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Abstract—Prediction-based evolutionary multi-objective op-
timization algorithm is one of the most popular optimization algo-
rithms for solving dynamic multi-objective optimization problem.
It uses time-series models to predict the future Pareto set based
on the past solutions. However, the dimension of the decision
variables may be too high to predict. Moreover, a relatively small
variance in decision variables may lead to a large difference in
the objective space. The optimized Pareto front (PF) may be
far from the desired output. To solve these problems, this paper
proposes a new co-operative prediction method, which predicts
not only the Pareto solution (PS), but also a hyper-plane as an
approximation of the prediction of the PF in the objective space.
The hyper-plane is used to guide the search process and accelerate
the convergence. We compare the proposed algorithm with three
existing dynamic optimization algorithms. Experimental results
show the effectiveness of the proposed algorithm.

Index Terms—Evolutionary Algorithms, Dynamic Multiob-
jective Optimization

I. INTRODUCTION

Multi-objective optimization problems refer to the opti-

mization problem with two or more optimization objective

functions [1]–[3], which usually conflict to each other. Dy-

namic multi-objective optimization problem (DMOP) further

enhances these definitions that the optimization objectives

and constraints are time-varying. Time-varying characteris-

tic brings us great challenge to deal with these problems.

Recently, DMOP has received increasing interest in both

of industry and academia. Typical works related to DMOP

are scheduling [4]–[6], planning [7], [8], control problems

[9], [10], and resource allocation optimization [11], [12].

Nevertheless, DMOPs exhibit the difficulty in the aspects

of balance between diversity and convergence speed [13],

changing environments, and so on.

In general, evolutionary algorithm is the most typical

algorithm for solving multi-objective problems. Subsequently,

several dynamic multi-objective evolutionary algorithms have

been proposed to solve these problems from the different

aspects, including memory-based methods [14], classifier-

initialization-based methods [15], local search strategies [16]

and prediction-based methods [13], [17]. Different strategies

aim to focus on different aspects of the problem. Especially,

memory-based method utilizes the periodicity of the data

stream, e.g. seasonal financial data. Classifier-initialization-

based methods filter out the dissatisfied solutions by individual

filtering or iterative population updating, towards speeding up

the convergence and enhancing the accuracy. After the typical

optimization is done, some algorithms adopt local strategy for

better convergence and accuracy [18]. For example, solutions

are adjusted after each evolutionary steps [19]. Experiments

have shown that, when a global search is incorporated with

local search, both fast convergence and high accuracy can be

achieved.

The prediction-based method utilizes the historical infor-

mation to predict the potential future Pareto solution (PS).

In some cases, the prediction-based methods can achieve fast

convergence as well as maintaining a diverse population [13].

Nevertheless, most of the existing prediction-based methods

focus only on the straightforward way of PS prediction. Since

there is no direct correlation between Pareto front (PF) and

PS, a small variance of PS can lead to a considerable variance
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and error in PF. As far as we know, there are few studies on

the prediction of the PS and PF to achieve fast convergence

and high accuracy.

In this paper, we therefore propose a novel method called

cooperative-prediction guided search strategy with concept

drift detection and restarting. Specifically, we propose a novel

population searching strategy to predict the PS. Furthermore, a

dominant hyperplane which can be seen as the approximation

of PF is used to adjust the potential error and accelerate

the convergence in an early stage after the changes have

been detected. At the beginning of every time step, an initial

population is predicted by a PS prediction model, and then the

hyperplane guided local search is carried out to adjust the so-

lutions for better convergence locally. The proposed prediction

model is in the form of PF (xt) = f(xt−1, xt−2, . . . , xt−m),

where m is the length of the time series data used for predic-

tion. Typically, when the environment is stable, i.e. prediction

model f(.) does not change over time t, all the historical

data follows the same changing patterns. However, when

concept drift occurs, the time series (xi, xi+1, xi+2, . . . , )

and (xj , xj+1, xj+2, . . . , ) will have the significant different

autocorrelation. Under the circumstances, several works have

been done towards solving the concept drift problem in time

series data [20]–[22]. For simplicity, we adopt the detection

framework conducted by Cavalcante et al. [22] that generally

divides the process into feature extraction and concept drift

test. Subsequently, we present some test problems, where the

test process is divided into several stages. To demonstrate the

robust performance of the proposed method, we compare the

proposed algorithm with three existing counterparts.

The remainder of this paper is organized as follows: Sec-

tion II gives the detailed description of the proposed algorithm.

Section III provides the empirical studies of the proposed

algorithm in comparison with the existing ones. Finally, we

draw a conclusion in Section IV.

II. THE PROPOSED CO-OPERATIVE PREDICTION

STRATEGY

We propose a co-operative prediction strategy (COPS) for

solving DMOP problems. Accordingly, Algorithm 1 describes

the framework of the proposed algorithm, denoted as COPS-

DMOP for short. A new selection operator called hyper-plane

distance based selection operator is presented. The optimiza-

Algorithm 1 The proposed COPS-DMOP algorithm

Input:
1) The population size: N .

2) The maximum number of generations max gen.

3) The number of generations of the first stage T1.

Output:
The non-dominated solution in population Pt

1: Initialization:

Uniformly choose N individuals from decision space as

the initial population P0, set flag = 0 and t = 1.

2: while t < max gen do
3: if change is not detected then
4: if t− flag 6 T1 then
5: Pt = DBS(Θ, Pt−1)

6: else
7: Optimize the problem by using NSGA-II to obtain

Pt.

8: end if
9: else

10: flag = t.

11: Apply PPS [13] to update population and get the new

population Pt.

12: Update the parameter Θ of the hyper-plane according

to its definition.

13: end if
14: t = t+ 1.

15: end while

tion process is divided into two stages. The first stage is the fast

adaption and fine-tuning stage, for which the distance-based

selection (DBS) operator is proposed to achieve a satisfying

global distribution. The basic idea of this DBS operator is that

a hyper-plane is predicted as an approximation of the PF, and

the distance of every individual of the population of the plane

is calculated. The closer of the distance between the individual

to the plane, the similar it is to the actual distribution of the PS.

Moreover, in order to prevent local optimum, the population is

divided into several portions along the objective axis with the

maximum variance. Only a limited number of individuals with

the smallest distance values in every portion are selected. The

second stage uses the typical evolutionary algorithm to output

the final non-dominated solutions.



Algorithm 2 DBS Operator

Input:
1) The hyper-plane parameters Θ.

2) The old population Pold with a size N .

Output:
The new population Pnew.

1: Initialization:

Equally partition the population Pold into pr sub-

populations P 1
in, P 2

in, P 3
in, . . . , P prin along objective axis

with the largest variance.

2: for each P iold do
3: Apply gaussian mutation on each individual of P iold to

generate new solutions Qiold.

4: Calculate the distance of every individual of P iin
⋃
Qiold

to the hyperplane with parameters Θ.

5: Sort the distances of sub-population.

6: Select N/pr individuals with the smallest distance to

hyperplane with parameters Θ and set them as P is .

7: Pnew = Pnew ∪ P is .

8: end for

Figure 1: Example of the dominant hyper-rectangle for bi-

objective problems.

A. Definition of Dominance Hyper-Plane

As the topology of the hyperplane is relatively simple,

we therefore use the simplified hyperplane called dominant

hyperplane to simulate the real PF and guide the search

process. The definition of the dominant hyper-rectangle is as

follows: Given a population P and a hyper-rectangle H , when

no individual in P dominates any solutions on H , we call H as

the dominant hyper-rectangle of P . This basically ensures that

the closer solution is to the hyper-rectangle, the better accuracy

it has. For bi-objective problems, the hyper-rectangle is simply

the tangent line to the PF formed by current population, as

illustrated in Figure 1. The dominant hyperplane should be

parallel to the plane crossing the utopia points which have the

optimal values in corresponding objectives.

B. Prediction Parameters and Models

The proposed method is inspired by population prediction

strategy (PPS), which regards the population as a combination

of a central point and scaffold, where the central point is

predicted using the typical time-series models and scaffold is

calculated based on the variance of the population in the past

time steps. We adopt the idea of PS prediction used in PPS, but

in order to speed up the convergence and adjust the population

using information from the PF, the hyperplane is also predicted

for the use of DBS operator. Theoretically speaking, any

time-series models can be used. Here, for simplicity, we

utilize Autoregression model to predict the parameter of the

hyperplane. The parameters of the hyperplane are predicted

independently (e.g. for bi-objective problems, the expression

of plane is Ax + By + C = 0, and the parameters A, B,

C are predicted independently). One important thing is that

not all the parameters of the hyperplane should be predicted.

Only those related to the normal vector should be predicted

according to the definition of the dominant hyperplane.

C. Co-operative Prediction Strategy

At the start of every generation, the proposed COPS-

DMOP first detects whether there are changes in optimiza-

tion problem. If a change is detected, population for next

generation is predicted as specified in Algorithm 1, and the

hyperplane parameters are also predicted based on historical

data using the stored historical parameters with the same time

span as population prediction.

The COPS divides the optimization process in every time

step into two stages. The first stage adopts the proposed DBS

operator for a fixed number of T1 generations for fast-adaption

and fine-tuning. In DBS, the population is first doubled by self-

copying, and then Gaussian mutation with high mutation rate

is applied. The function of Gaussian mutation is to randomly

search through the nearby decision space and the fine tuning

of the population in guidance of the predicted hyper-plane.

The second step of DBS is to divide the population into pr



Table I: The details of concept drift problems

Concept Genera- Problem nt(parameter)
Drift Type tions(103) Type
Correlation 0-2 FDA3 10

Changes (CRC) 2-4 ZJZ 10
4-6 FDA2 10

Magnitude 0-2 ZJZ 5
Changes (MAC) 2-4 ZJZ 10

4-6 ZJZ 2

Correlation 0-2 FDA3 10
-Magni- 2-4 ZJZ 2

tude (CMC) 4-6 FDA2 5
aConcept Drift Problems (corresponding to CRC, MAC, CMC).

sub-populations along objective axis with the largest variance.

Then, in every sub-population, we select N/pr individuals

with the smallest distance to the predicted hyperplane, thus

N individuals in total are selected and returned for use in the

next generation.

A half-qualified population is passed to the second stage

through the initial stage. This population is not non-dominance

set, but it has generally good global distribution and can

prevent local optimal and the distance selector can ensure the

overall shape of the population in the objective space. The

second stage uses the typical EMO algorithm: NSGA-II.

Furthermore, taking into consideration that the prediction

model is valid only when the problem type remains unchanged

(i.e. it is predictable with the same changing pattern), we add

a simple concept drift p-test when the change of the problem

is detected. We adopt the framework proposed by Cavalcante

et al. [22]. The Mean Square Error (MSE) of the central point

prediction model is recorded as the feature of the time series

in the current time step. Subsequently, in the next time step,

a p-test is conducted using the historical MSE and the current

error. If there is a sharp changing which does not pass the p-

test, all the historical information will be removed including

the historical PS and the historical dominance-hyper-plane.

III. EXPERIMENTAL RESULTS

A. Performance Metrics, Test instances and Settings

In our study, we compare the proposed algorithm with the

other prediction-based methods. We use the variant of inverted

generational distance (IGD) called MIGD as the performance

indicator to evaluate and compare the quality of solutions

obtained by different algorithms. The inverted generational

Table II: The value of MIGD metrics obtained by the compared

algorithms.

Instance NO RIND PPS PPR COPS-DMOP

FDA2
10 0.3284 0.3284 0.3277 0.3284
20 0.3279 0.3279 0.3273 0.3279
50 0.3150 0.3150 0.3140 0.3150

FDA3
10 0.1567 2.4534 0.1158 0.0721
20 0.0436 1.0192 0.0213 0.0197
50 0.0066 0.0143 0.0050 0.0046

ZJZ
10 0.3879 0.2584 0.3856 0.1918
20 0.3670 0.1865 0.3436 0.1534
50 0.2540 0.1137 0.2316 0.1218

FDA4
10 0.1007 0.7958 0.0953 0.1624
20 0.0761 0.4399 0.0740 0.0705
50 0.0665 0.1801 0.0660 0.0653

FDA5
10 0.1550 0.8670 0.1513 0.7504
20 0.1190 0.5197 0.1173 0.1166
50 0.1070 0.2572 0.1068 0.1057

CRC
10 0.3191 0.2712 0.3290 0.1897
20 0.2492 0.1420 0.2320 0.1460
50 0.2017 0.1311 0.1900 0.2008

MAC
10 0.3994 0.3035 0.4182 0.2131
20 0.3840 0.2144 0.3846 0.2268
50 0.3161 0.1512 0.2975 0.1868

CMC
10 0.3256 0.2846 0.3223 0.2460
20 0.2595 0.2015 0.2633 0.2002
50 0.2290 0.1789 0.2317 0.1873

distance (IGD) is an index to measure the distance between

the real Pareto Optimal Front represented by P t∗ at time t ,

and the approximate Pareto Optimal Front P t obtained by the

algorithm. P t∗ and P t are both at the end of every time step

(i.e. the last generation before the environment changes). The

definition of IGD can be expressed as:

IGD
(
P t∗, P t

)
=

∑
v∈P t∗ d (v, P t)

|P t∗|
. (1)

We adopt the variant MIGD of IGD defined in [17], which

is the means of inverted generational distance. It evaluates the

quality of the population after the optimization step in every

time step. The definition of MIGD can be stated as:

MIGD =
1

|T |
∑
t∈T

IGD
(
P t∗, P t

)
. (2)

In this paper, we take some typical benchmark prob-

lems widely used in other researches conducted in [13].

Furthermore, in order to test its performance over concept

drift environment, we give 3 new test problems modified



Figure 2: IGD-Generation when the number τt of generations is set at 20 (The same order as Table II, from left to right, from

top to bottom).



from the benchmark problems: correlation changing problem,

varied changing the magnitude, and the aggregation of these

two changes. The detailed information is stated in Table I.

In general, different problems have the different PF shape

with the varied distributions, and the same problem type can

have different severity of changing with all similar PF (i.e.

population distribution). In all experiments, the population size

is set at 100, and t = 1
nt

⌊
τ
τT

⌋
where nt, τ , τt are the severity

of changes, current generation, and number of generations,

respectively. For FDA and ZJZ problems, nt is set at 10.

As for concept drift problems, nt may change according to

Table I. In DBS, the hypermutation rate is set at 0.9 by a

rule of thumb, which only keeps a small portion unchanged

for EA step. In addition, the partition size is set at 50, with

2 individuals selected in every partition. In order to meet the

requirements of all problem settings, the fine-tuning generation

in COPS is set to at T1 = 5.

B. Experimental Results

We conducted two experiments: (1) the common FDA

and ZJZ problems, and (2) the concept drift problems. The first

experiment evaluates the general performance of the proposed

method over the different kinds of test problems, while the

second experiment is to evaluate its performance when the

changing pattern changes over time, and to test the robustness

when sudden unpredictable changes occur. Subsequently, The

proposed COPS-DMOP is compared with the existing three

algorithms, i.e. Randomly Reinitialization (RIND), PPS, and

Prediction-Based Population Re-initialization (PPR). We take

the average of 5 runs as the final results, with 3000 generations

in each run for 2 objective problems, and 6000 generations for

3 objective and concept drift problems. The value of MIGD

results are listed in Table II, and the IGD-generation graph is

also provided in Figure 2. It can be seen that the performance

of the proposed algorithm is competent in comparison with the

existing counterparts. This implies that the predicted hyper-

plane can guide the search process, whereby accelerating the

convergence and correcting the prediction errors. Also, error

tolerance has been improved compared to the existing methods

because the proposed COPS-DMOP has an error correction

mechanism while the others not. In addition, as COPS-DMOP

takes the concept drift into consideration, it turns out that the

COPS-DMOP has a better result in an unstable environment.

IV. CONCLUSION

We have proposed the COPS-DMOP algorithm, which

not only predicts not only the PS, but also estimates the PF

by a hyperplane. The distance between the individual and

hyperplane is used as the selection operator to replace the

non-dominance sorting selection operator in an early stage

of optimization. The hyperplane has been used to guide the

search process and accelerate the convergence. We compared

the proposed algorithm with three dynamic optimization algo-

rithms. Experimental results have shown the effectiveness of

the proposed algorithm.
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[12] P. A. Navrátil, H. Childs, D. S. Fussell, and C. Lin, “Exploring the
spectrum of dynamic scheduling algorithms for scalable distributed-
memoryray tracing,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 6, pp. 893–906, 2014.

[13] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for
evolutionary dynamic multiobjective optimization,” IEEE Transactions
on Cybernetics, vol. 44, no. 1, pp. 40–53, 2014.

[14] C. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 1, pp. 103–127, 2009.

[15] W. Hu, M. Jiang, X. Gao, K.-c. Tan, and Y.-m. Cheung, “Solving dy-
namic multi-objective optimization problems using incremental support
vector machine,” in 2019 IEEE Congress on Evolutionary Computation

(CEC), 2019, pp. 2794–2799.
[16] M. Mavrovouniotis, F. Neri, and S. Yang, “An adaptive local search

algorithm for real-valued dynamic optimization,” in 2015 IEEE Congress
on Evolutionary Computation, 2015, pp. 1388–1395.

[17] A. Muruganantham, K. C. Tan, and P. Vadakkepat, “Evolutionary dy-
namic multiobjective optimization via kalman filter prediction,” IEEE
Transactions on Cybernetics, vol. 46, no. 12, pp. 2862–2873, 2016.

[18] A. Lara, G. Sanchez, C. A. C. Coello, and O. Schutze, “Hcs: A new local
search strategy for memetic multiobjective evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 14, no. 1, pp.
112–132, 2010.

[19] H. Ishibuchi and T. Murata, “A multi-objective genetic local search al-
gorithm and its application to flowshop scheduling,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 28, no. 3, pp. 392–403, 1998.

[20] G. Oliveira, R. Cavalcante, G. Cabral, L. Minku, and A. Oliveira,
“Time series forecasting in the presence of concept drift: A pso-based
approach,” in 2017 IEEE 29th International Conference on Tools with
Artificial Intelligence (ICTAI), 2017, pp. 239–246.

[21] M. Lavielle and G. Teyssière, “Detection of multiple change-points in
multivariate time series,” Lithuanian Mathematical Journal, vol. 46, no.
3, pp. 287–306, 2006.

[22] R. C. Cavalcante, L. L. Minku, and A. L. I. Oliveira, “FEDD: feature
extraction for explicit concept drift detection in time series,” in 2016
International Joint Conference on Neural Networks (IJCNN), 2016, pp.
740–747.




