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Abstract—The cultural algorithm, as a dual-inheritance frame-
work designed for optimization problems, can incorporate any
population-adopted evolutionary computation technique in its
population space. On the other hand, based on the Five-Elements
Cycle Model derived from the ancient Chinese Five Elements
(metal, wood, water, fire, earth) theory, the five-elements cycle
optimization algorithm was proved to be effective in solving con-
tinuous function optimization problems. In this work, we propose
a multi-objective cultural algorithm with a five-elements-cycle-
optimization-based population space, where the five-element cycle
model is adopted as the evolution scheme in the population
space of the cultural algorithm framework. Simulation results
on 12 classic benchmark problems show that the proposed
algorithm can effectively solve continuous optimization functions
and obtains satisfactory non-dominated solutions compared with
8 representative multi-objective algorithms.

Index Terms—multi-objective evolutionary optimization, cul-
tural algorithm, five-elements cycle model

I. INTRODUCTION

In real-world applications, such as engineering design, sci-
entific experiments and business decision-making, to balance
multiple conflicting objectives is an ineluctable problem that
often requires decision makers to find several trade-off so-
lutions in the feasible region [1]. When a problem involves
more than one objective to be maximized or minimized, the
task of finding such solutions is known as multi-objective
optimization. Mathematically, a multi-objective optimization
problem (MOOP) with n decision variables, M objectives,
and J inequality and K equality constraints can be stated in
the following form:

Minimize y = f(x) = (f1(x), · · · , fM (x))

subject to gi(x) ≤ 0, i = 1, 2, · · · , J
hj(x) = 0, j = 1, 2, · · · ,K

where x = (x1, · · · , xn) ∈ X

y = (y1, · · · , yM ) ∈ Y

, (1)

where the n-dimensional vector x with n decision variables is
called the decision vector, and X is called the decision space,
y the objective vector, and Y the objective space.

In light of the versatility of heuristic optimization algo-
rithms, the implementation of evolutionary algorithms for
solving MOOPs has received considerable attention in recent
years. One of the most popular works in the field of multi-
objective evolutionary algorithms (MOEAs) is the NSGA-II
[2], which was carried out in 2000. Afterwards, David W.
Corne et al. proposed the Pareto envelope-based selection
algorithm II (PESA-II, [3]) which assigned the selective fitness
to the hyper-boxes and proved its superiority compared with
its former version PESA. And in the same year, SPEA2
was presented in [4], which integrated a fine-grained fit-
ness assignment strategy, a density estimation technique, and
an enhanced archive truncation method into its predecessor
SPEA and performed competitively on both combinatorial
and continuous test problems. And one of the classic swarm
intelligence algorithms, Particle Swarm Optimization (PSO),
was expanded to a multi-objective version (named MOPSO)
by [5]. MOEA/D presented in [6] is also a noteworthy al-
gorithm that decomposes an MOOP into a number of scalar
optimization subproblems and optimized them simultaneously.
In the past five years, quite a few newer MOEAs also have
been proposed with competitive performance compared to the
representative ones mentioned above. A new multi-objective
optimization framework, comprised of non-dominated sorting,
local search, and the farthest-candidate approach, named non-
dominated sorting and local search (NSLS) algorithm was
introduced in [7]. Literature [8] proposed an MOEA based
on an enhanced inverted generational distance metric (termed
MOEA/IGD-NS) which was able to omit noncontributing
solutions during the evolutionary search. In the same year,
a framework contained a bi-criterion evolution (BCE) with
indicator-based evolutionary algorithm (IBEA) embedded into
its non-Pareto criterion (NPC) evolution part was proposed
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in [9], and the effectiveness of this framework (termed BCE-
IBEA) was shown by experiments on seven groups of test
problems with various characteristics.

In 1994, Robert G. Reynolds first presented in [10] a
conceptual model of Cultural Algorithm (CA) as a dual
evolutionary framework metaphorically modeled the cultural
evolution of human society. During the last three decades,
Reynolds and his students have published a number of studies
involving not only the evolutionary scheme adopted in the
population space but also the knowledge structure used in the
belief space.

Based on the mechanism of generation and restriction in
the five elements (metal, wood, water, fire, earth) from the
ancient Chinese Yin-Yang theory, in [11] Mandan Liu devel-
oped the Five-Elements Cycle Model (FECM) and established
the five-elements cycle optimization algorithm (FECO) for
solving continuous global optimization problems. Thereafter,
the algorithm of FECO was successfully extended to a multi-
objective version by Chunling Ye et al., Multi-Objective Five-
Elements Cycle Optimization algorithm(MOFECO), and the
authors proved its capability of obtaining Pareto solutions [12].

Considering the flexibility of the CA framework and the
supreme performance of FECO on solving MOOPs, in this
paper, we made a bold attempt of incorporating MOFECO into
CA as its evolving scheme in the population space to solve
MOOPs, and the principle and effectiveness of the proposed
algorithm will be elaborated in the rest sections.

The remainder of this paper is organized as follows. Section
II gives some basic ideas of the original algorithms of CA and
FECO respectively. Section III focuses on the framework and
implementation of the proposed algorithm MOFECO. Exper-
imentation on 12 classic benchmark functions is presented in
Section IV. Section V gives the results and statistical analysis.
Section VI concludes this work and suggests some future
directions.

II. BASIC PRINCIPLES OF CULTURAL ALGORITHM AND
FIVE-ELEMENT CYCLE OPTIMIZATION

A. Cultural Algorithms

As can be seen in the framework of CA (Fig. 1), there
are three key elements in CA – a population space where
evolution occurs, a belief space storing useful experience,
and the communication channel between the two spaces. The
details of the three will be explained in the following.

1) Population Space: The individuals, each of which de-
notes a solution to the problem, evolve in the population space.
The size of the population is preset as a parameter of the
algorithm. According to [13], basically, the evolutionary mech-
anism adopted in the population space can be selected among
any population-adopted evolutionary computation techniques.
For instance, genetic algorithm and evolutionary programming
were introduced into the population space of a CA-based
testbed for solving constrained numerical optimization in [14].

2) Belief Space: The belief space can be viewed as the
libraries in our real world that provide information, knowledge,
and technology collected by all the appeared elites to help us

Belief Space

Population Space

Accept( ) Influence( )

Update( )

Selection( )

Generate( ) Evaluate( )

Normative, Situational, Topographical, 
Historical, Domain Knowledge, …

Fig. 1. Framework of Cultural Algorithm.

progress towards a better direction. The knowledge stored in
the belief space plays the same role for the population in CA
– guide the evolution towards the promising areas. Several
typical knowledge sources proposed in the literature are listed
below.

• Normative Knowledge: it gives standards or guidelines
for the population to follow along with the evolution
progress. More specifically, the closed intervals where the
exemplar individuals locate in are preserved as normative
knowledge.

• Situational Knowledge: it was first proposed by Chanjin
Chung in [15] as a set of exemplars that provide their
individual experience. In other words, the well-performed
individuals will be stored in situational knowledge and in
its influence functions they act like exemplars for other
individuals to follow.

• Topographical Knowledge: Xidong Jin and Robert G.
Reynolds used topographical knowledge to handle con-
straints when solving single-objective optimization prob-
lems (SOOPs) in [16] and [17]. The topographical knowl-
edge segments the search region defined by normative
knowledge into several hypercubes and then continues
to split the promising areas into sub-hypercubes. The
information of the hypercubes recorded in the topograph-
ical knowledge contains feasibility, weight, the leftmost
corner’s position, size of each hypercube, and counters for
feasible and unfeasible individuals in each hypercube.

• Historical Knowledge and Domain Knowledge: these two
were first proposed to deal with dynamic optimization
problems. As dynamic objective optimization is not in-
cluded in this work, refer to the literature [18] for details
on these two knowledge sources.

3) Communication Channel:

• Acceptance Function: it determines how many and which
of the individuals in the current population space can
be used to edit or improve the knowledge in the belief
space. One of the common ways to define the acceptance
function is to set an appropriate percentage parameter pa
and select the best pa×N individuals to impact the update
operation of the knowledge.



Wood

Metal

FireWater

Earth

Generating Interaction

Restricting Interaction

Fig. 2. The generating and restricting interaction among the five elements.

• Influence Function: it is the vehicle by which the knowl-
edge sources to reproduce new individuals in the popula-
tion. Every knowledge source has its corresponding influ-
ence function and the function can be modified according
to the specific nature of the optimization problem.

B. Five-Element Cycle Optimization

In FECM, the generating and restricting interactions be-
tween the five elements are depicted in Fig. 2. The generating
interactions, which denoted by the green arrows, resembles the
relationship between mother and child as the mother feeds and
raises the child. The red arrows represent the restricting inter-
action between grandmother and grandson as the grandmother
used to take the responsibility of disciplining the grandson
rested with the grandparents. Taking wood for instance, in the
outer circle wood generates fire and is generated by water,
while in the inner circle wood inhibits earth and is inhibited
by metal.

In the FECM dynamic system comprised of L elements (in
the five-element cycle, L = 5), the dynamically varying mass
of each element xi(k) at time k is signified as mi(k), and
the force exerted on the element by other elements, Fi(k), is
computed as follows [11]:

Fi(k) = ωgp · ln
[
mi−1(k)

mi(k)

]
− ωrp · ln

[
mi−2(k)

mi(k)

]
− ωga · ln

[
mi(k)

mi+1(k)

]
− ωra · ln

[
mi(k)

mi+2(k)

]
,

(2)

where i = 1, 2, · · · , L. The subscripts of mi−2(k), mi−1(k),
mi(k), mi+1(k), and mi+2(k) represent that i circulates in the
order of 1, 2, · · · , L. ωgp is the weight of the force that one
element is generated by its parent element; ωrp is the weight
of the force that one element is inhibited by its grandparent
element; ωga is the weight of the force that one element
generates its child element, ωra is the weight of the force
that one element inhibits its grandchild element. The four
parameters should be positive numerical values in the range
of [0, 1] and are set as 1 in the original literature [11].

Based on the FECM, the FECO can be established as an
iterated optimization algorithm. Suppose there are q cycles in

the system and each cycle contains L elements. When iteration
number k = 0, we randomly generate L×q initial individuals,
each of which is denoted as xij (i ∈ {1, 2, · · · , L}, j ∈
{1, 2, · · · , q}) corresponding to one solution to the opti-
mization problem. For each individual, calculate its objective
function value f(xij(k)) as its mass mij(k) and then the force
exerted on xij , Fij(k), can be computed by Eq. 2.

According to the value of force Fij(k), each individual xij
updates in the following way. If Fij(k) > 0, xij is regarded as
a good solution and stayed unchanged for the next iteration,
otherwise xij will be updated following Eq. 3:

xij,d(k + 1) ={
xij,d(k) + rs (xi∗j,d(k)− xij,d(k)) , if rm < Pm

xij,d(k) + rs (xbest,d − xij,d(k)) , else
,

(i = 1, 2, · · · , L; j = 1, 2, · · · , q; d = 1, 2, · · · , n)

(3)

where xij,d(k) is the d-th component in the n-dimensional
vector xij(k). Pm is a probability predefined for the update
operation, and rm is a randomly generated number in the range
of [0, 1]. xi∗j(k) is the element with the biggest Fij(k) value
in the current j-th cycle. And xbest is the best solution found
so far.

The iteration progresses in the aforementioned way and ter-
minates once the pre-defined termination condition is reached.

III. THE PROPOSED MULTI-OBJECTIVE CULTURAL
ALGORITHM EMBEDDING FIVE-ELEMENT CYCLE

OPTIMIZATION (MOCAFECO)
A novel combination of two evolutionary algorithms is put

forward in this paper. This section will dwell on how the
proposed algorithm MOCAFECO works.

A. Evolution Scheme in Population Space – Five-Element
Cycle Optimization

As MOCAFECO is designed for solving MOOPs, similar to
the MOFECO presented in [12], some necessary modifications
on the computation of the masses and forces and the update
and mutation operations in the FECM are made and will be
explained in this part.

1) Expression of Element Space: In the population space
of MOCAFECO, each individual, namely a solution to the
problem, can be seen as an element in the FECM. For example,
suppose there are q L-element cycles in the system, xij(k)
represents the i-th element in the j-th cycle at the k-th
iteration. Hence the population of size L×q can be expressed
as:

p =

x11 x21 · · · xL1
x12 x22 · · · xL2

...
...

. . .
...

x1q x2q · · · xLq


 q cycles

L elements in each cycle

, (4)

where each element xij has n decision variables: xij =
[x1,ij , · · · , xn,ij ].



In the j-th cycle, each individual (element) xij(k) has M
objective values, so its M masses are represented as mr,ij(k)
where r ∈ {1, 2, · · · ,M}. Accordingly, there are M forces ex-
erted on xij(k), denoted by Fr,ij(k) with r ∈ {1, 2, · · · ,M}.
And Fr,ij(k) is computed by

Fr,ij(k) = ln

[
mr,(i−1)j(k)

mr,ij(k)

]
− ln

[
mr,(i−2)j(k)

mi(k)

]
− ln

[
mr,ij(k)

mr,(i+1)j(k)

]
− ln

[
mr,ij(k)

mr,(i+2)j(k)

]
.

(5)

Thereafter, the update and mutation operation can be done
according to the two randomly selected force values Fu1,ij(k)
and Fu2,ij(k) (u1, u2 ∈ {1, 2, · · · ,M}). Individuals with
Fu1,ij(k) and Fu2,ij(k) that satisfy{

Fu1,ij(k) > 0

Fu2,ij(k) > 0
(6)

are regarded as good solutions and will be kept unchanged,
otherwise the individuals would be updated and mutated.

2) Update of Elements: If an individual has at least one
negative force in the two forces selected, which means it is
probably not a good solution, first perform update operation
on it:

xupdated
d,ij (k) = xd,ij(k) + Vd,ij(k), (7)

where the notion of velocity vector Vd,ij(k) borrowed from
particle swarm optimization algorithm [19] is defined as
follows:

Vd,ij(k) =
ω × Vd,ij(k − 1) + r1 × rs × (xlocal

j,d (k)− xd,ij(k)),

if rm < pu(k)

ω × Vd,ij(k − 1) + r2 × rs × (xbest
d (k)− xd,ij(k)),

if rm ≥ pu(k)

,

(8)
where ω is the inertia weight; d is randomly selected within
{1, 2, · · · , n}; r1 and r2 are pre-defined constants; rs is a
random coefficient in the range of [0, 1]. In MOCAFECO, a
local-global update probability pu is introduced to decide the
basis of the update – the local optimal individual in the j-th
cycle xlocal

j,d (k), or the global best individual xbest
d (k). And rm

is a random scalar drawn from the standard normal distribution
N(0, 1). The calculation of pu follows Eq. 9:

pu(k) = 1−
[
pumin + (pumax − pumin)× e−20·( k

T )
6]

, (9)

where pumin and pumax are predefined minimum and maxi-
mum update probability; k is the current iteration and T is
the maximum iteration. Therefore, the value of pu is low at
the early period, increases gradually in the medium, and then
stays in a high level at the late stage of evolution. When pumin

and pumax are set as 0.2 and 0.8, the variation curve of pu is
shown in Fig. 3.
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Fig. 3. Nonlinear variation of local-global update probability pu.

Algorithm 1 Update(xij(k))
Input: xij(k), pu(k)

Output: xupdated
ij (k)

Randomly generate rm from N(0, 1)
if rm < pu(k) then
xupdated
ij (k)⇐ LocalUpdate (xij(k))

else
xupdated
ij (k)⇐ GlobalUpdate (xij(k))

end if

3) Mutation of Elements: Afterwards, perform mutation
operation on the updated individuals:

xevolved
ij (k) =


xupdated
ij (k) + U(−σ1, σ1), if k ≤ T

4

xupdated
ij (k) + C(0, σ2), if

T

4
< k ≤ 3T

4

xupdated
ij (k) + N(0, σ3), else

,

(10)
where uniform, Cauchy and Gaussian distribution mutation
operators are used in different phases of iteration.

Algorithm 2 Mutate(xupdated
ij (k))

Input: xupdated
ij (k)

Output: xevolved
ij (k)

if k ≤ T
4 then

xevolved
ij (k)⇐ UniformMutate(xupdated

ij (k))

else if T
4 < k ≤ 3T

4 then
xevolved
ij (k)⇐ CauchyMutate(xupdated

ij (k))
else

xevolved
ij (k)⇐ GaussianMutate(xupdated

ij (k))
end if

The pseudocode of the evolution process within FECM
adopted in the population of MOCAFECO is given in Al-
gorithm 3.

B. Knowledge Sources in Belief Space

After the update and mutation operations, update the knowl-
edge in the belief space and then influence all the current



Algorithm 3 Evolution in FECM
Input: xij(k), k
Output: xevolved

ij (k)
Calculate pu(k)
for j = 1 : q do

for i = 1 : L do
for r = 1 : M do

Calculate Fr,ij(k)
end for
Select u1, u2 from {1, 2, · · · ,M}
if Fu1,ij(k) < 0 or Fu2,ij(k) < 0 then
xupdated
ij (k)⇐ Update (xij(k))

xevolved
ij (k)⇐ Mutate

(
xupdated
ij (k)

)
else
xevolved
ij (k) = xij(k)

end if
end for

end for

population by a randomly selected influence function. In MO-
CAFECO, normative, situational, topographical knowledge are
utilized in the belief space and the data structures of them
will be elaborated in this part. It should be noted that, when it
comes to sorting the solutions in the population, the techniques
of non-dominated sorting and calculation of crowding distance
from [2] are adopted.

• Normative Knowledge: in MOCAFECO, normative
knowledge is used to preserve the intervals where the
accepted individuals located. The data structure is similar
to the original one designed for SOOPs mentioned in
Section II-A2:

NK(k) = {l, u} , (11)

where l = {l1, · · · , ln} and u = {u1, · · · , un} are the
minimum and maximum values of each decision variable
that are found in all the individuals sorted out by the
acceptance function. While being updated, the accepted
individuals sorted out from the current population by the
acceptance function are used to modify the normative
knowledge.

• Situational Knowledge: naturally, for MOOPs, the non-
dominated individuals are saved in situational knowledge
as the elite solutions.

SK(k) =
{
E1, E2, · · · , Es

}
, (12)

where s is the pre-defined capacity of situational knowl-
edge and here we make it equal to the size of the
population N , and Ei is the i-th non-dominated individ-
ual with i ∈ {1, 2, · · · , s}. When situational knowledge
is updated, perform the non-dominated sorting method
on the current population and stored the non-dominated
individuals in the repository SK.

• Topographical Knowledge: it was originally used for
preserving promising regions of constrained problems,

whereas in MOCAFECO, we use it to expand the spread
the non-dominated solutions. Similarly, we define a pa-
rameter called nGrid and split the search area into nGrid
segments along each dimension of the objective space, so
that we have (nGrid)M hypercubes in the objective space
defined by the normative knowledge. And then find out
the edge area and perform fine tuning on the individuals
located inside the edge area. It is necessary to mention
here that the update of topographical knowledge is not
done at every iteration of the algorithm. Instead it only
updates before it is chosen to influence the population,
the purpose of which is to save computation resource.

After the update and mutation operations in the FECM, the
population will be influenced by a randomly selected influence
function in the belief space. The influence functions will be
illustrated in the next part.

C. Communication Channel

1) Acceptance Function: The acceptance function is to
accept a proportion of high-performing individuals to update
the belief space. In MOCAFECO, we use an acceptance rate
pa = 35%, which means 35% of the individuals in the
current population with the best non-dominated ranks are
accepted. And the accepted individuals are allowed to update
the normative knowledge.

2) Influence Functions:
• Influence function of normative knowledge: it applies

increment or decrement upon the individuals according
to the intervals saved in normative knowledge. The ad-
justment can be expressed as:

xinfluenced
d,ij (k) =
xevolved
d,ij (k) + |∆xd|, if xevolved

d,ij (k) < ld

xevolved
d,ij (k)− |∆xd|, if xevolved

d,ij (k) > ud

xevolved
d,ij (k) + β ×∆xd, otherwise

,
(13)

where d is randomly selected from set {1, 2, · · · , n},
which means the adjustment is exerted on a random
dimension of the decision vector xij . And the incre-
ment/decrement ∆xd is computed by

∆xd = α× (ud − ld)× rc, (14)

where α is an influence coefficient and rc is a ran-
dom scalar drawn from the standard normal distribution
N(0, 1). If the individual to be influenced already lies in
the normative region, use another influence coefficient β.

• Influence function of situational knowledge: it aims to
urge the individuals towards the exemplars stored in the
situational knowledge:

xinfluenced
d,ij (k) =
xevolved
d,ij (k) + |∆xd|, if xevolved

d,ij (k) < Erandom
d

xevolved
d,ij (k)− |∆xd|, if xevolved

d,ij (k) > Erandom
d

xevolved
d,ij (k) + ∆xd, if xevolved

d,ij (k) = Erandom
d

,

(15)



where Erandom
d is the d-th component of a randomly

chosen elite Erandom from the repository set SK and
d is randomly selected from {1, 2, · · · , n}. And the
adjustment ∆xd is calculated by

∆xd = γ × (xmax
d − xmin

d )× rc , (16)

where γ is an influence coefficient; xmax
d and xmin

d are
the d-th element of xmax and xmin, which are the upper
and lower bounds of the decision variables given by the
optimization problem; rc is a random scalar drawn from
the standard normal distribution N(0, 1).

• Influence function driven by normative and situational
knowledge:

xinfluenced
d,ij (k) =
xevolved
d,ij (k) + |∆xd|, if xevolved

d,ij (k) < Erandom
d

xevolved
d,ij (k)− |∆xd|, if xevolved

d,ij (k) > Erandom
d

xevolved
d,ij (k) + ∆xd, if xevolved

d,ij (k) = Erandom
d

,

(17)
where Erandom

d is the d-th component of Erandom, a ran-
domly chosen elite from the external repository SK. Dif-
ferent from the influence function of situational knowl-
edge, the adjustment ∆xd here is calculated according to
the intervals in normative knowledge:

∆xd = α× (ud − ld)× rc , (18)

where rc is a random scalar drawn from the standard
normal distribution N(0, 1).

• Influence function of topographical knowledge: it simply
exerts fine-tuning on the individuals located in the edge
areas:

xinfluenced
d,ij (k) = xevolved

d,ij (k) + ∆xd, (19)

where

∆xd = 0.1× (xmax
d − xmin

d )× rc , (20)

d is randomly selected from {1, 2, · · · , n}, and again,
rc is a random scalar drawn from the standard normal
distribution N(0, 1).

D. Implementation Framework

The implementation flowchart of MOCAFECO is shown in
Fig. 4.

IV. SIMULATION ON BENCHMARKS AND PERFORMANCE
COMPARISON BETWEEN MOCAFECO AND OTHER 8

MULTI-OBJECTIVE ALGORITHMS

A. Multi-objective Continuous Test Benchmarks

For simulation, 3 bi-objective test benchmarks (ZDT1/2/3
selected from the ZDT set [20]) and 9 tri-objective bench-
marks (DTLZ2/4/5 selected from the DTLZ set [21] and
MaF1/5/6/8/11/12 from the MaF set [22]) are used in the com-
parison between MOCAFECO and 5 classic multi-objective
algorithms and 3 newer MOEAs.

B. Algorithms for Comparison and Parameter Settings

In this paper, we choose 8 multi-objective algorithms,
including five classic multi-objective algorithms NSGA-II,
PESA-II, SPEA2, MOPSO and MOEA/D, and three well-
performed algorithms NSLS, MOEA/IGD-NS and BCE-IBEA
selected from more recent researches, to investigate the per-
formance of MOCAFECO.

For all the 9 algorithms, the population size is set equally
to 25 × M , and for MOCAFECO, PESA-II, SPEA2 and
MOEA/D, which are algorithms with external repositories, the
size of the repositories is equal to the population size. The
other parameter settings of the 8 algorithms are the same as
in the original literature.

For MOCAFECO, the parameters are set as: pa = 0.35,
s = N = 25 ×M , nGrid = 10, α = 0.3, β = 0.5, γ = 0.1,
pumin = 0.2, pumax = 0.8, ω = 0.05, r1 = r2 = 1. For L and
q in the FECM, as we have N = L× q and N = 25×M , we
set L fixed as 5 and therefore q = 5×M . Most of the above
are the same as they were configured in the original works.

C. Experimental Configurations

The algorithm of MOCAFECO and the other 8 algo-
rithms are written in Matlab scripts and the testing exper-
iments are implemented in Matlab R2019a on a 3.60GHz
Intel(R) Core(TM) i7-4790 processor under Windows 10. The
source code of the NSGA-II, PESA2, SPEA-II, MOPSO and
MOEA/D is available from the EMOO repository in [23],
and the implementations of NSLS, MOEA/IGD-NS, BCE-
IBEA are from the PlatEMO [24]. All the algorithms run
20 times independently for each test benchmark problem.
Additionally, to conduct a fair comparison between the nine
methods, instead of adopting a maximum number of iterations
as the termination condition, we terminate each algorithm
once the calculation times of the objective functions reaches a
certain value (50,000 times for the ZDT and the DTLZ suites;
max{100000, 10000× n} times for the MaF suites).

D. Performance Metrics

Inverted generational distance (IGD) [25], unary ε-indicator
(Iε1) [26], and hypervolume (HV ) [27] are adopted in this
paper to evaluate the performance of the 9 algorithms.

V. RESULTS AND DISCUSSION

In this simulation, MOCAFECO is proved to have the ability
to find non-dominated solutions with satisfactory convergence
to the true PFs of the 12 multi-objective problems. Due to
space limitations, two typical results on test problems ZDT3
and MaF12 obtained by all the 9 algorithms are presented in
Fig. 5 and Fig. 6. In both figures, the non-dominated solutions
obtained in the 20 runs are marked by circles in 20 different
colors (solutions of each run are denoted by each color). Fig.
5 shows that MOCAFEO and BCE-IBEA are the only two
algorithms that possibly converge to the true PF of ZDT3 in
all the 20 runs. For example, in the second subfigure of NSGA-
II, it can be noted that at least one set of solutions obtained
by NSGA-II fails to find the rightmost piece of the ZDT3’ PF.
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Fig. 4. Framework of MOCAFECO.

Also, as can be seen from Fig. 6, the solutions obtained by
MOCAFECO cover most areas of the Pareto surface, second
only to BCE-IBEA. Here, MOCAFECO’s ability to better
cover the Pareto fronts is generally attributed to the use of
topographical knowledge in the belief space of CA and the
combined mutation strategy in the FECM.

To quantitatively measure the quality of the solutions ob-
tained by MOCAFECO, median values of the three indicators
(inverted generational distance (IGD), hypervolume (HV ),
and unary ε-indicator (Iε1)) over the 20 runs are computed.
Also, upon the median results, the Friedman test is performed
as it was recommended in [28], and the statistics of the three
indicators are presented in Table I, II and III respectively.

The first indicator IGD is a comprehensive metric that
measures the convergence of solutions to the true PF and
their distribution. It can be seen from the data in Table I
that, compared with Table II and III, the Friedman mean ranks
achieved by the algorithms on indicator IGD are quite close
(in the interval of [3.2500, 7.3333]). And according to the final
rank in Table I, the proposed MOCAFECO performs better
than half of the rest 8 algorithms, which can also be noted
from the median values of MOCAFECO.

As one of the typical Pareto-compliant metrics that can be
used to measure the comprehensive performance of a Pareto
solution set, HV provides a qualitative measure of conver-
gence as well as diversity [1]. In Table II, it is apparent that
MOCAFECO has outstanding performance on the indicator
of hypervolume as it achieves the first rank in the Friedman
test among all the 9 algorithms with a quite small p-value.
It should be noted that, as the Friedman test is performed
in ascending order, and the fact that larger hypervolume value
indicates better performance, in Table II larger Friedman mean
rank is preferred.

Another Pareto-compliant metric, the unary ε-indicator, is
also adopted in this paper to comprehensively evaluate the
obtained solution sets of the selected multi-objective optimiz-
ers. Intuitively, the unary ε-indicator measures how much do
we need to translate/scale the solution set so that it covers
the reference set or the true PF [29]. Table III compares the
unary ε-indicators of the 9 algorithms, and the data shows
that, similar to the results in Table II, the proposed algorithm
achieves the first rank in the Friedman test over the unary
ε-indicator with a small p-value.

In general, as a novel attempt of introducing the FECM into



Fig. 5. Plots of the non-dominated solutions in the objective space of ZDT3 obtained by 9 algorithms in 20 independent runs (solutions obtained in each run
are denoted by each color).

TABLE I
MEDIANS OF INVERTED GENERATIONAL DISTANCE (IGD) AND RANKS ACHIEVED BY THE FRIEDMAN TEST (A: ALGORITHMS, P: PROBLEMS)

P
IGD A

MOCAFECO NSGA-II PESA2 SPEA-II MOPSO MOEA/D NSLS MOEA/IGD-NS BCE-IBEA

ZDT1 0.014183 0.009645 0.129334 0.09108 0.024368 0.109832 0.010571 0.007697 0.007998
ZDT2 0.011489 0.009845 0.148760 0.113129 0.019088 1.294850 0.022095 0.007650 0.007808
ZDT3 0.152613 0.165316 0.159438 0.128541 0.155690 0.273838 0.166409 0.155044 0.165305

DTLZ2 0.071753 0.075651 0.149795 0.131218 0.174605 0.086025 0.063563 0.059212 0.063741
DTLZ4 0.364195 0.300299 0.144345 0.117881 0.176252 0.146677 0.079404 0.168412 0.054655
DTLZ5 0.153638 0.153369 0.168825 0.160782 0.160016 0.156620 0.153442 0.153304 0.153231
MaF1 0.065853 0.060712 0.114662 0.090476 0.169750 0.078548 0.048772 0.045060 0.048744
MaF5 4.380506 4.110485 3.118054 3.446501 3.667022 4.030302 4.010777 4.055071 3.994221
MaF6 0.178618 0.178943 0.500827 0.188395 0.190435 0.181181 0.178557 0.178422 0.178199
MaF8 0.685032 0.711462 28.170782 0.782971 8.592302 198.930815 0.674738 0.711051 0.684380

MaF11 2.222541 2.247190 2.053610 2.107801 2.098570 2.442144 2.239839 2.293998 2.274423
MaF12 3.161307 3.159197 2.897493 2.945645 2.948057 3.177798 3.137569 3.164169 3.169458

Friedman
mean rank 5.0000 5.1667 5.9167 5.0000 5.8333 7.3333 3.9167 3.5833 3.2500

final rank 4 6 8 4 7 9 3 2 1
p-value 0.0066

the CA framework, MOCAFECO has acceptable performance
on the indicator of inverted generational distance and shows
significant superiority over the other 8 algorithms on two com-
prehensive performance indicators HV and unary ε-indicator.

VI. CONCLUSIONS AND FUTURE WORK

The feasibility of adopting the FECM as the evolutionary
scheme in the CA framework is verified in this paper. Com-

pared with 5 classic and 3 latest multi-objective algorithms, the
proposed algorithm MOCAFECO performs competitively and
shows its great potential for solving continuous optimization
problems.

There is still abundant room to refine the proposed al-
gorithm. First, a mechanism for dealing with constraints in
MOOPs can be included in the MOCAFECO. In addition,



Fig. 6. Plots of the non-dominated solutions in the objective space of MaF12 obtained by 9 algorithms in 20 independent runs (solutions obtained in each
run are denoted by each color).

TABLE II
MEDIANS OF HYPERVOLUME (HV ) AND RANKS ACHIEVED BY THE FRIEDMAN TEST (A: ALGORITHMS, P: PROBLEMS)

P

HV A
MOCAFECO NSGA-II PESA2 SPEA-II MOPSO MOEA/D NSLS MOEA/IGD-NS BCE-IBEA

ZDT1 1.095070 1.099928 0.830576 0.922692 1.041203 0.806723 1.015229 0.892170 0.927179
ZDT2 1.098024 1.100000 0.720335 0.696774 0.734238 0.100000 0.889709 0.728187 0.719629
ZDT3 1.665168 0.937016 0.801689 0.795810 0.681363 0.516177 0.758055 0.927594 0.884965

DTLZ2 1.100000 1.100000 0.885209 0.959991 0.916623 0.943219 1.100000 0.914728 1.074353
DTLZ4 1.100000 1.100000 1.099999 0.900187 1.100000 1.100000 1.100000 1.100000 0.890715
DTLZ5 0.777817 0.777817 0.394298 0.458433 0.538302 0.409302 0.479101 0.352878 0.388038
MaF1 1.099999 1.099999 0.731315 0.744027 0.639410 0.657070 0.819296 0.709609 0.739269
MaF5 8.800000 8.800000 8.800000 8.791239 8.800000 8.628677 8.800000 8.727918 8.335463
MaF6 0.777817 0.777817 0.632291 0.351541 0.501087 0.431472 0.517511 0.546969 0.485437
MaF8 1.888281 1.834780 0.000000 1.175753 0.000000 0.000000 1.891454 1.335510 1.303236
MaF11 2.198133 2.190809 1.917869 2.052736 1.874455 1.831368 1.938912 1.993403 2.050974
MaF12 2.170949 2.160338 1.166010 1.506147 1.726413 1.188865 2.144023 1.864810 1.705992

Friedman
mean rank 8.2500 8.0833 3.3333 3.9167 4.4583 2.1667 6.3750 4.5000 3.9167

final rank 1 2 8 6 5 9 3 4 6
p-value 8.2972e-10

in this work, limited parameters comparison experiment has
been made and most parameters are used as their default
values. Hence a thorough analysis of the parameters used in the
MOCAFECO can be made for achieving better performance.
Furthermore, the effect of each knowledge source on searching
for promising solutions can be further analyzed, and also other
effective knowledge sources can be exploited in the CA part

of MOCAFECO.
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