
Genetic Algorithm Applied in UAV’s Path Planning
Gustavo de Moura Souza

Institute of Mathematics and Computer Sciences
University of Sao Paulo

São Carlos, Brazil
gustavo.moura.souza@alumini.usp.br

Claudio Fabiano Motta Toledo
Institute of Mathematics and Computer Sciences

University of Sao Paulo
São Carlos, Brazil

claudio@icmc.usp.br

Abstract—The present paper introduces a hybrid genetic algo-
rithm for path planning problem with obstacle avoidance. The
genetic algorithm is combined with Ray Casting (RC) algorithm,
where RC is responsible to avoid obstacles and to find safe
regions for emergency landing. Thus, the path planning system
must deal with a non-convex environment when planning and
re-planning trajectories. The system must also work embedded
on the UAV running under a Raspberry Pi board. The hybrid
method is evaluated over 50 benchmark maps from literature
with satisfactory results reported.

Index Terms—hybrid method, ray casting, genetic algorithm,
path planning, UAV, emergency landing

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) is an aircraft that does
not carry a human operator, and it can be piloted remotely
or even fly autonomously [1]. There is a broad interest in the
development of better, faster and more useful UAV systems.
These systems are being used in a series of applications such as
field recognizance, agricultural surveying, disaster assistance,
law enforcement and others [2].

However, the development of UAV systems is still complex
and requires more practical and theoretical experience to
mature the UVA’s flights safe. Regulatory laws regarding the
safe use of UAV are being defined in many countries, usually
following standards from international organizations such as
the Federal Aviation Administration (FAA), United States; the
Civil Aviation Safety Authority (CASA), Australia and the
European Aviation Safety Agency (EASA), Europe Union [3].
These rules define patterns for a safe flight and how to achieve
it regarding the safety of people and the environment.

Autonomous control systems use techniques from the field
of Artificial Intelligence (AI) to achieve autonomy [4], and it is
a relevant tool to mitigate problems for complex systems such
as those embedded in UAVs. An autonomous UAV system
can sometimes fly safer, execute tasks quicker and preciser
than operated by human pilots. For many UAV applications,
its remote operation by human pilots can be either expensive
or impracticable [5].

The automation can be divided into three main categories:
(i) not autonomous - the UAV system needs to be operated
by a human and does not perform any movement actions by
itself; (ii) semi-autonomous - the system has some elements
that facilitate the flight, such as stabilizers, autopilots and
previously coded actions (e.g., return to land); (iii) autonomous

- the system can complete a given mission without human
interference.

The present paper introduces a solution to make the UAV
system get to the third level of automation when planning a
path. This research mainly investigates a couple of ways to
address the path planning problem with risk allocation and
obstacle avoidance, while taking care of optimizing the fuel
consumption and other resources. Two main constraints are
handled. First, the system must work within a non-convex
environment, which means to deal with obstacle avoidance.
Second, the system must work embedded in the UAV that
leads to online path planning and replanning.

In this scenario, we introduce a hybrid evolutionary algo-
rithm integrating a Genetic Algorithm (GA) to Ray Casting
(RC) algorithm [6] for obstacle avoidance. RC allows solving
problems in 3D computer graphics and computational geome-
try using ray-surface intersection tests. The proposed method
is evaluated by running under a Raspberry Pi board to planning
paths for a set of benchmark maps introduced in [7].

The present paper is organized as follows: Section II de-
scribes some related work, and Section III states the problem
approached. The hybrid evolutionary algorithm is explained
in Section IV, and the experimental results are reported in
Section V. The conclusions follow in Section VI.

II. LITERATURE REVIEW

Mission and path planning approaches are described by
[8]–[11]. A planning system is described in [8] for discrete
actions and continuous controls being executed by aerial and
underwater vehicles. The planner provides autonomy by giving
the system a decision-making module that uses a compact
representation for all the feasible plans. It also presents a
mathematical formulation to define the set of actions that can
be taken by autonomous vehicles.

The problem approached by this paper is based on a similar
one described in [9], named as Chance-Constrained Optimal
Path Planning with Obstacles. The problem is formulated
using stochastic models to describe the chance-constraints for
risk allocation when planning the trajectories. Mathematical
programming based heuristics are proposed that return paths
based on upper and lower bound solutions from the stochastic
model.

The authors in [10] extend the chance-constrained approach
to continuous time where the risk is bounded from the reflec-

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

tion principle since the trajectory follows a Brownian motion.
A Mixed-Integer Linear Programming (MILP) formulation is
proposed in [11] for the same problem, which was able to
solve more complex maps within a reduced computational time
using an exact method.

The evolutionary algorithms have been applied to solve
path planning problems, as described in [12]–[15]. A hybrid
method combining genetic algorithms with Voronoi diagrams
is introduced by [12], where the Voronoi approach helps to
create the GA population aiming to improve the overall quality
of solutions. GA is applied in [13] for path planning of mobile
robots with obstacle avoidance.

A hybrid algorithm is proposed in [14] that combines
Ant Colony Optimization (ACO) and GA for path planning
in mobile robots with obstacle avoidance. ACO returns an
initial trajectory which is improved by GA. The aircraft in
[15] must avoid no-fly zones, radars zones, missiles, and
anti-aircraft guns. A three-dimensional scenario is assumed,
and a Differential Evolution (DE) method is proposed for
path planning. The robustness and convergence speed of DE
outperforms 11 other algorithms from the literature.

A hybrid method combines a multi-population genetic al-
gorithm with the resolution of a linear programming model in
[16]. A non-convex environment with uncertainties is assumed,
and a visibility graph helps to encode all possible paths as
individuals. A linear programming model is solved from such
encoding, and the solution achieved will define the fitness of
the individual as well as a possible path to be executed.

The path replanning problem for UAVs, under an emergency
landing, is approached by [17]. The authors proposed three
path planning methods: a greedy heuristic, a simple genetic
algorithm, and a multi-population genetic algorithm. The
greedy heuristic stands for fast feasible paths, while the genetic
algorithms return better quality trajectories.

The Ray Casting technique used in this research was pro-
posed by [18] for solids modelling systems. The complex
solids are modelled by combining simpler solids, such as
cylinders and pyramids, that receive a virtual light ray cast at
their surface. RC is a reliable and extensible method presenting
a high-grade performance in terms of execution time and is
easily adapted to other scenarios. The authors in [19] apply RC
as an acceleration technique for Graphical Processing Units
(GPU), interpreting the solids as volume described by ray
casting instead of object-order units. This work influenced the
use of RC to render 3D meshes in movies, games and scientific
visualization softwares.

RC is applied for machine-tools in [20] to demonstrate the
effectiveness of using graphics hardware on manufacturing
problems. A NASA research presented in [6] a path planner for
UAV systems using RC to detect and avoid obstacles, taking
into account the safety of the mission. The planning algorithm
also used a rapidly exploring random tree to find a suitable
path.

The present paper introduces a hybrid evolutionary algo-
rithm to deal with the path planning with obstacles approached
by [9]–[11], [16], but without handling the chance-constraint

with risk allocation. Also, we apply the hybrid evolutionary
algorithm for path planning as well as for path replanning
under emergency landing. It is a different approach from
[5], [16]. The path planning in [16] needs to solve a linear
programming model, which can be difficult for a planning
system embedded on the UAV as the one proposed here.
The emergency path planners in [5] deal with risk allocation,
and they are tailor-made for emergency landing, while our
approach is less specific, but it can easily switch from path
planning to emergency landing.

III. PROBLEM

The path planning problem with obstacles approached in
this paper will optimize trajectories where the hard constraint
is the obstacle avoidance. Thus, we must avoid the risk to
hit a no-fly zone, which is represented by obstacles or regions
where the UAV is not allowed to go through. The optimization
criterion is usually to reach the destination, where some soft
constraints can also be satisfied, such as running a short
trajectory, saving fuel or applying smooth manoeuvres. The
problem is non-convex since the trajectory must avoid the no-
fly zones through the path planning map. Figure 1 give us an
example where the UAV must reach the goal point End from
the start point Begin, avoiding collision with obstacles A and
B.

Fig. 1. Path Planning problem illustration.

We will also handle the emergency landing situation, where
a path replanning must be executed over a stay-in region
(landing area). Figure 2 gives us an example where the UAV
must reach the goal point End from the start point Begin,
avoiding collision with obstacles A and B, but when a situation
happens, an emergency landing is executed over region C,
recalculating the route to safely land.

To sum up, the problem assumes the UAV must plan
a trajectory to reach a destination, avoiding obstacles and
optimizing some criterion. Also, if a situation happens, a path
replanning is executed to reach a stay-in area. The stay-out
(no-fly zones) and stay-in (landing areas) are previously known
by the autonomous path planning system.

A mathematical formulation for the path planning problem
is presented next based on the formulation described in [9].

Minimize Θ() =
∑
t

‖ut‖ (1)

Fig. 2. Path Replanning problem illustration.

Where:

xT = xgoal (2)

xt+1 = Axt +But
+ µt, ∀(t) (3)

xt ∈ Ij ⇔
∧

i∈HI
j

hTi xt ≤ gi (4)

xt ∈ Oj ⇔
∨

i∈HO
j

hTi xt ≥ gi (5)

The objective function (1) will minimize some metric re-
lated to the mission planning such as distance, fuel consump-
tion, collision risk, among others. The authors in [9] define
the objective function as a cost proportional to the applied
controllers magnitude. In the objective function (1), ut can be
the acceleration applied at each time step t within the planning
horizon t = 1, ..., T .

The Constraint 2 defines that the last state of the UAV must
be the state defined by xgoal. The state variable xt can be
represented, e.g., by the position and velocity of the UAV at
time step t. The state transitions are defined recursively by
Constraints 3.

The Constraints 4 and 5 describe stay-in and stay-out states
in which i ∈ Hj is the hyperplane that defines the convex
regions for obstacles or landing regions. The obstacles are
defined as the disjunction of linear constraints where the UAV
must stay outside of one hyperplane at least, otherwise we have
a collision. The landing regions are established as the junction
of linear constraints where the UAV must stay-in during the
path planning.

IV. METHODOLOGY

A. Hybrid Genetic Algorithm

The Genetic Algorithm receives as input an object that
defines the mission the UAV must complete. The object
contains one or more no-fly areas (Φni), an origin (ωo) and a
destination (ωd) waypoint, all of them defined in the Cartesian
system. The output is the Cartesian waypoints of the best route
evolved. In this project, the best individual is abstracted as
the best route. The hybridization aspect arises when the Ray

Casting algorithm is applied to detect no-fly regions as well
as landing areas. This happens during the fitness calculation.
The pseudo-code (Algorithm 1) describes our algorithm.

Input: Criteria: stop criteria; Int: crossover rate,
population size; Map: map

Output: Route: best route
while not stop criteria do

Initialize Routes(population)
Evaluate Fitness(population, map)
repeat

for i=1 to crossover rate x population size do
parents ← Tournament(population)
offspring ← Crossover(parents)
Mutation(offspring)
Evaluate Fitness(offspring)
Insert(offspring)

end
until not converge;

end
return best route

Algorithm 1: Hybrid Genetic Algorithm

The stop criterion in our computation experiments is the
execution time. The selection for reproduction, crossover and
mutation operators are executed while there is no convergence.
A new individual is inserted if it has better fitness value
than one of its parents. The method converges when no
new individuals are inserted in the population, after a total
of crossover rate × population size individuals has been
created. In this case, all individuals are reinitialized, except
by the best one.

B. Individual

The solution encoding of the GA has the controllers that
a UAV needs to perform a trajectory. Thus, the individual is
described as a set of values applied to change the UAV position
from one time step to another. The decoding of such individual
will return the set of states [xt, yt, vt, αt] of the aircraft through
the time steps t.

Let T be the planning horizon size that has the quantity
of time steps or waypoints that is desired to compute. The
individual is defined for t = 1, . . . T as follow:

DNA = [gene1, gene2, . . . , genet, . . . , geneT]

genet = (at, et)

where:
a := UAV’s acceleration (meters/second2)
e := UAV’s angle (degrees)
This representation of individual allows the route to move

forward with increasing and decreasing velocity and changing
angle freedom, constrained by the UAV design. The individual
represents the movement in a vectored form. To imply the
Cartesian position where this vector leads, it is needed to

decode each of the individual’s gene. Define γDNA the set
of UAV controllers, i.e. the decoded DNA, for t = 1, . . . T :

γDNA = [γgene1, . . . γgeneT]

γgenet = (xt, yt, vt, αt)

where:
xt := UAV’s position on the X axis (meters)
yt := UAV’s position on the Y axis (meters)
vt := Horizontal UAV’s velocity (meters/second)
αt := Horizontal UAV’s angle (direction) (degrees)

Figure 3 illustrates the individual encode and decoding
representation.

Fig. 3. Individual’s encoding and decoding

To decode each gene and generate the γDNA with γgenes,
it is applied the function 6. It transforms the vectors describing
the acceleration and angle to a new interpretation, which
represents the x and y coordinates, the velocity and the
horizontal angle. Thus, DNA represents transitions, and the
decoded γDNA represents states. Let Γ be the function that
decodes a gene:

Γ(gene) =

xt+1 = xt + vt · cos(αt) ·∆T
+at · cos (αt) · ∆T 2

2

yt+1 = yt + vt · sin(αt) ·∆T
+at · sin (αt) · ∆T 2

2

vt+1 = vt + a ·∆T − F ·∆T
m

αt+1 = α+ e ·∆T

(6)

Where ∆T is time variation between two consecutive time
steps. The F term is the drag equation1, defined by Equation
7, that is used to estimate better the position and the movement
of the UAV on the air.

F = 0.5 · Cd · ρ ·A · v2
t (7)

The drag equation allows to determine the strength that
an object is subjected to when passing through a fluid2. The

1This particular equation was obtained from [5]
2In this case, the fluid is the air.

constants Cd3, ρ4 and A5 are defined according to the UAV’s
and environment’s conditions.

C. Fitness

The Equation 8 defines the fitness function.

fitness = Cdist · fdist + Cobs · fobs
+ Ccurv · fcurv + Ccons · fcons
+ CT · fT

(8)

The first term penalizes the distance from the last waypoint
to the destination one. This is done by calculating the Eu-
clidean distance between those two points in Equation 9. If
the distance is less than a threshold ε, it is set zero.

fdist =

√
(ωx

d − γgenexT)
2

+ (ωy
d − γgene

y
T)

2 (9)

The second term penalizes the flight over no-fly zones.
In this case, the Ray Casting algorithm is applied to detect
such constraint violation. Let ωi be the waypoint described by
(γgenexi , γgene

y
i). Let ωi, ωj be the segment that connects

two waypoints: ωi and ωj . The Equation 10 describes the
obstacle fitness function6:

fobs =

{ ∑T
t=0

∑N
n=0RCP (ωt,Φn)

+RCS(ωt, ωt+1,Φn)
(10)

RCP (ω,Φ) =

{
1 , if ω ∈ Φ

0 , otherwise
(11)

RCS(ωi, ωj ,Φ) =

N∑
n=0

|ωi, ωj

⋂
Φn| (12)

The Equations 11 and 12 describes the results from the
Ray Casting algorithm that are further explained in the next
subsection. The Equation 11 evaluates those waypoints inside
obstacles, while Equation 12 finds the segments that go
through some obstacle or no-fly zones. Equation 13 indicates
the third term of the fitness function, which penalizes routes
with lots of curves by summing up the angle between each
segment of the route.

fcurv =
1

emax
·

T∑
t=0

geneet (13)

Straighter routes can be simplified by transforming three or
more collinear waypoints into two, that way, the information
passed to the autopilot is reduced, decreasing the chance of
future communication problems with the UAV. Due to that,
smoother routes are rewarded. The fourth fitness term is given
by Equation 14, and it takes into account the fuel consumption.

3The drag coefficient considered was the same for an angled cube, which
is 0.8.

4The specific fluid mass, a.k.a. density, used was 1.225 given in k/m3.
5Area of reference.
6When t=T, set t+1=0

fcons =

T∑
t=0

geneat
2 (14)

To simplify the introduction of fuel consumption on the
fitness function, it is interpreted as the total route’s sum of
squared accelerations. Longer the route, more significant the
fitness. This forces the algorithm to find the shortest route,
saving fuel and completing the mission faster.

We are not assuming a fixed number of time steps T for
the trajectory. The proposed GA will optimize the number of
time steps. This is done by including on the fitness function
the T parameter. Thus, the Equation 15 counts the number of
time steps on the individual’s encoding.

fT = T (15)

The total values of the fitness function must be minimized,
which means that the better individuals will have a reduced
fitness value. However, if an emergency landing becomes
necessary, Equation 9 is replaced by Equation 16.

flanding =
{ ∑N

n=0RCL(ωT ,Ψn) (16)

RCL(ω,Ψ) =

{
1 , if ω ∈ Ψ

0 , otherwise
(17)

Where Ψ represents a stay-in (landing) area and the last
time step T must be within some Ψ.

D. Operators

The initialization operator generates individuals following
two steps. First, the number of time steps T is randomly
selected from {1, . . . , T}. Moreover, individuals with different
number of time steps can be created. Second, the pair of
values genet = (at, et) for each gene is randomly taken with
at ∈ [amin, amax] and et ∈ [emin, emax].

The selection operator for reproduction is the Tournament
[21] with size two. Thus, it is randomly selected two individ-
uals from the population, and the best one is chosen as the
first parent. The second parent is selected following the same
steps.

The new individual is generated by randomly choosing
between OX and BLX-α crossover operators for the two
parents. These operators are applied as follows:
• OX: The offspring genes are randomly selected between
parent1’s or parent2’s gene;

• BLX-α: It is taken the medium for each of parent1’s
and parent2’s gene’s elements and modified by a small
value.

The mutation operator is performed over each of the new
genes with a probability Pr(mutation) of mutating or not the
gene. There were defined four operators that perform mutation.
Each operator is randomly selected with equal chance.
• Creep: It is added or subtracted a small random value

from each gene’s element;

• Change: Each gene has a probability of 50% of being
replaced by a random generated new gene;

• Insert: It is inserted a single randomly generated gene
anywhere on the DNA, if after muting T ≤ Tmax;

• Remove: A random gene is removed from the DNA, if
after muting T ≥ Tmin.

E. Ray Casting

The Ray Casting algorithm is applied during the fitness
calculation to identify obstacles in Equation 10 or landing
areas in Equation 16. As previously mentioned, this algorithm
is widely used in computer graphics field, especially for
rendering 3D scenes for games and animation movies.

RC simulates the path a light ray makes when inserted on an
environment, by calculating the trajectory of the ray from the
light source until it reaches an object. Further developments
on the Ray Casting simulated the reflex of objects and the
projection of new rays. Given a 2D polygon and a point, a
ray is cast from the point to the infinite. If this ray crosses
an even number of the polygon’s edge, the point is outside
the polygon, if it crossed an odd number, then it is inside the
polygon.

For the path planning problem, the Ray Casting algorithm
is employed here to avoid collision with a no-fly area. This
is done by casting horizontal rays from each waypoint of
the route. Next, it is calculated how many times the ray
cast intercepted the polygon formed by the area. If the ray
intercepted the area an odd number, the waypoint is inside the
area, if it intercepted an even number, then the waypoint is
outside of the area.

The Ray Casting algorithm implemented in this work con-
sists of a two-fold algorithm. The first one, the Point in
Polygon RC is used to check if a given polygon contains a
point. This algorithm is employed by Equation 11 and it uses
the logic of casting a horizontal ray in the direction of the
positive axis (i.e. to the right on Cartesian) and counts the
number of areas edges intersections, establishing if it is inside
or not the area. The Point in Polygon RC is used to check for
every waypoint of the route the relational position colliding
with any obstacle.

The second RC is the Segment intersects Segment. This
algorithm is important because the notion of waypoints is
only an abstraction for the UAV’s controller to trace a motion
vector that drives the airship along some path. Due to that, it
is not only necessary to check if the waypoints are colliding
with obstacles but to check if any part of the UAV’s route is
colliding.

It works by checking the orientation of each segment of the
route with each edge of the no-fly areas. For a pair of following
waypoints belonging to the route, a ray is cast between them,
i.e. a connection. It is then checked with the area’s edges. If
the orientation of the points indicates both segments intersect
between themselves, the route is then penalized. Otherwise,
the route does not receive a penalty when the segments are
not intersecting. This is described by Equation 12.

Equation 17 is also related to the Point in Polygon RC. The
goal of this equation is to check if the route’s last waypoint, the
landing point, arrived at a safe zone or not, allowing the UAV
to safely land. To verify if the point is contained inside the
polygon formed by the safe zone, the Ray Casting algorithm
is applied as described for the Point in Polygon RC.

As the Ray Casting algorithm is not widely used for path
planning and geophysical methods, a previous evaluation of
the proposed algorithms was necessary. It was made a stress
test over the algorithms, executing many cases and inspecting
the results. First, the evaluation of checking if a given waypoint
is inside a polygon used the algorithm Point in Polygon.
The process selected a thousand points ω and assigned to
them uniformly distributed values for its x and y coordinates,
where the Equation 18 describes the process of selecting the
coordinates.

ωi = {x, y}, x ∈ U [1, 6] and y ∈ U [1, 6] ∀i ∈ [1, 1000]
(18)

The generated points were inferred to see if they were
inside a defined no-fly area. Figure 4 shows the results of the
algorithm, where each cross represents a waypoint, and the
square on the centre is the non-navigable area. The label ”T”
stands for True along with the colour green, i.e. the point is
inside the polygon. The label ”F” stands for False along with
the colour purple, indicating that the point is outside the area.
The result shows that for every point tested the classification
is right.

Fig. 4. Stress test for the Point in Polygon Ray Casting Algorithm.

The second algorithm needed for the obstacle collision
detection considers the intersections between the area’s edges
and the segment connecting two waypoints, it is called the
Segment Intersects Segment Ray Casting algorithm. The stress
test for this algorithm followed the same steps as the Point
in Polygon, although this time the process of selecting the
coordinates is expressed on Equation 19.

ωaωbi := line segment connecting ωa with ωb, ∀i ∈ [1, 15]

ω = {x, y}, x, y ∈ U [1, 6]
(19)

The results are displayed by Figure 5, showing the algorithm
performs as expected. The green lines represent the classifica-
tion as True, i.e. the segment ωaωbi intersects at least one edge
of the polygon. The purple lines represent the False label. An
interesting note about this execution is that the segment F4 (F
stands for False and the number is an identifier) is inside the
polygon and does not cross any edges. It occurs as expected
since the algorithm is built to detect intersections only. There is
no problem this segment not being penalized by this algorithm
because, when running the Point in Polygon RC, the algorithm
will find the two waypoints inside the area, penalizing them.

Fig. 5. Stress test for the Segment intersects Segment Ray Casting Algorithm

V. RESULTS

A. Genetic Algorithm for Mission

The proposed path planning is expected to be resilient
to a variety of environments, aiming to perform well in
real-world scenarios. The testing of such resilience is made
by simulating 50 different random generated maps proposed
by [16]. Each map contained 20 quadrilateral no-fly areas,
randomly assembled. Intersection of those areas were allowed.
For all maps, the origin and destination waypoints were the
same, being the points (0, 0) and (−10, 0), respectively.

The algorithms were tested simulating the real environment,
which is embedded on a UAV. The tests were executed on
a Raspberry PI model B running Linux Ubuntu operating
system, with 1.2GHz Quad-Core processor and 1GB of RAM,
this device is well suited to fit a UAV. All algorithms and
systems for those tests were written in Python. The use of a
Raspberry PI is taken into consideration in this work due to its
capability of being well suited for an embedded environment
and to its computational power capable of running a vast
suite of softwares for controlling the UAV and the proposed
algorithms.

The fitness function contains a set of parameters that in-
fluences the algorithm’s performance. Three different sets of
parameters were tested to verify the performance of the algo-
rithms over the maps. The parameters for the tests execution
are presented on Table I.

TABLE I
PARAMETERS USED ON TESTING

Parameter Notation Mode A Mode C Mode F

Destination Cost Cdist 10000 100 100
Obstacle Cost Cobs 10000 1000 1000
Consumption Cost Ccon 500 0 10
Curvature Cost Ccur 100 0 10
DNA length Cost Ct 100 10 10

The stop criterion is the time limit of 180 sec to find the best
trajectory for each map. To evaluate the solutions obtained,
two labels were created. The label ”Feasible” represents routes
that arrive to the destination within less than 2 meters of radius
from destination point, and they do not hit any obstacles.
Otherwise, the label ”Infeasible” is applied. This one can be
subdivided in two categories: one that represents routes that
hit an obstacle (infeasibility by obstacle) and one where the
last waypoint is too far from the destination (infeasibility by
distance).

Table II shows the percentage of maps that its best indi-
vidual completed the task successfully. Mode C parameters
provided the best results, with 92% of best individuals being
feasible and possible to be applied to the real-world.

It is relevant to highlight that neither configuration modes
got routes infeasible by obstacle, which means that none best
solution hit any obstacle. Further analysis of the results pro-
vided by the best parameter set mode (C) were made. Figure
6 shows, for each time step of one second, the cumulative
summation of feasible individuals generated.

Those values are obtained by averaging individuals spawn-
ing along the 50 maps. It can be seen that feasible routes
appear early in the execution, indicating the applicability in
real-time planning.

An interesting point to notice is that when the execution
took much time, i.e., the algorithm iterated over many gener-
ations, the last waypoint of the route ωT did not hit exactly
the destination point ωd. The ωT stays the furthest it can,
respecting the delimited precision restriction and minimizing
the fuel consumption. That happens due to the penalization
on longer routes, as getting closer to ωd would increase the
route’s length, this solution would have a worse fitness than

TABLE II
RESULTS OF MISSION SIMULATION. PERCENTAGE OF MAPS WITH THE

BEST INDIVIDUAL IN EACH LABEL CATEGORY.

Label Mode A Mode C Mode F
Feasible 74% 92 64%
Infeasible by Distance 26% 8% 36%
Infeasible by Obstacle 0% 0% 0%

Fig. 6. Cumulative summation of feasible individuals for Mode C, showing
the average, min and max values over execution time. The blue line represents
the average value for each time step, the upper bound of the region represents
the maximum values encountered, and the lower represents the minimum
values.

the solution in which the route is shorter. Hence, the algorithm
bonuses shorter routes that consume less fuel and yet arrives at
the correct destination inside the imposed threshold. This fact
leads us to notice the algorithm’s optimization ability and the
importance of defining the value of each constraint correctly
when planning the trajectory.

B. Emergency Landing

The second evaluation is about the emergency landing.
When conducting a route, UAVs are subjected to uncertainties
that some times can lead to emergencies, requiring to land as
soon as possible in a safe area. Using the same 50 previously
mentioned maps, a total from one to four safe areas replaced
the no-fly zones.

The best parameters from the last test were used to run the
algorithm over all the maps, in a time frame of 180 sec as
well. The penalty applied over Equation 16 is -10000, which
means a reward for the fitness function.

The results reported that 84% of solutions were feasible,
being able to land in one of the safe zones. The other 16%
solutions did not find a feasible path, but none of the solutions
were infeasible by obstacle. This means that the aircraft
landed far from the safe region. Figure 7 shows the minimum,
maximum and average time to find the first feasible solution
when solving the 50 maps.

Figure 8 illustrate a solution where the UAV is submitted
to an emergency and replan its route to land on a safe zone,
avoiding the obstacles.

VI. CONCLUSION

A hybrid genetic algorithm for path planning problem with
obstacle avoidance was introduced in this paper. The novelty
is the combination of genetic algorithm with Ray Casting
algorithm to avoid obstacles and to find safe regions for an
emergency landing. The path planning and replanning system,
based on the proposed hybrid method, was executed with
a Raspberry PI that can be embedded on the UAV. The

Fig. 7. Minimum, average and maximum time spent to find a feasible solution.

Fig. 8. Solution on an emergency landing. Grey squares represent the no-fly
areas, blue squares the bonus zone for safety landing, route’s waypoints are
the x marker along the purple line and the origin and destination waypoints
on (0, 0) and (−10, 0) respectively.

method returned trajectories without hit any obstacles for all
simulations done. For path planning, more than 90% of the
trajectories reach the destination within the desired threshold,
while a total of 84% trajectories landed the aircraft in safety
regions. A reasonable amount of feasible solutions is found for
both scenarios in less than 40 sec. The method is not compared
against related approaches such as those proposed by [9],
[11], [16] since these works solve linear models with exact
approaches that do not run under Raspberry PI. As a future
work, we will compare our approach against other planners
for non-convex scenarios, based on methods such as A* or
RRT. Also, we will evolve our hybrid GA to deal with 3D
environments.

ACKNOWLEDGMENT

Research developed using computational resources of Cen-
tro de Ciências Matemáticas Aplicadas à Indústria (Ce-
MEAI) supported by Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP) - CEPID-CeMEAI (FAPESP
2013/07375-0).

REFERENCES

[1] O. of the Secretary of Defense, “Unmanned aircraft systems roadmap
2005-2030,” 2005.

[2] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne comput-
ing,” IEEE Wireless Communications, 2019.

[3] A. N. de Aviação Civil, Regras da ANAC para uso de drones en-
tram em vigor, https://www.anac.gov.br/noticias/2017/regras-da-anac-
para-uso-de-drones-entram-em-vigor/release drones v2.pdf, 2017.

[4] H. Chen, X.-m. Wang, and Y. Li, “A survey of autonomous control for
uav,” in 2009 International Conference on Artificial Intelligence and
Computational Intelligence, vol. 2. IEEE, 2009, pp. 267–271.

[5] J. da Silva Arantes, “Route planning for uavs with risk of critical failure:
A security-based approach,” Master’s thesis, University of Sao Paulo,
2016.

[6] S. Balachandran, A. Narkawicz, C. Muñoz, and M. Consiglio, “A
path planning algorithm to enable well-clear low altitude uas opera-
tion beyond visual line of sight,” in Twelfth USA/Europe Air Traffic
Management Research and Development Seminar (ATM2017), 2017.

[7] M. da Silva Arantes, “Hybrid qualitative state plan problem e o plane-
jamento de missão com vants,” Doctorade, Universidade de São Paulo,
São Carlos, 2017.

[8] H. X. Li, “Kongming: A generative planner for hybrid systems with
temporally extended goals,” Master’s thesis, Massachusetts Institute of
Technology, 2010.

[9] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path plan- ning with obstacles,” IEEE Press, 2011.

[10] K. ARIU, C. FANG, M. ARANTES, C. TOLEDO, and B. WILLIAMS,
“Chance-constrained path planning with continuous time safety guaran-
tees. 2017.”

[11] M. da Silva Arantes, C. F. M. Toledo, B. C. Williams, and M. Ono,
“Collision-free encoding for chance-constrained nonconvex path plan-
ning,” IEEE Transactions on Robotics, vol. 35, no. 2, pp. 433–448,
2019.

[12] Y. V. Pehlivanoglu, “A new vibrational genetic algorithm
enhanced with a voronoi diagram for path planning
of autonomous uav,” Aerospace Science and Technology,
vol. 16, no. 1, pp. 47 – 55, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1270963811000356

[13] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile
robots with improved genetic algorithm,” Comput. Electr. Eng.,
vol. 38, no. 6, pp. 1564–1572, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016

[14] I. Châari, A. Koubâa, S. Trigui, H. Bennaceur, A. Ammar, and K. Al-
Shalfan, “Smartpath: An efficient hybrid aco-ga algorithm for solving the
global path planning problem of mobile robots,” International Journal
of Advanced Robotic Systems, 2014.

[15] X. Zhang and H. Duan, “An improved constrained differential evolution
algorithm for unmanned aerial vehicle global route planning.” Appl. Soft
Comput, pp. 270–284, 2015.

[16] M. d. S. Arantes, J. d. S. Arantes, C. F. M. Toledo, and B. C.
Williams, “A hybrid multi-population genetic algorithm for uav path
planning,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2016, ser. GECCO ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 853–860. [Online]. Available:
https://doi.org/10.1145/2908812.2908919

[17] J. d. Silva Arantes, M. d. Silva Arantes, C. F. Motta Toledo, O. T. Júnior,
and B. C. Williams, “Heuristic and genetic algorithm approaches for uav
path planning under critical situation,” International Journal on Artificial
Intelligence Tools, vol. 26, no. 01, p. 1760008, 2017.

[18] S. D. Roth, “Ray casting for modeling solids,” Computer graphics and
image processing, vol. 18, no. 2, pp. 109–144, 1982.

[19] J. Kruger and R. Westermann, “Acceleration techniques for gpu-based
volume rendering,” in Proceedings of the 14th IEEE Visualization 2003
(VIS’03). IEEE Computer Society, 2003, p. 38.

[20] J. A. Tarbutton, T. R. Kurfess, and T. M. Tucker, “Graphics based path
planning for multi-axis machine tools,” Computer-Aided Design and
Applications, vol. 7, no. 6, pp. 835–845, 2010.

[21] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3, pp.
193–212, 1995.

