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Abstract—Evolutionary algorithms have been widely used to
solve multi-objective optimization problems. Usually, the final
population of an evolutionary algorithm is used as the output
of multi-objective optimization. However, a current new trend
is to select a pre-specified number of solutions from an un-
bounded external archive (UEA) as the final output of multi-
objective optimization. Some subset selection methods have been
proposed in the literature such as hypervolume-based and IGD-
based selection. Recently, a distance-based subset selection (DSS)
method was proposed for efficient subset selection from a large
external archive. Whereas DSS efficiently finds a set of uniformly
distributed solutions, it has some difficulties in the handling of
solutions in the UEA as we demonstrate in this paper. To improve
the performance of the DSS method, we propose a modified DSS
method based on the IGD+ distance instead of the Euclidean
distance. Experimental results on various benchmark problems
show that the modified DSS method performs better than or
equal to the original DSS method on most test problems.

Index Terms—Evolutionary multi-objective optimization,
distance-based solution subset selection, unbounded external
archive

I. INTRODUCTION

In the last three decades, many evolutionary multi-objective

optimization (EMO) algorithms have been proposed. They can

be roughly divided into three categories: (i) Pareto dominance-

based algorithms (e.g., NSGA-II [1], NSGA-III [2]), (ii)

decomposition-based algorithms (e.g., MOEA/D [3], RVEA

[4]) and (iii) indicator-based algorithms (e.g., IBEA [5], BiGE

[6]). In most papers, the final population of an algorithm is

chosen as the Pareto front (PF) approximation of a multi-

objective optimization problem. This is intuitive since EMO

algorithms are usually designed to improve the convergence

and the diversity of the current population over generations.

However, as pointed out in [7], [8], a better PF approxima-

tion may exist within an unbounded external archive (UEA)
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which stores non-dominated solutions among the evaluated

solutions. Therefore, selecting a pre-specified number of well-

distributed solutions from a large number of non-dominated

solutions in the UEA may lead to a better PF approximation.
Many subset selection methods have been proposed to select

a pre-specified number of solutions from a large number of

non-dominated solutions. Among them, hypervolume-based

methods are widely used [9]–[11]. They can be further classi-

fied into three categories: (i) exact optimization methods, (ii)

greedy inclusion/removal methods, and (iii) genetic algorithm-

based methods. These methods can find good solution subsets.

However, they also have high computational complexity since

the calculation of the hypervolume is a #P-hard problem

[12]. When we have a large solution set of a many-objective

problem (e.g., all the examined solutions by an EMO algorithm

on a 20-objective problem), the computation time of these

methods can be impractically large.
Recently, Tanabe et al. [7] proposed a distance-based subset

selection (DSS) method by modifying a similar method in

[13]. In each iteration, the DSS method finds an unselected

solution which has the largest Euclidean distance from the

selected solution set. Then the solution is added to the selected

solution set. This procedure is iterated until the required

number of solutions are selected. The DSS method was

theoretically analyzed by Singh et al. [14]. They showed

that the selected solution set by the DSS method from an

infinitely large number of points on the true PF is conditionally

equivalent to the optimal solution subset for hypervolume

maximization.
The main contributions of this paper are as follows:

1) Through computational experiments, we demonstrate

that selected solutions from the UEA by the DSS method

can be inferior to the final population. Then we clearly

show the reason for the negative effect of solution

selection.

2) We propose a modified distance-based subset selec-

tion method to remedy the negative effect of the DSS

method. The proposed method is based on the IGD+

distance instead of the Euclidean distance to select a

better solution subset.
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The rest of this paper is organized as follows. In section II,

we demonstrate the negative effect of solution selection by the

DSS method through computational experiments and explain

its reason. In section III we propose a modified distance-

based subset selection method and demonstrate its usefulness

through computational experiments. Finally, we conclude this

paper in section IV.

II. DISTANCE-BASED SUBSET SELECTION AND ITS

DRAWBACKS

A. Distance-based Subset Selection

Since good solutions can be discarded during multi-

objective evolution, selected solutions from the UEA can be

better than the final population. The DSS method [7], [14]

is proposed to efficiently select a pre-specified number of

solutions from a large number of non-dominated solutions in

the UEA. In each iteration, the solution that has the largest

Euclidian distance from the selected solution set is found

until the required number of solutions are selected. Comparing

with hypervolume-based selection, the DSS method has lower

computational complexity. We can quickly complete solution

selection even when a large number of non-dominated solu-

tions are included in the UEA. The details of the DSS method

are shown in Algorithm 1, which is the same as in [14].

Algorithm 1 Distance-Based Subset Selection (DSS)

Input: A (A set of non-dominated solutions in UEA),

k (Solution subset size)

Output: P (A set of selected solutions)

1: if |A| < k then
2: P = A
3: else
4: Normalize all solutions in A to [0, 1]
5: Sort A from highest to lowest based on the crowding

distance

6: Initialize P as the first solution in the sorted archive A
7: while |A| < k do
8: for each ai in A \ P do
9: Di= minimum Euclidean distance from ai to any

point in P
10: end for
11: Choose solution from A \ P associated with the

largest Euclidean distance and add it to P
12: end while
13: end if

B. Difficulties in the Distance-based Subset Selection

1) Experimental Settings
To examine the performance of the DSS method for differ-

ent EMO algorithms and different test problems, we choose

11 representative test problems with various PF shapes: four

test problems with a regular PF, four test problems with an

inverted triangle PF, two test problems with a discontinuous

PF, and one test problem with a degenerated PF. The details

of the PF shape of each test problem is shown in Table I.

TABLE I
PARETO FRONT SHAPES OF BENCHMARK PROBLEMS

Problem Pareto Front Geometry

DTLZ1 [15] Linear triangular
DTLZ2 [15] Concave
DTLZ3 [15] Concave
DTLZ4 [15] Concave

DTLZ1−1 [16] Inverted triangular
DTLZ2−1 [16] Inverted quadratic (convex)
mDTLZ1 [17] Inverted triangular
mDTLZ2 [17] Inverted quadratic (convex)
DTLZ7 [15] Discontinuous
WFG2 [18] Discontinuous

DTLZ5IM [19] Degenerate

mDTLZ1 and mDTLZ2 [17] are recently proposed new test

problems. They do not have the following special characteris-

tics of almost all traditional test problems: (1) the Pareto front

shape is regular, and (2) all objective functions have the same

distance function. They have large hardly dominated regions

(with dominance resistant solutions) in the objective space.

To examine the effect of the DSS method, we choose three

EMO algorithms: NSGA-III [2], BiGE [15] and MOEA/D with

the Tchebycheff function [3]. All non-dominated solutions

among the examined solutions in each run of each algorithm

are stored in the UEA. Then the DSS method is applied to the

UEA.

Following the suggestion of Deb et al. [15], the number of

variables is set to (M + d − 1), where M is the number of

objectives and d is the number of distance variables. d is set

to 5 for DTLZ1, DTLZ1−1 and mDTLZ1 while it is set to 10

for the other test problems. For each M ∈ {3, 5, 8}, we set the

population size to 91, 210 and 156, respectively, for MOEA/D

and BiGE, while 92, 212, 156 for NSGA-III. These settings

are exactly the same as in NSGA-II paper [2]. The number

of function evaluations is used as the termination condition of

each algorithm: 30,000 for three-objective problems, 60,000

for five-objective problems, and 100,000 for eight-objective

problems.

Polynomial mutation and simulated binary crossover (SBX)

[20] are used in each algorithm. We set the SBX probability

to 1 and the polynomial mutation probability to 1/n, where n
is the number of variables. The distribution index is specified

as 20 in both polynomial mutation and SBX.

The hypervolume (HV) indicator [21] is chosen to com-

pare the selected solutions and the final population of each

algorithm. The reference point for hypervolume calculation is

specified as (1.1, 1.1, . . . ,1.1).

Each algorithm is executed 31 times for each test problem.

Experimental results are analyzed by the Wilcoxon rank sum

test with a significance level of 0.05 to check whether one

method is statistically significantly better than another method.

The test results are shown by “+”, “-” and “=” where “+”, “-”

and “=” indicate that one method is “significantly better than”,

“significantly worse than” and “not significantly different

from” another method, respectively.



2) Experimental Results
Table II shows the average HV value of the final population

and the selected solutions by the DSS method over 31 runs

of each EMO algorithm. The number of selected solutions is

the same as the population size. The bolded value in Table II

indicates that one method (the final population or the selected

solutions) is significantly better than the other by the Wilcoxon

rank sum test. The bottom line shows the summary.

From Table II, the following observations can be obtained:

1) The effects of solution selection are algorithm-

dependent. For MOEA/D, the selected solutions have

larger HV values than the final population on most test

problems (25 out of 33). However, NSGA-III with DSS

is outperformed by NSGA-III (i.e., the final population)

on 15 test problems.

2) The DSS method has negative effects when it is applied

to NSGA-III and BiGE on many-objective problems. For

example, the final population of NSGA-III is better than

the selected solutions by DSS on most 8-objective test

problems (9 out of 11) whereas it is better only on a

few 3-objective test problems (2 out of 11).

3) The mDTLZ1 test problem is very difficult for NSGA-III

and BiGE (compare their average hypervolume values

with those by MOEA/D). The use of DSS further

deteriorates the performance of those EMO algorithms.

To further investigate why the selected solutions by DSS

are worse than the final population, we focus on the single

run of NSGA-III on the three-objective mDTLZ1 test problem

and the eight-objective DTLZ4 test problem. Fig. 1 shows

the solutions in the final population in (a) and the selected

solutions in (b) for the three-objective mDTLZ1 test problem.

Fig. 2 shows the results on the eight-objective DTLZ4 test

problem. The single run with a median hypervolume value

of the final population among the 31 runs is chosen in each

figure.

In Fig. 1, the top-right plot in each figure shows the

solutions closed to the true PF. We can see from Fig. 1 (a) that

many solutions in the final population are distributed along

the axes (especially the f1 axis). This is because mDTLZ1

has large hardly dominated regions parallel to each axis.

Solutions in those regions are not easy to be dominated by

other solutions. In the selected solutions shown in Fig. 1 (b),

the situation is even worse. Almost all solutions are distributed

along to the three axes. This makes the hypervolume value of

the selected solutions significantly smaller than that of the final

population.
The negative effect of solution selection by the DSS method

can also be clearly observed in Fig. 2. Although the final

population converges well to the true PF in [0, 1]8 in Fig. 2 (a),

the selected solutions do not converge well in Fig. 2 (b). They

are distributed over [0, 2.4]8. That is, there are many selected

solutions far from the true PF.
To explain why those poor non-dominated solutions are

selected by DSS, we divide the poor non-dominated solutions

shown in Fig. 1 (b) and Fig. 2 (b) into the following two

categories: 1) poor non-dominated solutions close to one axis

(a) Final population.

(b) Selected solutions by DSS.

Fig. 1. Solutions in the final population of NSGA-III on the three-objective
mDTLZ1 test problem in (a) and the selected solutions by DSS from the UEA
in (b). The top-right part of each figure shows the solutions close to the true
PF.

of the objective space, and 2) poor non-dominated solutions

not close to any axis. These two types of poor non-dominated

solutions are illustrated for a two-objective minimization prob-

lem in Fig. 3 (a) and Fig. 3 (b), respectively. The blue points

represent the solutions which have already been selected (i.e.,

in the selected solution subset) and the red points represent

the solutions to be selected (i.e., not in the selected solution

subset).

In Fig. 3 (a), let us assume that we want to select three

solutions from the five red solutions A-E. Since we always

select the solution with the largest distance from the selected

solution subset, solution E will be selected first. In the next

iteration, solution C will be selected. After that, solution D
will be selected (since the distance from D to C and E is larger

than that between B and the closest blue solution). Whereas

solution B is on the true PF and has a larger hypervolume

contribution than solution D, it is not selected. This explains

why many solutions along the three axes are selected but many



TABLE II
AVERAGE HV VALUE OF THE FINAL POPULATION AND THE SELECTED SOLUTIONS BY THE DSS METHOD OVER 31 RUNS OF EACH EMO

ALGORITHM.

NSGA-III BiGE MOEA/D-Tch

Problem m Final Selected Final Selected Final Selected

Population Solutions Population Solutions Population Solutions

DTLZ1 3 8.3864e-01 8.3589e-1 - 7.7796e-01 8.3755e-1 + 8.0184e-01 8.2327e-1 +
5 9.7836e-01 9.7631e-1 - 8.7031e-01 9.7735e-1 + 9.3739e-01 9.7839e-1 +
8 9.9684e-01 9.9565e-1 - 6.9592e-01 9.9264e-1 + 9.6096e-01 9.8621e-1 +

DTLZ2 3 5.5984e-01 5.5712e-1 = 5.3442e-01 5.5611e-1 + 5.2625e-01 5.4745e-1 +
5 8.1203e-01 7.9621e-1 - 7.8720e-01 8.0170e-1 + 7.1118e-01 8.1054e-1 +
8 9.1545e-01 8.8239e-1 - 8.9581e-01 9.0019e-1 + 6.2793e-01 7.9873e-1 +

DTLZ3 3 3.9724e-01 3.4359e-1 = 4.7326e-01 4.2448e-1 - 4.4290e-01 4.5894e-1 +
5 5.8157e-01 5.6458e-1 = 4.4363e-01 6.5595e-1 + 7.0412e-01 7.7341e-1 +
8 6.6229e-01 4.8058e-1 - 0.0000e+0 0.0000e+0 = 6.2662e-01 6.4956e-1 =

DTLZ4 3 4.9896e-01 4.9818e-1 = 5.0895e-01 5.1379e-1 + 3.6075e-01 3.0863e-1 =

5 8.0773e-01 7.8421e-1 - 7.9057e-01 7.9747e-1 + 5.7678e-01 6.8803e-1 +
8 9.0620e-01 7.5040e-1 - 9.0715e-01 7.9592e-1 - 6.3519e-01 8.0018e-1 +

DTLZ1−1 3 1.9881e-01 2.1225e-1 + 2.0040e-01 2.1744e-1 + 2.0085e-01 2.0438e-1 +
5 8.0318e-03 1.0083e-2 + 1.0909e-02 1.3013e-2 + 7.4771e-03 1.1664e-2 +
8 2.6762e-05 2.4765e-5 = 2.3619e-05 2.2185e-5 - 1.0000e-05 6.6667e-6 =

DTLZ2−1 3 5.2096e-01 5.3236e-1 + 5.1836e-01 5.3286e-1 + 5.1548e-01 5.2048e-1 +
5 7.6710e-02 1.0447e-1 + 1.2585e-01 1.2023e-1 - 9.4414e-02 1.1413e-1 +
8 2.2390e-03 9.4672e-4 - 5.1055e-03 1.7714e-3 - 3.0333e-04 1.2251e-3 +

mDTLZ1 3 6.6930e-02 6.5890e-3 - 1.3289e-02 3.3900e-3 - 1.9560e-01 9.0250e-3 -

5 5.8440e-04 1.5569e-6 - 5.3362e-04 0.0000e+0 - 4.1975e-03 8.0045e-6 -

8 4.7076e-08 0.0000e+0 - 9.4461e-07 4.3934e-8 - 0.0000e+00 1.2355e-8 +
mDTLZ2 3 5.0942e-01 5.1821e-1 + 5.1952e-01 5.2691e-1 + 5.1301e-01 5.0688e-1 -

5 4.6861e-02 5.6964e-2 + 1.2573e-01 9.8087e-2 - 9.0976e-02 1.0109e-1 +
8 1.6269e-03 4.5593e-4 - 5.0922e-03 1.7115e-3 - 2.3000e-04 7.3374e-4 +

DTLZ5IM 3 1.9268e-01 1.9974e-1 + 1.9172e-01 2.0005e-1 + 1.9503e-01 1.9715e-1 =

5 6.0026e-01 6.1172e-1 + 6.0796e-01 6.2292e-1 + 4.7745e-01 6.2146e-1 +
8 8.0628e-01 7.6799e-1 - 1.8391e-01 6.2012e-1 + 5.8330e-01 7.0560e-1 +

DTLZ7 3 2.7257e-01 2.7524e-1 + 2.6740e-01 2.7273e-1 + 2.2898e-01 2.4904e-1 +
5 2.2340e-01 2.4442e-1 + 2.6124e-01 2.6431e-1 = 2.2761e-01 2.4029e-1 +
8 1.3191e-01 1.1630e-1 - 2.1166e-01 2.1207e-1 = 2.0768e-01 2.0631e-1 =

WFG2 3 9.2769e-01 9.2818e-1 = 9.2678e-01 9.3176e-1 + 8.7088e-01 9.0668e-1 +
5 9.8913e-01 9.8823e-1 + 9.9305e-01 9.9436e-1 + 9.6720e-01 9.9360e-1 +
8 9.9451e-01 9.9489e-1 = 9.9503e-01 9.9540e-1 = 9.9309e-01 9.9698e-1 +
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Fig. 2. Solutions in the final population of NSGA-III on the eight-objective DTLZ4 test problem in (a) and the selected solutions by DSS from the UEA in
(b).



solutions close to the true PF are not selected by DSS in Fig.

1 (b).

In Fig. 3 (b), let us assume that we have already selected the

four blue solutions and we want to select one more solution

from F and G. The DSS method chooses G since G has the

larger distance from the selected blue solutions than F . This

explains why some poor non-dominated solutions are selected

whereas they are not close to any axis. This type of poor

non-dominated solutions are not common in two- and three-

objective problems since they are easily dominated by other

solutions. However, it is likely that those solutions exist in the

UEA of a many-objective problem. This is because solutions

are very sparse in the objective space even when all non-

dominated solutions are stored in the UEA.

DSS from the true PF was proven to be conditionally

equivalent for hypervolume maximization [14]. However, in

real-world applications, non-dominated solutions in the UEA

are not always on the true PF, especially when the problem is

many-objective or difficult to solve. Non-dominated solutions

in the UEA can be far from the true PF. Whereas they are

not good solutions, they often have large distances from the

selected solutions. As a result, they are likely to be selected

whereas they are not good solutions since they are far away

from the true PF.

A

B
C D

O

Selected solutions
Solutions to be selected
True PF

E

(a) Close to one axis.

F G

O

Selected solutions
Solutions to be selected
True PF

(b) Not close to any axis.

Fig. 3. Two types of poor non-dominated solutions.

III. MODIFIED DISTANCE-BASED SUBSET SELECTION

A. Modification

In the DSS method, the Euclidean distance d(a, z) is used,

which is calculated by the following formula:

d(a, z) = (

m∑

i=1

(zi − ai)
2)1/2. (1)

However, subset selection based on the Euclidean distance

has some difficulties as shown in the last section. To remedy

those difficulties of the DSS method, we propose a new subset

selection method based on IGD+ distance [22], which is

defined by the distance from a to the region dominated by

z. The formula to calculate the IGD+ distance between two

points is as follows:

d+(a, z) = (
m∑

i=1

(max{zi − ai, 0})2)1/2. (2)

Fig. 4 illustrates the difference between d in (1) and d+ in

(2). In Fig. 4, a dominates z for a two-objective minimization

problem, which means that zi is larger than or equal to ai (i.e.,

zi − ai is always non-negative). Thus, d+(a, z) is the same

as d(a, z). For another solution b, b and z are non-dominated.

Since z1− b1 is smaller than 0, we only calculate the positive

part z2 − b2. In this case, d+(b, z) is different from d(b, z).
Only the positive elements of d(b, z) remain in d+(b, z).

a

O

z

b

Minimize 

M
in

im
iz

e 
Fig. 4. Illustration of the difference between the Euclidean distance and the
IGD+ distance. The yellow region is the region dominated by z.

By using the IGD+ distance instead of the Euclidean

distance, we can obtain different solution subset selection

results. Fig. 5 shows the IGD+ distance from each solution

considered to the selected solution set. In Fig. 5 (a), we can

see that although C, D, E have large Euclidean distance

to the selected solution set, their IGD+ distances are not

large. Instead, solution B has the largest IGD+distance to

the selected solution set. Thus, solution B is selected first

and then solution A and E are selected. Comparing with the

solution selected by the Euclidean distance, IGD+ distance-

based selection can avoid selecting too many points close to

the axis and far from the true PF.

In Fig. 5 (b), solution G is selected if we use the Euclidean

Distance. However, if we use the IGD+ distance, solution F
is selected since F has a larger IGD+ distance than G from

the selected blue solutions. It is obvious that F is closer to the

true PF and is a better solution than G. As explained in Fig.

5 (b), the use of the IGD+ distance can also avoid selecting

poor non-dominated solutions which are not close to any axis.

From the above examples, we can see that the use of the

IGD+ distance for solution selection works as a countermea-

sure against the negative effects of the DSS method. Except for

the use of the IGD+ distance, the proposed solution selection

method is exactly the same as the DSS method in [14]. The

details of the proposed IGD+ distance-based solution subset

selection method are shown in Algorithm 2.

B. Experimental Results

In the same manner as the computational experiments in

the previous section, we perform solution selection using the



B
C D E

O

Selected solutions
Solutions to be selected
True PF
IGD+ distance

A

(a) Close to one axis.

F
G

O

Selected solutions
Solutions to be selected
True PF
IGD+ distance

(b) Not close to any axis.

Fig. 5. Minimal IGD+ distance of each non-dominated solution to be selected.

Algorithm 2 IGD+ Distance-Based Subset Selection (DSS+)

Input: A (A set of non-dominated solutions in UEA),

k (Solution subset size)

Output: P (A set of selected solutions)

1: if |A| < k then
2: P = A
3: else
4: Normalize all solutions in A to [0, 1]
5: Sort A from highest to lowest based on the crowding

distance

6: Initialize P as the first solution in the sorted archive A
7: while |A| < k do
8: for each ai in A \ P do
9: Di= minimum IGD+distance from ai to any point

in P
10: end for
11: Choose a solution from A \ P associated with the

largest IGD+distance and add it to P
12: end while
13: end if

IGD+ distance-based solution subset selection method. That

is, the following two methods are compared:

1) Euclidean distance-based subset selection (DSS) from

all non-dominated solutions stored in UEA.

2) IGD+ distance-based subset selection (DSS+) from all

non-dominated solutions stored in UEA.

Table III shows the performance comparison results of these

two methods. The bolded value indicates that one selection

method is significantly better than the other by the Wilcoxon

rank sum test.

As shown in Table III, the DSS+ method is significantly

better than the DSS method on about half cases (48 out of

99 cases: three algorithms, 11 problems and three settings of

the number of objectives). There is no significant difference

between DSS+ and DSS on most of the remaining cases (49

cases). DSS+ is outperformed by DSS only on two cases for

solution selection from the UEA of MOEA/D.

From Table III, we can observe that there is no significant

difference between DSS and DSS+ method on all three-

objective problems with the regular PF (i.e., DTLZ1-4). How-

ever, when the number of objects increases from three to five

and eight, DSS+ outperforms DSS on some of those test

problems (5 out of 8 for NSGA-III, 3 out of 8 for BiGE,

and 2 out of 8 for MOEA/D).

Fig. 6 shows the selected solutions by DSS+ from the UEA

of NSGA-III on the eight-objective DTLZ4 problem. We use

the same single run of NSGA-III as in Fig. 2. That is, we

use the same UEA in Fig. 2 and Fig. 6. We can observe

some solutions which are not close to the true PF (which is

in [0, 1]8) in Fig. 6. However, the number of those solutions

clearly decreases from Fig. 2 (b). As a result, the average

HV value of the selected solutions by DSS+ from the UEA

of NSGA-III on the eight-objective DTLZ4 is significantly

improved from that by DSS in Table III.

For the test problems with the inverted PF, especially for

mDTLZ1, DSS+ is significantly better than DSS in Table III.

The average HV value by DSS+ is hundreds of times larger

than that by DSS for mDTLZ1. Fig. 7 shows the selected

solutions by DSS+ from the UEA of NSGA-III on the three-

objective mDTLZ1 problem. The same UEA is used in Fig. 1

(b) and Fig. 7. Compared with the selected solutions in Fig.

1 (b), we can see that the number of poor non-dominated

solutions close to each axis is clearly decreased by DSS+.

Much more solutions close to the true PF are selected in Fig.

7 by DSS+ than in Fig. 1 (b) by DSS. It is interesting to

observe that more solutions close to the true PF are obtained

by solution selection from the UEA by DSS+ in Fig. 7 than

the final population in Fig. 1 (a).

While DSS+ performs better than DSS even on some many-

objective test problems with the regular PF, DSS and DSS+

have no significant difference on some other many-objective

test problems. For example, the average HV values by NSGA-

III with DSS and NSGA-III with DSS+ have no significant

difference on the 8-objective DTLZ1 problem. As we have

already explained, DSS+ can avoid choosing too many points

far away from PF. However, if no selected solution by DSS

is far away from the true PF, DSS and DSS+ have no large

difference in their performance.

In Table III, we can also see that MOEA/D with DSS+

performs worse than DSS on two problems: DTLZ1 and

DTLZ3. To further investigate the reason for the performance

deterioration, we show the selected solution sets by MOEA/D

with DSS and DSS+ on the eight-objective DTLZ1 problem of

a single run in Fig. 8. We can see that no poor non-dominated

solutions are selected by DSS in Fig. 8. Thus, DSS+ is not

needed. The reason for the slightly worse performance of

DSS+ than DSS for MOEA/D on the eight-objective DTLZ1

may be the slightly worse uniformity of the selected solutions

by DSS+ than DSS (see Fig. 8).

IV. CONCLUSION

In this paper, we first compared the final population with

the selected solutions by the DSS method and showed that

DSS has some difficulties in the handling of non-dominated

solutions far away from the true Pareto front. Then, a new sub-

set selection method based on IGD+ distances was proposed.

In the proposed method, IGD+ distance was used to avoid



TABLE III
AVERAGE HV VALUE OF THE SELECTED SOLUTIONS BY THE DSS AND DSS+ METHODS OVER 31 RUNS OF EACH EMO ALGORITHM.

Problem m NSGA-III BiGE MOEA/D-Tch

DSS DSS+ DSS DSS+ DSS DSS+

DTLZ1 3 8.3589e-1 8.3653e-1 = 8.3755e-1 8.3884e-1 = 8.2327e-1 8.2600e-1 =

5 9.7631e-1 9.7850e-1 + 9.7735e-1 9.7784e-1 = 9.7839e-1 9.7930e-1 +
8 9.9565e-1 9.9424e-1 = 9.9264e-1 9.9460e-1 = 9.8621e-1 9.7523e-1 -

DTLZ2 3 5.5712e-1 5.5551e-1 = 5.5611e-1 5.5754e-1 = 5.4745e-1 5.5021e-1 =

5 7.9621e-1 8.0196e-1 + 8.0170e-1 8.0609e-1 + 8.1054e-1 8.1205e-1 =

8 8.8239e-1 9.0595e-1 + 9.0019e-1 9.0968e-1 + 7.9873e-1 8.3771e-1 +
DTLZ3 3 3.4359e-1 3.2774e-1 = 4.2448e-1 4.3129e-1 = 4.5894e-1 4.5527e-1 =

5 5.6458e-1 5.0551e-1 = 6.5595e-1 7.0519e-1 = 7.7341e-1 7.4749e-1 -

8 4.8058e-1 4.9659e-1 = 0.0000e+0 0.0000e+0 = 6.4956e-1 6.3369e-1 =

DTLZ4 3 4.9818e-1 4.5383e-1= 5.1379e-1 5.4118e-1 = 3.0863e-1 4.2145e-1 +
5 7.8421e-1 7.9653e-1 + 7.9747e-1 8.0620e-1 = 6.8803e-1 6.6255e-1 =

8 7.5040e-1 9.0662e-1 + 7.9592e-1 9.1715e-1 + 8.0018e-1 8.1531e-1 =

DTLZ1−1 3 2.1225e-1 2.1358e-1 = 2.1744e-1 2.1678e-1 = 2.0438e-1 2.0742e-1 =

5 1.0083e-2 1.0365e-2 = 1.3013e-2 1.2358e-2 = 1.1664e-2 1.1836e-2 =

8 2.4765e-5 2.8434e-5 = 2.2185e-5 3.2330e-5 = 6.6667e-6 6.6666e-6 =

DTLZ2−1 3 5.3236e-1 5.3048e-1 = 5.3286e-1 5.3397e-1 = 5.2048e-1 5.2520e-1 +
5 1.0447e-1 1.1986e-1 + 1.2023e-1 1.3183e-1 + 1.1413e-1 1.2507e-1 +
8 9.4672e-4 2.5993e-3 + 1.7714e-3 4.5643e-3 + 1.2251e-3 2.1840e-3 +

mDTLZ1 3 6.5890e-3 1.7817e-1 + 3.3900e-3 1.3760e-1 + 9.0250e-3 2.0385e-1 +
5 1.5569e-6 4.2130e-3 + 0.0000e+0 3.2533e-3 + 8.0045e-6 7.4473e-3 +
8 0.0000e+0 2.0558e-8 + 4.3934e-8 9.4245e-7 + 1.2355e-8 5.7036e-7 +

mDTLZ2 3 5.1821e-1 5.2708e-1 + 5.2691e-1 5.3202e-1 + 5.0688e-1 5.2059e-1 +
5 5.6964e-2 1.0225e-1 + 9.8087e-2 1.3065e-1 + 1.0109e-1 1.2112e-1 +
8 4.5593e-4 2.0865e-3 + 1.7115e-3 4.5190e-3 + 7.3374e-4 1.9601e-3 +

DTLZ5IM 3 1.9974e-1 1.9878e-1 = 2.0005e-1 1.9798e-1 = 1.9715e-1 1.9646e-1 =

5 6.1172e-1 6.1899e-1 + 6.2292e-1 6.2503e-1 + 6.2146e-1 6.1713e-1 =

8 7.6799e-1 7.5273e-1 = 6.2012e-1 6.0164e-1 = 7.0560e-1 7.1717e-1 =

DTLZ7 3 2.7524e-1 2.7631e-1 + 2.7273e-1 2.7502e-1 = 2.4904e-1 2.4698e-1 =

5 2.4442e-1 2.5988e-1 + 2.6431e-1 2.7947e-1 + 2.4029e-1 2.3657e-1 =

8 1.1630e-1 1.4441e-1 + 2.1207e-1 2.2977e-1 + 2.0631e-1 2.0489e-1 =

WFG2 3 9.2818e-1 9.3204e-1 + 9.3176e-1 9.3525e-1 + 9.0668e-1 9.0817e-1 =

5 9.8823e-1 9.8923e-1 = 9.9436e-1 9.9512e-1 + 9.9360e-1 9.9491e-1 +
8 9.9489e-1 9.9579e-1 = 9.9540e-1 9.9625e-1 + 9.9698e-1 9.9734e-1 =

+/-/= 18/0/15 17/0/16 13/2/18
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Fig. 6. Selected solutions by DSS+ from the UEA of NSGA-III on the
eight-objective DTLZ4 problem.

Fig. 7. Selected solutions by DSS+ from the UEA of NSGA-III on the
three-objective mDTLZ1 problem.
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(a) Selected Solutions by DSS Method.
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(b) Selected Solutions by DSS+ Method.

Fig. 8. Selected solutions by DSS in (a) and DSS+ in (b) from the UEA of
MOEA/D-Tch on the eight-objective DTLZ1 problem.

selecting too many poor non-dominated solutions far away

from the true PF. Our experimental results demonstrated that

DSS+ is significantly better than DSS or at least equal to DSS

on most of the examined benchmark problems, especially on

many-objective problems or test problems with inverted PFs.

Since the usefulness of DSS+ and DSS seems to depend on

the problem and the EMO algorithm, it will be an interesting

future research topic to further examine the relationship be-

tween the usefulness of solution selection (by DSS and DSS+)

and characteristic feature of the EMO algorithm and the test

problem. Of course, the proposal of new solution selection

methods (including further modifications of the DSS method)

is an interesting future research topic.
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