUENTIAL BLDE EXECUTION

Execution Time Data (s) Object. Funct. Values
Prob Min Max Med. StdDev. F f1 f2
F1 10.01 10.09 10.03 0.02 3.0 1.0 1.0
F2 9.58 9.91 9.61 0.12 22.0 1.0 -1.0
F3 9.77 9.85 9.78 0.03 23.0 0.0 8.0
F4 9.94 10.67 9.97 0.20 0.0185 0.0 0.0
F5 9.95 10.11 9.99 0.07 0.0 0.0 0.0

Tables II and III show the execution times for all test
problems. The results were arranged in two Tables for size and
organization reasons. The npr gives the number of distributed-
memory processing instances for each configuration noting
that for P.M.2b each one of them is also forked into nf shared-
memory processing instances. All tables display data from the
executions with a single computing node (sn) and also data
from the configurations that employ multiple computing nodes
(mn).

Following what is shown in Table I, for this set of ex-
periments the problems do not significantly influence the
median execution times. Possibly, the inclusion of specific
BLPs – with relevant differences between evaluation costs
of leader’s and followers’ objective functions, for example –
could motivate different conclusions. However, for our cases
of study, behaviors recorded for a given problem also can be
observed in the other ones.

Firstly, we can note the good speedups provided by our
parallel models. The maximum one was 14.82, reported when
F3 was solved via P.M.2b using a configuration with 12
processing instances and multiple computing nodes. In this
context, the Figs. 4 and 5 show the executions times demanded
by the different configurations of P.M.1 (left) and P.M.2a
(right), respectively for single and multiple computing nodes.

On the other hand, Fig. 6 shows the execution times
demanded by the P.M.2b, for single (left) and multiple (right)
computing nodes. In this case, the curves have two different
values for processes = 1 because the horizontal axis marks

2 4 8 12
Processes

2

4

6

8

10
Ex

ec
ut

io
n

tim
es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

4 8 12
Processes

2

4

6

8

10

Ex
ec

ut
io

n
tim

es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

Fig. 4. Execution times for different configurations of P.M.1 and P.M.2a and
a single computing node

2 4 8 12
Processes

2

4

6

8

10

Ex
ec

ut
io

n
tim

es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

4 8 12
Processes

2

4

6

8

10

Ex
ec

ut
io

n
tim

es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

Fig. 5. Execution times for different configurations of P.M.1 and P.M.2a and
multiple computing nodes

only the distributed-memory processing instances and not the
shared-memory ones. Thus, the highest execution time shown
in the Fig. 6 refers to the BLDE sequential execution, while
the lowest in processes = 1 refers to the P.M.2b configuration
with two processing threads handling the followers for a single
processing instance assigned to the upper-level population. In
addition to the also notable time reduction, we emphasize that
P.M.2b is the only parallel model that reduces execution times
for 12 processing instances. To highlight this, Figs. 7 and 8
present the speedups achieved by all the parallel models, when
solving the problems F1 and F2 respectively, for single (left)
and multiple (right) computing nodes.

1 2 4 8 12
Processes

2

4

6

8

10

Ex
ec

ut
io

n
tim

es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

1 2 4 8 12
Processes

2

4

6

8

10

Ex
ec

ut
io

n
tim

es

Prob 1
Prob 2
Prob 3
Prob 4
Prob 5

Fig. 6. Execution times for different configurations of P.M.2b, for single and
multiple computing nodes

The Figs. 9 and 10, respectively for 4 and 12 distributed-
memory processing instances, show the differences between
the executions times demanded by our parallel models to han-
dle the problem F4 with single (left) and multiple (right) com-
puting nodes. The most notable results concern the P.M.2b,
while P.M.1 and P.M.2a achieve more similar performances. In
addition, we also could analyze the execution times consider-
ing the sum of the distributed- and shared-memory processing
instances, comparing P.M.2a in npr = 8 with P.M.2b in

2 4 6 8 10 12
Processes

0

2

4

6

8

10

Sp
ee
dU

ps

PM1
PM2a
PM2b

2 4 6 8 10 12
Processes

0

2

4

6

8

10

12

14

Sp
ee
dU

ps

PM1
PM2a
PM2b

Fig. 7. Speedups for solving Prob F1 via all parallel models, for single and
multiple computing nodes

2 4 6 8 10 12
Processes

0

2

4

6

8

10

Sp
ee
dU

ps

PM1
PM2a
PM2b

2 4 6 8 10 12
Processes

0

2

4

6

8

10

12

14

Sp
ee
dU

ps

PM1
PM2a
PM2b

Fig. 8. Speedups for solving Prob F2 via all parallel models, for single and
multiple computing nodes

npr = 4, for example. Even so, P.M.2b obtains the best results.
Probably the especially satisfactory performance of this model
is a consequence of the shared-memory strategy at the lower-
level, which enables the concurrent handling of followers
without the undesirable and frequent all-to-all communications
that are needed in P.M.2a.

PM1 PM2a PM2b
Parallel Models

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

es

PM1 PM2a PM2b
Parallel Models

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

es

Fig. 9. Execution times for solving Prob F4 via all parallel models and 4
processing instances, for single and multiple computing nodes

PM1 PM2a PM2b
Parallel Models

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ex
ec

ut
io

n
tim

es

PM1 PM2a PM2b
Parallel Models

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ex
ec

ut
io

n
tim

es

Fig. 10. Execution times for solving Prob F4 via all parallel models and 12
processing instances, for single and multiple computing nodes

Also, Tables II to III present several super-linear speedups,
especially for the configurations that employ multiple comput-
ing nodes for each parallel execution. A similar behavior was

TABLE II
TIME DATA FOR PROBLEMS F1 TO F3

Single Node configuration Multiple Nodes configuration
P.M. npr Med. Std. SpeedUp Effic. Med. Std. SpeedUp Effic.

Problem F1

PM1

2 2.81 0.10 3.57 1.78 2.82 0.07 3.56 1.78
4 1.95 0.06 5.14 1.28 1.81 0.03 5.54 1.38
8 1.85 0.02 5.42 0.68 1.56 0.02 6.43 0.80

12 2.41 0.03 4.16 0.35 1.72 0.06 5.83 0.49

PM2a
4 1.98 0.01 5.07 1.27 1.87 0.02 5.36 1.34
8 1.87 0.02 5.36 0.67 1.60 0.10 6.27 0.78

12 2.42 0.07 4.14 0.34 1.75 0.07 5.73 0.48

PM2b

1 3.27 0.08 3.07 3.07 3.29 0.08 3.05 3.05
2 1.90 0.02 5.28 2.64 1.79 0.08 5.60 2.80
4 1.19 0.02 8.43 2.11 1.08 0.04 9.29 2.32
8 0.92 0.04 10.90 1.36 0.76 0.58 13.20 1.65

12 0.88 0.02 11.40 0.95 0.68 0.59 14.75 1.23
Problem F2

PM1

2 2.47 0.01 3.89 1.94 2.47 0.02 3.89 1.94
4 1.78 0.03 5.40 1.35 1.64 0.02 5.86 1.46
8 1.77 0.02 5.43 0.68 1.47 0.03 6.54 0.82

12 2.32 0.13 4.14 0.34 1.66 0.10 5.79 0.48

PM2a
4 1.77 0.01 5.43 1.36 1.66 0.02 5.79 1.45
8 1.77 0.03 5.43 0.68 1.49 0.07 6.45 0.81

12 2.34 0.03 4.11 0.34 1.68 0.02 5.72 0.48

PM2b

1 2.81 0.08 3.42 3.42 2.82 0.08 3.41 3.41
2 1.69 0.03 5.69 2.84 1.58 0.03 6.08 3.04
4 1.08 0.05 8.90 2.22 0.97 0.02 9.91 2.48
8 0.87 0.03 11.05 1.38 0.71 0.01 13.54 1.69

12 0.85 0.04 11.31 0.94 0.65 0.06 14.78 1.23
Problem F2

PM1

2 2.63 0.07 3.72 1.86 2.63 0.02 3.72 1.86
4 1.85 0.02 5.29 1.32 1.71 0.02 5.72 1.43
8 1.80 0.04 5.43 0.68 1.51 0.02 6.48 0.81

12 2.36 0.08 4.14 0.34 1.67 0.02 5.86 0.49

PM2a
4 1.87 0.03 5.23 1.31 1.75 0.04 5.59 1.40
8 1.80 0.03 5.43 0.68 1.53 0.02 6.39 0.80

12 2.38 0.04 4.11 0.34 1.71 0.18 5.72 0.48

PM2b

1 2.90 0.08 3.37 3.37 2.90 0.10 3.37 3.37
2 1.73 0.03 5.65 2.82 1.64 0.05 5.96 2.98
4 1.10 0.06 8.89 2.22 1.00 0.03 9.78 2.44
8 0.88 0.04 11.11 1.39 0.73 0.11 13.40 1.68

12 0.86 0.03 11.37 0.95 0.66 0.04 14.82 1.24

reported in [2]. In a brief analysis, we can expect that less
distributed configurations achieve better performances, due to
lower communication costs. However, we suggest the low-
level computations as the most probable reason for the super-
linear speedups and also for the lower efficiencies recorded
by our experiments in single computing nodes. For example,
to add computing nodes to an architecture also implies the
increment of cache and RAM memory, which can be used
to improve the performance of many simple calculations in
an iterative algorithm as a population-based metaheuristic. If
these improvements compensate the increase in communica-
tion costs, the most distributed experiment performs better than
the less distributed one. This also is one of the factors that can
be used to justify the super-linear speedups in metaheuristics.

TABLE III
TIME DATA FOR PROBLEMS F4 AND F5

Single Node configuration Multiple Nodes configuration
P.M. npr Med. Std. SpeedUp Effic. Med. Std. SpeedUp Effic.

Problem F4

PM1

2 2.86 0.01 3.49 1.74 2.86 0.02 3.49 1.74
4 1.96 0.01 5.09 1.27 1.82 0.04 5.48 1.37
8 1.85 0.02 5.39 0.67 1.55 0.05 6.43 0.80

12 2.42 0.04 4.12 0.34 1.71 0.08 5.83 0.49

PM2a
4 2.01 0.02 4.96 1.24 1.89 0.05 5.28 1.32
8 1.87 0.04 5.33 0.67 1.60 0.05 6.23 0.78

12 2.41 0.04 4.14 0.34 1.76 0.03 5.66 0.47

PM2b

1 3.30 0.08 3.02 3.02 3.28 0.08 3.04 3.04
2 1.92 0.02 5.19 2.60 1.81 0.03 5.51 2.76
4 1.19 0.02 8.38 2.10 1.09 0.02 9.15 2.29
8 0.92 0.03 10.84 1.36 0.76 0.01 13.12 1.64

12 0.89 0.02 11.20 0.93 0.69 0.01 14.45 1.20
Problem F5

PM1

2 2.87 0.05 3.48 1.74 2.88 0.02 3.47 1.74
4 1.97 0.04 5.07 1.27 1.83 0.07 5.46 1.36
8 1.87 0.95 5.34 0.67 1.56 0.02 6.40 0.80

12 2.42 0.09 4.13 0.34 1.72 0.04 5.81 0.48

PM2a
4 2.00 0.02 5.00 1.25 1.89 0.05 5.29 1.32
8 1.88 0.02 5.31 0.66 1.61 0.06 6.20 0.78

12 2.42 0.13 4.13 0.34 1.75 0.06 5.71 0.48

PM2b

1 3.26 0.08 3.06 3.06 3.26 0.09 3.06 3.06
2 1.92 0.03 5.20 2.60 1.82 0.12 5.49 2.74
4 1.20 0.09 8.33 2.08 1.09 0.02 9.17 2.29
8 0.92 0.04 10.86 1.36 0.76 0.02 13.14 1.64

12 0.89 0.03 11.22 0.94 0.69 0.01 14.48 1.21

In the literature, many factors have lead to the reporting
of results of this nature for parallel metaheuristics. Studies
approaching this issue constitutes a separated research theme
and are available in [31].

However, despite all this, our results corroborate the ef-
ficiency of our parallel models to solve Stackelberg-Nash
problems both for single multi-core machine environments
as for highly-distributed cluster architectures. The models
offered in this work are scalable and can be executed without
adaptations for different computing resources.

VIII. CONCLUSIONS

In this paper, we suggested and studied three new par-
allel Differential Evolution models based on distributed-
and shared-memory to enable more efficient handling of
Stackelberg-Nash BLPs.

Our results endorsed the important possibilities for Bilevel
Optimization that arise from the association of the high-
computing performance resources currently available with
the natural parallelism of population-based metaheuristics.
We demonstrated that the Stackelberg-Nash equilibrium can
be obtained through parallel algorithms, which can compute
concurrently or not the lower-level variables that compose an
inter-dependent followers BLP.

Our suggested parallel models revealed to be satisfactorily
scalable. The communication costs were not relevant enough

to reduce the performances of our implementations when
distributed to a high number of separated computing nodes.
All models achieved relevant speedups and efficiencies for
both less and more distributed configurations.

However, reporting a maximum speedup of 14.82, the
P.M.2b improved its speedups whenever the number of pro-
cessing instances was increased. This approach revealed as
a good strategy the implementation of a hybrid strategy,
which partitions the upper-level population in a distributed-
memory environment and evolves concurrently the lower-level
followers in a shared-memory environment. Avoiding commu-
nication costs and handling in parallel both BLP levels, this
model obtained the best efficiencies even considering the sum
of its distributed- and shared-memory processing instances to
perform comparisons with the other parallel models.

Thus, this work contributes to the literature providing the
needed first parallel models to solve Stackelberg-Nash BLPs
via population-based metaheuristics. As the treatment of this
class of problems naturally implies in considerably computing
costs, the cases handled in this work already demand sufficient
processing time to compose the first set of tests that endorses
the usefulness of our parallel models. We hope that these tools
can bring a new range of possibilities for the field, enabling
the tackling of increasingly complex and larger problems with
inter-dependent followers.

Also, the discussions exposed here can guide future re-
searches indicating the most promising approaches to improve
the efficiency in the treatment of this type of problems. In
particular, our hybrid distributed- and shared-memory model
constitutes a new scalable and notably efficient alternative to
enable the study of Stackelberg-Nash BLPs of more varied
magnitudes and complexities, for different computing architec-
tures. Thus, having provided the parallel models, our next steps
will include the development of a set of scalable Stackelberg-
Nash BLPs, which will enable tests involving cases of a higher
dimensionality not common in the literature of this class of
problems.

REFERENCES

[1] E. Talbi, Metaheuristics: from design to implementation, vol. 74, John
Wiley & Sons. 2009.

[2] T. T. Magalhães and H. J. C. Barbosa. “Differential Evolution Algo-
rithms for Solving Bilevel Optimization Problems using Computational
Clusters.” ACSE 6th Annual Conf. on Computational Science & Com-
putational Intelligence (CSCI), 2019.

[3] C Floudas, A. Christodoulos, and P. M. Pardalos. State of the art in
global optimization: computational methods and applications, vol. 7,
Springer Science & Business Media. 2013.

[4] H. V. Stackelberg. “Marktform und Gleichgewicht”. Springer-Verlag,
Berlin, 1934.

[5] L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard. A bilevel model
for toll optimization on a multicommodity transportation network.
Transportation Science, 35(4):345–358, 2001.

[6] A. Sinha, P. Malo, A. Frantsev, and K. Deb. Multi-objective Stackelberg
game between a regulating authority and a mining company: A case
study in environmental economics. In Evolutionary Computation (CEC),
2013 IEEE Congress on, pages 478–485. IEEE, 2013.

[7] G. Whittaker. In search of efficient networks using bilevel evolutionary
optimization. 2016.

[8] P. Pharkya, A. P. Burgard, and C. D. Maranas. Exploring the overproduc-
tion of amino acids using the bilevel optimization framework optknock.
Biotechnology and Bioengineering, 84(7):887–899, 2003.

[9] J. F. Bard. Practical bilevel optimization: algorithms and applications,
volume 30. Springer Science & Business Media, 2013.

[10] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: from
classical to evolutionary approaches and applications. IEEE Transactions
on Evolutionary Computation, 22(2):276–295, 2018

[11] T. T. Magalhães, E. Krempser and H. J. C. Barbosa. “Parallel Models
of Differential Evolution for Bilevel Programming”. Proceedings of the
2018 International Conference on Artificial Intelligence. 2018

[12] R. Mathieu, L. Pittard and G. Anandalingam, “Genetic algorithm based
approach to bi-level linear programming,” RAIRO - Operations Research
- Recherche Operationnelle, vol. 28, no. 1, pp. 1–21. 1994.

[13] V. Oduguwa and R. Roy, “Bi-level optimisation using genetic algorithm,”
IEEE Computer Society 2002 IEEE International Conference on Artifi-
cial Intelligence Systems, pp. 322–327. 2002.

[14] X. Li, P. Tian, and X. Min. “A hierarchical particle swarm optimiza-
tion for solving bilevel programming problems.” In Springer Berlin
Heidelberg Artificial Intelligence and Soft Computing - ICAISC 2006,
vol. 4029, pp. 1169–1178. 2006.

[15] A. Sinha, P. Malo, A. Frantsev, and K. Deb. “Finding optimal strategies
in a multi-period multi-leader-follower Stackelberg game using an
evolutionary algorithm.” Computers & Operations Research, cap. 41,
pp. 374–385. 2014.

[16] J. S. Angelo, E. Krempser, and H. J. C. Barbosa. “Differential evolution
assisted by a surrogate model for bilevel programming problems.” IEEE
Evolutionary Computation Congress (CEC) pp. 1784–1791. 2014.

[17] A. Sinha P. Malo, and K. Deb. “Evolutionary algorithm for bilevel
optimization using approximations of the lower level optimal solution
mapping.” European Journal of Operational Research. 2016

[18] R. Storn and K. V. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces.” Journal of
Global Optimization, vol. 11, pp. 341–359. Dec. 1997.

[19] G. Shanmugavelayutham, C. Jeyakumar. “Convergence analysis of dif-
ferential evolution variants on unconstrained global optimization func-
tions.” arXiv preprint arXiv:1105.1901. 2011.

[20] J. S. Angelo, E. Krempser and H. J. C. Barbosa. “Differential evolution
for bilevel programming.” IEEE Congress on Evolutionary Computation
(CEC), pp. 470–477, Jun. 2013

[21] J. S. Angelo and H. J. C. Barbosa. “Differential evolution to find
Stackelberg-Nash equilibrium in bilevel problems with multiple follow-
ers.” IEEE Congress on Evolutionary Computation (CEC), pp. 1675–
1682, 2015.

[22] E. D. Amato, E. Daniele, L. Mallozzi, G. Petrone, and S. Tancredi.
“A hierarchical multimodal hybrid Stackelberg-Nash GA for a leader
with multiple followers game,” in Dynamics of Information Systems:
Mathematical Foundations. Springer, vol. 20, pp. 267–280. 2012.

[23] M. Sefrioui and J. Periaux. “Nash genetic algorithms: examples and
applications.” in Proceedings of the 2000 Congress on Evolutionary
Computation, vol. 1, pp. 509–516. 2000.

[24] B. Liu. “Stackelberg-Nash equilibrium for multilevel programming with
multiple followers using genetic algorithms.” Computers & Mathematics
with Applications, vol. 36, no. 7, pp. 79 – 89. 1998.

[25] J. F. Wang and J. Periaux. “Multi-point optimization using GAs and
Nash/Stackelberg games for high lift multi-airfoil design in aerodynam-
ics.” in Proceedings of the Congress on Evolutionary Computation, vol.
1, pp. 552–559. 2001.

[26] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan. “Prob-
lem definitions and evaluation criteria for the CEC 2017 special session
and competition on single objective bound constrained real-parameter
numerical optimization.” In Technical Report. NTU, Singapore. 2016.

[27] K. Deb. “An efficient constraint handling method for genetic algorithms,”
Computer methods in applied mechanics and engineering, vol. 186, pp.
311–338. 2000.

[28] Q. Wang, F. Yang, S. Wang, and L. Yi-Hsin. “Bilevel programs with
multiple followers.” Journal of Systems Science and Complexity, vol.
13, no. 3, pp. 265. 2000.

[29] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message-passing interface. MIT press. 1999.

[30] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald. Parallel programming in OpenMP. Morgan Kaufmann. 2001.

[31] E. Alba. “Parallel evolutionary algorithms can achieve super-linear
performance.” Information Processing Letters no. 82.1, pp. 7–13. 2002.

[32] A. Koh. “An evolutionary algorithm based on Nash dominance for equi-
librium problems with equilibrium constraints.” Applied soft computing
vol. 12 no. 1 pp. 161–173. 2012

