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Abstract—Recent years have witnessed an escalating interest
for methods that automatically adapt to different types of
problems. In this regard, the term hyper-heuristics—heuristics
that either select or generate new heuristics—is a relevant
concept. Experimental evidence supports the idea that hyper-
heuristics can outperform single, isolated heuristics. However,
commonly used hyper-heuristic models require several inputs.
One of them is a set of features that accurately characterize
the instances, which limits their applicability. Thus, in this
work, we analyze how to implement a simple evolutionary
algorithm to produce feature-independent hyper-heuristics. We
compare its performance against that of simple heuristics, for
the domain of the knapsack problem. Our research focuses on
two elements: performance and frequency. In the former, we
analyze how the performance of the learning stage varies across
different scenarios. In the latter, we examine how frequently
heuristics interact within the hyper-heuristic. We show that the
proposed hyper-heuristic model solves most of the instances
considered in this work. Moreover, it does so more efficiently
than isolated heuristics. At the same time, the model offers
a straightforward parameter setting and requires little or no
problem characterization, which simplifies its use on new problem
domains.

Index Terms—Heuristics, Hyper-heuristics, Knapsack prob-
lem.

I. INTRODUCTION

Hyper-heuristics are considered high-level heuristics useful
to tackle hard-to-solve problems [1], particularly the NP-hard
ones [2]. Hyper-heuristics are usually classified into two main
groups: selection hyper-heuristics —those that select heuristics
from an available set—, and generation hyper-heuristics —
those that create new heuristics using components of existing
ones [3]. Although both groups have proved of great interest
to the scientific community, in this work, we will only focus
on the former.

Selection hyper-heuristics work on the problems indirectly
since they browse a set of available heuristics, which are
selectively applied to solve the problem at hand [4]. A
generic selection hyper-heuristic analyzes a set of available
heuristics and selects the most suitable one according to a
given performance metric. Most of the current selection hyper-
heuristic models include two key phases: heuristic selection
and move acceptance [5]. The former represents the strategy
for deciding which heuristic should be selected. Conversely,
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move acceptance determines whether the new solution is
accepted or discarded. The approach proposed in this work
simplifies the overall model by only focusing on heuristic
selection. Thus, changes resulting from applying a particular
heuristic are always accepted.

Among the many learning methods used in the literature
to produce hyper-heuristics, evolutionary computation is a
recurring one. Examples of these methods include, but are
not limited to Genetic Programming (GP) [4], Grammatical
Evolution (GE) [6], Messy Genetic Algorithms (MGA) [7],
and Artificial Immune Systems (AIS) [8], [9]. Even so, there
are other proposals, such as those that create the hyper-
heuristic by analyzing the set of problem instances [10].

Despite the wide use of hyper-heuristics [3], [11], only
a few works explore the insights of their behavior. A few
examples include the run-time analysis of selection hyper-
heuristics [12], [13], the use and control of crossover operators
for selection hyper-heuristics [14], and heuristic interaction
of selection hyper-heuristics applied to constraint satisfaction
problems [15]. Therefore, this paper conducts an exploration
of heuristic interaction for the 0/1 knapsack problem using
a simple evolutionary algorithm (EA). Moreover, some tradi-
tional selection hyper-heuristic models require the definition
of a set of features for mapping the state of a problem in-
stance [16]. Hence, this work proposes an alternative selection
hyper-heuristic model that is feature-independent.

The remainder of this document is organized as follows.
Section II defines the problem and presents some relevant
related works. The rationale and details of the proposed
hyper-heuristic model are explained in Section III. Section IV
describes the experiments conducted and discusses the results.
Finally, Section V presents the conclusions and traces some
paths for future research.

II. BACKGROUND

The knapsack problem, as classically defined, consists of a
set of n items (each one with its profit p and weight w) and
a knapsack of capacity c. Solving a knapsack problem means
that we must find a subset of the items such that:
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maximize z =

n∑
j=1

pjxj (1)

subject to
n∑

j=1

wjxj ≤ c, (2)

where xj =

{
1, if item j is selected;
0, otherwise.

(3)

The knapsack problem is one of the most studied com-
binatorial optimization problems due to its wide range of
applications, which include [17]: cargo loading, cutting stock,
allocation, and cryptography. When this problem is solved
through a constructive approach, the solution is built one step
at a time, deciding if one particular item must be packed or
ignored. For simplicity, our setting states that once a decision
is made for an item, there is no way to change it. Using
a constructive approach leads to different subproblems. This
happens because packing an item produces an instance with
a reduced knapsack capacity (the previous knapsack capacity
minus the weight of the packed item) and a reduced list of
items (the packed item is removed from the list). Since the
selection of the item is closely related to the heuristic used,
we can state that the choice of the heuristic leads to different
subproblems throughout the solving process.

This behavior brings up the question of which heuristic,
among the different options, should be used to maximize
the overall profit resulting from the items contained in the
knapsack. Literature usually refers to the problem of selecting
the best algorithm for a particular situation as the algorithm
selection problem [18].

Evolutionary algorithms are common learning mechanisms
employed in hyper-heuristics. They have been used to tackle
packing problems in the past. For example, Hart and Sim [8],
[9] employed GP trees as learning mechanisms for the bin
packing (BPP) and job shop scheduling (JSP) problems.
Falkenauer [19] proposed a GA hyper-heuristic model for the
BPP, and Hyde [20], Burke et al. [21] and Drake et al. [22]
studied GP rules for bin packing. These findings support the
idea of using an evolutionary strategy as a learning mechanism
for hyper-heuristics, one which improves via crossover or
mutation. This work focuses on the latter.

III. THE HYPER-HEURISTIC MODEL

The hyper-heuristic used in this research is classified as an
offline selection hyper-heuristic [23]. The learning mechanism
relies on a variant of the original (1 + 1) Evolutionary
Algorithm (EA). The original algorithm [24] used a single
mutation operator, which flipped each bit with probability 1/n,
where n is the length of the chromosome. The EA version used
in this work extends the algorithm proposed by Lehre and
Özcan [13], which chooses one among the available mutation
operators based on a uniform random probability distribution.

The learning mechanism within the hyper-heuristic works as
follows. The model starts by generating a random sequence of

heuristics (the current hyper-heuristic) and calculates its fitness
as the average performance on a set of training instances.
In this case, the performance is measured in terms of the
profit of the items contained in the knapsack. In our EA
implementation, the chromosome itself represents, by using
a vector of integers, a hyper-heuristic that codes a sequence
of heuristics to apply. At each iteration, the process randomly
chooses one of the available mutation operators and applies
it on a copy of the current hyper-heuristic, which produces
a candidate hyper-heuristic. Each mutation operator has the
same probability of being selected. The model evaluates the
candidate hyper-heuristic on the set of training instances and, if
its fitness is larger or equal (to favor diversity) than the current
one, this candidate takes its place. The process is repeated until
a maximum number of iterations is reached.

Pseudocode 1 presents this learning mechanism.

Pseudocode 1 Learning mechanism to produce selection
hyper-heuristics
Inputs:

heuristics – Set of heuristics
operators – Set of mutation operators
maxIterations – Maximum number of iterations
trainingSet – Set of instances to train the hyper-heuristic

Output:
A selection hyper-heuristic

current ← INITIALIZE(heuristics)
currentEval ← EVALUATE(current, trainingSet)
for i = 0 to maxIterations do

candidate ← CLONE(current)
operator ← SELECT(operators)
candidate ← MUTATE(candidate, operator)
candidateEval ← EVALUATE(candidate, trainingSet)
if candidateEval ≥ currentEval then

current ← candidate
currentEval ← candidateEval

end if
end for
return current

The main goal of the learning mechanism is to produce a
hyper-heuristic (an ordered sequence of heuristics) that, once
used to solve an instance, the solution obtained maximizes
the profit of the items packed within the knapsack. Thus, the
evolutionary algorithm does not operate on the solution space,
but on the heuristic space.

A. Heuristics

Four simple packing heuristics were considered for this
research due to its popularity and performance in similar
works.

• Default (Def) packs the items in the same order they
are contained in the instance, as long as they fit in the
knapsack.



• Maximum profit (MaxP) sorts the items in descending
order based on their profit and packs them in that order
as long as they fit in the knapsack.

• Maximum profit per weight unit (MaxPW) calculates
the profit-over-weight ratio for each item and sorts them
in descending order. Then, MaxPW follows such an
ordering until the knapsack is full or no more items are
left to be packed.

• Minimum weight (MinW) favors lighter items, so it
sorts the items in ascending order based on their weight
and packs them by following such an order and as long
as they fit.

In the case of ties, all the heuristics will prefer the first item
among the tied ones. From these heuristics, Def is the fastest
one to execute, which runs in O(n). On the contrary, MaxP,
MaxPW, and MinW run in O(n log n). While these three
packing heuristics take longer to compute, they usually yield
better results than using no order at all (Def). We are aware
that more complex heuristics are available in the literature.
Still, at this stage, we consider suitable to test the proposed
hyper-heuristic approach on this set of simpler heuristics.

B. Mutation operators

The evolutionary process uses one of eight available mu-
tation operators to perturbate the candidate hyper-heuristic.
These operators are described below:

• AddGene inserts a random gene at a randomly selected
position.

• FlipOneGene takes a randomly selected gene and assigns
a random packing operator.

• FlipTwoGenes works in the same fashion as FlipOne-
Gene but choosing two genes at random.

• AddGeneNeigh selects a random location in the hyper-
heuristic and inserts a gene based on its neighbors.

• FlipOneGeneNeigh is a neighborhood variant of FlipO-
neGene, in which the randomly chosen gene is replaced
by one of its neighbors.

• FlipTwoGenesNeigh acts like FlipTwoGenes, but the
packing operators are chosen at random from the neigh-
borhood of each selected gene.

• SwapGenes interchanges the positions of two randomly
selected genes.

• RemoveGene selects a random gene and removes it from
the hyper-heuristic.

The EA starts with a hyper-heuristic of a fixed size: four
genes. We use the integer division of the number of items in
the instance over the number of genes in the hyper-heuristic
to calculate the number of items to be packed by using each
gene. In this way, when the hyper-heuristic is initialized,
each gene packs “a quarter” of the instance. Since some
mutation operators can add or remove genes throughout the
evolutionary process, the proportion of items packed by each
gene will change accordingly to the number of genes in the
chromosome. In case the integer division leaves a remainder,
the additional items are added sequentially and backward, from

Fig. 1. An example hyper-heuristic coded by using a five-gene chromosome.
This hyper-heuristic is used to solve an instance of 22 items. As depicted,
the first three genes pack four items each. Since the integer division of 22
over five produces a remainder of two, those two items must be distributed
backward among the genes. In this particular example, those two items are
assigned to the two last genes, one item per gene. The hyper-heuristic will
start solving the instance by using h3 but will end using h2.

the last gene back to the first one. For example, given an
instance with 20 items and a hyper-heuristic coded within a
five-gene chromosome, the first three genes will pack four
items, while the fourth and fifth will pack six items. The
graphical representation of this hyper-heuristic and the items
packed is depicted in Fig. 1.

Over time, a hyper-heuristic may end up with different
distributions of items per gene: some genes could potentially
contain more than one item, and sometimes a gene may con-
tain a single item. These strategies generate more interactions
between packing heuristics.

IV. EXPERIMENTS AND RESULTS

To test our model, we considered a reduced set of 100
knapsack instances of 20 items and 50 units of capacity.
Although the collection seems small, it contains enough di-
versity to support our conclusions. The instances used in this
work are available upon request. To obtain such instances,
we used an evolutionary process that tailors the instances to
specific solvers, as depicted in [25]. We stated that the set
is balanced in the sense that each heuristic represents the
best option for solving around 25% of the instances. The
rationale behind this distribution is to guarantee that no single
heuristic represents the best option for solving the whole
set of instances. Therefore, we expect that hyper-heuristics
outperform individual heuristics by adequately identifying the
cases where one of them should be used. The collection of
instances was sampled to generate the training and test sets.
We tested different configurations for training and test sets, and
we will detail each configuration within the descriptions of the
experiments. In all the cases, hyper-heuristics were produced
using the entire training set. Moreover, results always refer
to the test set, where hyper-heuristics were compared against
single heuristics. Throughout the experimental setting, two
aspects of the hyper-heuristic were analyzed: the performance
of the learning mechanism and the interactions between the
heuristics.

A. Analyzing the Performance of the Learning Mechanism

In this first experiment, we used 60% of the available
instances for training and the remaining 40% for testing. Ten
different training and test sets were generated to minimize
the effect of the instances used for training in the resulting



Fig. 2. Distribution of the profits achieved by the heuristics and the hyper-heuristics produced under different scenarios (50, 100, 120, 500, 1000 and 2500
iterations) with 60% of the instances used for training.

hyper-heuristic. We conducted ten different runs of the training
process, under six different scenarios: 50, 100, 120, 500,
1000, and 2500 iterations. These values were chosen based
on preliminary experiments. For each scenario, ten hyper-
heuristics were produced, one per each training set.

The performance of each heuristic, as well as the per-
formance of the hyper-heuristics produced, are depicted in
Fig. 2. The performance of these methods is calculated over
the remaining instances kept for testing for each particular run.
Then, only unseen instances are considered for measuring the
performance of the methods on the following tests.

We can observe that MaxPW provides outstanding results
for the instances under analysis, clearly overcoming the re-
maining heuristics. Regarding the hyper-heuristics, their per-
formance overcomes three heuristics: Def, MaxP, and MinW.
When compared against MaxPW, their performance is some-
what similar, at least in the distribution of the profits achieved.
Based on the results shown in Fig. 2, it seems that using 50-
iteration training is a poor decision since it introduces a high
variation in the performance of the resulting hyper-heuristics.
As the number of iterations increases, this range seems to
shorten.

Trying to further analyze the behavior of heuristics and the
hyper-heuristics produced, we analyzed the profit distribution
of each of these methods in more detail. Table I shows the
profit of all single heuristics and all hyper-heuristics, for every
scenario and on their respective test set.

From Table I, we can observe that, even for the 50-iteration
scenario—which was considered the one with the highest
variation—, hyper-heuristics are the best-solving strategy in
70% of the cases. Only in 30% of the cases, MaxPW outper-
formed HH50. In the remaining cases, all the hyper-heuristics
outperformed MaxPW in, at least, 80% of the cases. Thus, it
would seem that increasing the number of training iterations
translates into getting better results more consistently. This
behavior is bolstered by the 120-iteration scenario, where
hyper-heuristics always represented the best choice. However,
it is undermined by the 500-iteration situation. In general,
using 120 iterations in the EA seems to produce the best
scenario (profit-wise).

The next step of the analysis evaluated the results from
Table I by using hypothesis tests on the means of the profits.
We used a two-tail t-test, where H0 stands for “the mean profit
of both methods is equal” and H1 for “ the mean profit of both
methods is not equal”. The statistical evidence suggests that
some of these hyper-heuristics are better than MaxPW (ranked
as the best performing heuristic when applied in isolation).
The t-tests conducted on the pairs (MaxPW, HH50), (MaxP,
HH100), (MaxPW, HH120), (MaxWP, HH500), (MaxPW,
HH1000) and (MaxPW, HH2500) reported p-values of 0.511,
0.961, 0.003, 0.001, 0.018, and 0.001, respectively. Then, the
statistical evidence supports the idea that HH120, HH500,
HH1000, and HH2500 are, in general, better than MaxPW for
the type of instances studied in this work (assuming a standard
value of α = 0.05).

Although the previous scenarios yielded good results, they
drift away from the optimal. The reason for this is that the
exploration strategy relies on the probability distribution of
the mutation operators. For example, there are two muta-
tion operators for adding genes but only one for removing
them. Since mutation operators are chosen using a uniform
probability model, it is more likely to end up with longer
hyper-heuristics. Including acceptance operators, as suggested
in [13], may benefit the hyper-heuristic performance to find
the optimal solution at large-iteration scenarios.

Furthermore, it is necessary to notice that the profit achieved
by some hyper-heuristics did not vary across scenarios. We
think that this phenomenon occurs because the initial solution
is always four genes long, meaning that more than one item is
packed using the same heuristic at the beginning of the evolu-
tion process. It is also worth remarking that the performance of
the hyper-heuristic is derived exclusively from evolution since
no feature analysis is involved. We consider this among the
most reliable features of our approach. Furthermore, training
a hyper-heuristic through our model is quite affordable since
evolving a single individual is more straightforward (and
faster) than dealing with crossover of moderately populated
models.

Striving to test the proposed hyper-heuristic model further,
we analyzed four additional scenarios. This time around,



TABLE I
RESULTS ACHIEVED BY EACH HEURISTIC (DEF, MAXP, MAXPW, AND MINW) AND THE HYPER-HEURISTICS (HH) AFTER 50, 100, 120, 500, 1000,

AND 2500 ITERATIONS ON EACH OF THE TEST SETS PRODUCED. RESULTS IN BOLD INDICATE THAT THE HYPER-HEURISTIC OUTPERFORMED THE FOUR
SINGLE HEURISTICS IN THAT PARTICULAR TEST SET. THE LAST ROW SUMMARIZES THE PERCENTAGE OF CASES WHERE EACH HYPER-HEURISTIC

OBTAINED BETTER RESULTS THAN THE FOUR HEURISTICS FOR EACH PARTICULAR TEST SET.

Test set Def MaxP MaxPW MinW HH50 HH100 HH120 HH500 HH1000 HH2500

1 21582 27590 33052 28074 33133 33038 33133 33133 32916 33133
2 20626 26315 30883 25736 31174 31174 31174 31174 31174 31174
3 22752 26483 31655 26210 31828 31828 31828 31828 31957 31957
4 23186 27209 31593 27614 31857 31857 32052 31857 31857 31857
5 20495 27160 29748 26803 29058 30382 30551 30193 30193 30193
6 21511 27098 30949 26958 27650 31163 31163 31163 31187 31163
7 20235 25824 30697 26010 30898 30898 30898 30923 30923 30898
8 23098 27527 32538 28032 32856 30492 32856 32761 32676 32678
9 21527 25940 31275 25661 30822 31035 31297 31050 31089 31297

10 21487 26753 29934 26653 30581 30581 30581 30581 30543 30581

0% 0% 0% 0% 70% 70% 100% 90% 80% 100%

however, we changed the ratio of instances used for training,
while analyzing only the 50 and 120-iteration scenarios. In the
first two cases, we considered a 50% train ratio (Table II). In
the remaining two, we reduced it to 30% (Table III). Also, the
reader may find useful to look at Fig. 3 and 4 for a graphical
representation of the data, where the distribution of the profits
obtained for each method over the ten runs is depicted.

As in the previous case, when the statistical evidence is an-
alyzed, we observe a competent behavior of hyper-heuristics.
The p-values for the comparison of the pairs (MaxPW, HH50)
and (MaxPW, HH120) when 50% of the data is used for
training are 0.005 and 0.001, respectively. Although the hyper-
heuristics seemed to reduce its performance when we dras-
tically reduced the size of the training set, they remained
competitive for some configurations. The p-values for the case
where only 30% of the instances were used for training are
0.53 and 0.024, for (MaxWP, HH50) and (MaxPW, HH120),
respectively. It is interesting to note that, although the statis-
tical evidence is not as reliable as in the previous cases, the
hyper-heuristics performed surprisingly well also on this set,
ranking first for almost all the cases.

B. Analyzing Heuristic Interactions

The previous stage showed that a featureless approach
to hyper-heuristics could yield good results. Thus, during
this stage, we analyze the nature of the generated hyper-
heuristics. To do so, we carried out a frequency analysis for
all combinations of two-heuristic sequences. We trained a new
hyper-heuristic for each one of the training subsets and for 120
iterations each (since this scenario yielded the best results in
the previous experimental stage).

Throughout the process, we stored each hyper-heuristic
(the list of heuristics applied to each instance, and for each
iteration). Afterwards, we calculated the frequency of all two-
heuristic sequences on each run. Table IV summarizes these
results (numbers in bold highlight the most common heuristic
sequence for the run).

As can be seen from Table IV, MaxPW + MaxPW was
the dominating sequence. In nine out of ten runs, hyper-

Fig. 3. Distribution of the profits achieved by the heuristics and the hyper-
heuristics produced with 50 and 120 iterations and with 50% of the instances
used for training.

Fig. 4. Distribution of the profits achieved by the heuristics and the hyper-
heuristics produced with 50 and 120 iterations and with 30% of the instances
used for training.



TABLE II
RESULTS ACHIEVED BY EACH BASE HEURISTIC (DEF, MAXP, MAXPW, AND MINW), AND BY THE HYPER-HEURISTICS (HH) TRAINED WITH 50% OF

THE INSTANCES, AND FOR 50 AND 120 ITERATIONS. RESULTS IN BOLD INDICATE THAT THE HYPER-HEURISTIC OUTPERFORMED THE FOUR SINGLE
HEURISTICS IN THAT PARTICULAR TEST SET. THE LAST ROW SUMMARIZES THE PERCENTAGE OF CASES WHERE EACH HYPER-HEURISTIC OBTAINED

BETTER RESULTS THAN THE FOUR HEURISTICS FOR EACH PARTICULAR TEST SET.

Test set Def MaxP MaxPW MinW HH50 HH120

1 26055 33967 40419 34221 40585 40585
2 25250 33437 38773 33147 38796 39129
3 27694 32857 39362 32659 39626 39626
4 28418 33717 39828 34145 40389 40389
5 26296 33929 37991 34074 38184 38184
6 27345 34196 38730 33571 38987 38987
7 27308 33047 38912 33668 39097 39097
8 28407 33968 39875 34342 40316 40316
9 25682 33168 38992 32466 38947 38947

10 26728 33324 37003 32826 37732 37384

0% 0% 10% 0% 80% 80%

TABLE III
RESULTS ACHIEVED BY EACH BASE HEURISTIC (DEF, MAXP, MAXPW, AND MINW), AND BY A HYPER-HEURISTIC (HH) TRAINED WITH 30% OF THE

INSTANCES, AND FOR 50 AND 120 ITERATIONS. RESULTS IN BOLD INDICATE THAT THE HYPER-HEURISTIC OUTPERFORMED THE FOUR SINGLE
HEURISTICS IN THAT PARTICULAR TEST SET. THE LAST ROW SUMMARIZES THE PERCENTAGE OF CASES WHERE EACH HYPER-HEURISTIC OBTAINED

BETTER RESULTS THAN THE FOUR HEURISTICS FOR EACH PARTICULAR TEST SET.

Test set Def MaxP MaxPW MinW HH50 HH120

1 37581 47836 56227 47750 55968 55968
2 36734 46832 54461 45950 54526 54952
3 38564 46475 55088 46286 55545 55274
4 39705 47412 54977 47782 54977 54948
5 37306 47451 54106 47448 54106 54554
6 37400 47564 54323 46907 54828 54828
7 38133 45950 53645 46429 54042 53967
8 39271 47033 54668 47680 54668 54668
9 36853 47393 55418 47060 54834 55820

10 38940 47615 54226 47127 54372 54372

0% 0% 30% 0% 60% 60%

TABLE IV
FREQUENCY OF TWO-SEGMENT LOW-LEVEL HEURISTIC SEQUENCES. RESULTS IN BOLD INDICATE THE SEQUENCE THAT WAS USED THE MOST FOR EACH

PARTICULAR TEST SET.

Sequence/Test set 1 2 3 4 5 6 7 8 9 10

Def + Def 5 14 0 23 0 6 64 150 5 151
Def + MaxP 13 24 0 14 0 30 38 25 0 0

Def + MaxPW 7 17 8 2 5 11 21 4 8 6
Def + MinW 0 3 10 37 0 15 22 6 9 0
MaxP + Def 11 32 8 26 3 18 53 110 0 48

MaxP + MaxP 61 63 58 115 80 62 61 59 9 35
MaxP + MaxPW 139 70 131 28 76 80 82 79 90 67
MaxP + MinW 0 21 56 31 1 18 0 17 9 29
MaxPW + Def 23 29 0 10 2 12 34 14 11 43

MaxPW + MaxP 179 115 180 91 101 24 104 120 106 102
MaxPW + MaxPW 217 270 341 226 374 292 295 55 334 261
MaxPW + MinW 3 31 124 40 18 79 13 4 28 14

MinW + Def 6 15 13 17 0 26 0 5 0 4
MinW + MaxP 0 37 15 39 0 97 9 55 2 18

MinW + MaxPW 7 27 58 47 19 33 22 55 48 117
MinW + MinW 0 8 88 21 8 106 4 106 24 29

heuristics evolved into a high use of MaxPW only. This
phenomenon follows the behavior exhibited by standalone
heuristics: MaxPW outperforms the remaining heuristics in
most of the cases and by a wide enough gap. Our proposed
model can recognize this behavior and seeks to use MaxPW

most of the time. Nonetheless, it also detects an opportunity for
improvement and learns that MaxPW should be combined with
others to yield better results, for example, with MaxP, and with
MinW. In the remaining 10% of the runs, the single-heuristic
sequence Def + Def was the most commonly used, though



Fig. 5. Heuristic interaction across all runs. Line thickness is proportional to
the number of times that a sequence appears.

its frequency is less than other scenarios. In the remaining
cases, i.e. for MaxP-MaxP and MinW-MinW, interaction loses
importance (Table IV). In the first case, it ranks between third
and fourth place across the runs. But, in the second case, the
ranking oscillates between the fourth and last places.

The most used sequence of heuristics is, by far, MaxPW +
MaxPW, but the hyper-heuristics also use other sequences. For
example, sequences MaxPW + MaxP and MaxP + MaxPW
are the second and third most used choices, respectively.
Conversely, some sequences are rarely used by the hyper-
heuristics. For example, sequences such as MinW + Def and
Def + MinW. Thus, mixing Def and MinW seems like a bad
idea (at least in the way described in this work). We can derive
a similar conclusion by looking at the sequences Def + MaxP,
Def + MaxPW, and MaxPW + Def. Hence, it would seem as it
is only beneficial to add the Def heuristic after using MaxPW
(and only in some specific cases).

Another way of analyzing the interaction between heuristics
is to consider the data of all runs at once. Fig. 5 shows these
data by using a line thickness proportional to the number
of times that a sequence appears. Once again, it is evident
that the sequence MaxPW + MaxPW is the most popular.
It represents about a third of all interactions. The interaction
strength between MaxPW and MaxP (in both ways) is also
evident. Only these two combinations of heuristics accumulate
about 24% of all the interactions. Interactions Def + MaxP,
Def + MaxP, Def + MinW, and MinW + Def stand as the
least used (thinnest lines), barely accumulating 5% of all the
total interactions.

C. Discussion

The frequency analysis of heuristic interactions cannot
guarantee, by itself, that a single heuristic is the best option
for solving all instances of the problem. Since a knapsack
has limited capacity and not all items from an instance are
supposed to fit in, heuristic sequences at the end of longer
hyper-heuristics may not impact the profit. However, they do
contribute to the frequency analysis.

For a human, switching heuristics at specific decision points
may seem obvious. A simple example would be the situation
where only two items are left, and the knapsack has capacity

for any of them but not both. Under these conditions, the best
strategy is to apply MaxP instead of MaxPW. This ‘small’
detail, visible for humans, was —surprisingly— learned by the
proposed model. This finding is the reason why the sequence
MaxPW + MaxP became the second most frequent packing
heuristic sequence. Then, after all, there is something to learn
from studying the interactions between heuristics, even if it
may go unnoticed at first glance.

V. CONCLUSIONS AND FUTURE WORK

In this work, an evolutionary algorithm that evolves heuristic
sequences powers a feature-independent hyper-heuristic. We
selected the problem domain of binary Knapsack Problems
to validate the proposed approach. We focused on two el-
ements: performance and frequency. First, we analyzed the
efficiency of the model by comparing the quality of the
solutions produced by different methods. Later, we analyzed
heuristic interactions as a means to understand why some
hyper-heuristics work and how different heuristics can lead
to improvements in the search process. Despite its simplicity,
our data shows that the learning mechanism performs well on
most instances. Before using our approach, MaxPW seemed
like the most promising heuristic. Still, most of the hyper-
heuristics generated in this work outperformed such a compe-
tent heuristic.

Here, we used a balanced set of instances. Such a set
contained a similar number of instances where each solver
excelled. But, instances from other sources, instead, might be
harder to solve and could represent a challenge for an isolated
heuristic. Moreover, the set we used was rather small, so the
learning process was not computationally expensive. Even so,
good results were achieved. When used on larger sets, a hyper-
heuristic is expected to perform better, even if the learning
process becomes computationally expensive.

Many paths could be pursued in future work. Expanding
our analysis by fixing the size of hyper-heuristics and setting
a single heuristic per gene in the model seems interesting, and
may impact the frequency analysis. Adding more mutation
operators, and tweaking their probability distribution is also
something worth considering. More importantly, the effect of
modifying the amount of heuristics to choose from should
be analyzed. For example, it would be worth exploring the
effect of removing the best performing heuristic from the
pool and see how the hyper-heuristics cope with this new
scenario. Though increasing the search domain, this may allow
for more explicit differences between heuristic interactions.
Once again, we would like to emphasize the fact that our
proposed model does not require any problem characterization
or feature analysis. Even so, adding problem characterization
may improve the performance of the learning process even
more, at the expense of some loss in generality.
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