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Abstract—This paper introduces the application of the fractal
decomposition-based algorithm (FDA) to the optimization of
the hyperparameters of deep neural network architecture. FDA
is a metaheuristic that was recently proposed to solve high
dimensional continuous optimization problems. In this work,
we apply FDA to the optimization of well-known architectures
such as VGG-16, NasNet, MobileNetV2 and ResNetV2-50. The
hyperparameters of those architectures were fine-tuned using
FDA on the CIFAR-10 benchmark dataset. The experiments
demonstrate the superiority of proposed method over the state-of-
art values. Considered approach shows promising results as every
architecture was improved with hyperparameters found by using
FDA. The experiments were conducted using low computational
power with only 3 NVIDIA V100 GPUs, with 16GB of RAM.

Index Terms—hyperparameters, optimization, deep learning,
fractal decomposition

I. INTRODUCTION

Deep Learning methods [1] have been drawn a lot of
attention recently due to their efficiency in multiple fields,
such as computer vision, speech recognition, natural language
processing, bioinformatics, finance etc. They have been suc-
cessfully applied to several difficult and important tasks, from
healthcare [2] to computer vision for pedestrian tracking [3]
or cybersecurity [4].

This success can be attributed to the capacity of deep
learning algorithms to automatically extract features from
data format such as audio, image or text (known commonly
as unstructured data). These technics allow shifting from
manual feature engineering where engineers spend time ma-
nipulating data sets and building meaningful new features to
spending time on building deep neural network architectures
and optimizing their hyperparameters. However the increased
complexity of recent architectures such as AlexNet [5], VGG-
16 [6] or GoogleNet [7] has motivated scientists and engineers
to automate the optmimization of hyperparameters. Indeed,
the training and fine tuning of architectures with hundreds
of layers and millions of parameters is in practice very
computational expansive and time consuming. Many different
approaches have been studied to automate this task such as
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Grid Search or Random Search. The latter has shown to be
very efficient when the number of parameters is not too large.
Recently more complex hyperparameter optimization algo-
rithms have been used such as Genetic Algorithms, Particle
Swarm Optimization, Bayesian Optimization and Reinforce-
ment learning.

In this paper we apply the metaheuristic “Fractal Decom-
position Algorithm” (FDA) [8] to the optimization of the
hyperparameters of well known neural network architectures
such as VGG-16 [9], Resnetv2-50 [10], NasNet [11] and
MobileNetV2 [12]. Those architectures were fine-tuned on a
given problem, CIFAR-10 [13] in this case, aiming to find
the best validation accuracy possible. Results were compared
with to parameters taken from the literature and found in the
well known-knwon and wildely used deep learning framework
Keras [14].

FDA is a decomposition based algorithm aiming to find the
best solution possible. FDA uses hyperspheres as geometrical
form to decompose the search space as this geometrical form
scale well as the dimension of the problem increases. In the
literature, hypercubes are more common but do not scale
well due to the number of vertices increases exponentially.
Besides, the fractal aspect of FDA is a reference to the fact
that the search domain is decomposed using the same pattern
at each level until the maximum fractal depth k. FDA has been
designed to be easy to implement, deterministic and capable of
solving black box optimization problems, i.e. problems where
the algorithm does not assume any analytical form.

This paper is organized as follows. In section II we give
the overview of the problematics. Section III shortly describes
FDA algorithm. In section IV we go in detail over FDA
application to the hyperparameters optimization problem for
Neural Networks (NN). Section V contains presents the results
of experiments. Finally, VI concludes the paper and discusses
future work.



II. RELATED WORK

The selection of hyperparameters for a neural network
architecture can be seen as an optimizaton problem where the
objective is to find the set of parameters that minimizes a target
function £(M|X (%)) given a model M on a validation set
X9 trained on a training set X'(*"). The learning algorithm
A can also be parametrized by a set of hyperparameters A,
M= A(XII|N).

The hyperparameters search also referred as fine-tuning,
consists of finding the set of hyperparameters A* such that the
neural network architecture M minimizes the target function

L(M|xva)),

M = argminf(M|X V) = argminf (\; A, X x) 1)
A A
ey

where f is the objective function and A the hyperparameters
[15]. Target function £ is commonly the loss function, accu-
racy, or any other goodness-of-fit metric of the model. The
learning algorithm A4, the target function £, as well as the
X®) and X are known. Fine-tuning of hyperparameters
of learning algorithms is indeed hard as the gradients are
usually not available [16]. Different methods can be found in
the literature for hyperparameters optimization. Grid Search
(GS) is among the well-known methods for fine-tuning. It
consists of first selecting a range of values for every hyperpa-
rameter to explore is selected. Then the learning algorithm
will be trained for every combination of the given range
of values. While this method is simple, its complexity is
high as the number of combination grows exponentially with
the number of hyperparameters and their different possible
values. This can be however addressed by parallelizing the
different training but its efficiency remains limited as GS.
In [17] authors used a Random Search(RS) and show both
empirically and theoretically that randomly selecting values
for the different hyperparameters is more efficient than GS.
Besides, Random Search is as easy to implement as Grid
Search and as easily parallelizable. However, similarly to
GS, RS suffers from being non-adaptive, meaning that sets
of hyperparameters to be evaluated are not selected using
existing results. It is important to note that in the context of
hyperparameter optimization for neural network architecture,
the cost of evaluating the cost function £ is high. This is why
in [18], [19] authors have applied Bayesian Optimization to
the fine-tuning of learning algorithms. In their work, the neural
network architectures’ generalization performance is modelled
as a sample from a Gaussian process (GP). Resulting models
outperformed architectures fine-tuned by domain experts.

In addition to Bayesian approaches, Metaheuristics have
applied fine-tuning of hyperparameters. This is because this
family of algorithms has shown to be performant in solv-
ing black-box optimization problems. Genetic Algorithms
are among the most popular algorithms for optimization as
they allow to direct the search in the hyperparameter space
[20]. Evolutionary Algorithms have also been widely used
in architecture search [21]-[23]. Other metaheuristics have

been successfully applied to hyperparameter optimization such
as Particle Swarm Optimization can be an effective tool for
challenging datasets [24].

III. THE FRACTAL DECOMPOSITION ALGORITHM

The Fractal Decomposition Algorithm [8] (FDA) a
”Divide-and-conquer” based metaheuristic that has been de-
signed to solve large-scale continuous optimization problems.
The main principle of the approach consists of dividing the
feasible search space into subregions with the same geomet-
rical pattern. When designing FDA, the use of hyperspheres
as an elementary geometric form was considered. This choice
was motivated by their low complexity and flexibility to cover
the search space. Indeed, other decomposing methods can be
found in the literature such as FRACTOP [25] or the well-
known DIRECT [26]. Those algorithms use hypercubes as
the geometrical form to decompose the search space. In both
cases, the distance from the center of the hyper-interval to the
vertices of the hypercube is computed. However, the number
of vertices increases exponentially as the problem dimension
increases. Consequently, the performances of the algorithms
decrease drastically, in terms of computation time and quality
of the final solution.

While searching for the best solution possible, FDA builds
a search tree of promising optimum areas of a depth k
(called fractal depth), by dividing the search space recursively
using geometrical hyperspheres. Three main phases (see Fig.
1) compose the algorithm. 1. Initialization detailed in Sub-
Section III-A; 2. Exploration phase (in Sub-Section III-B); 3.
Exploitation Phase (in Sub-Section III-C).
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Fig. 1. FDA is composed by 3 main phases. First, initialization of the biggest
hyperSphere. Then, exploration phase which aims to asses the quality and
select the best hyperspheres sub-region. Finally, exploitation procedure using
the local search ILS.

A. Initialization procedure

FDA starts by initializing, at level | = 0, the biggest
hypersphere possible at the center of the search space within its
limits as shown on Fig. 2. The center of the first hypersphere
C'D) and radius r are computed using the expressions (2) and
(3), respectively.

—»() .
CV=L+({U-L)/2 forj=1,2,....,D (2
r=U-0L)/2 3)

where C'1) are the coordinates first hypersphere within the
search space, D the dimension of the search space and r the
hypersphere’s radius. U is the upper bound, L is the lower
bound of the whole search space.



Once the first hypersphere is created, it is partitioned into
2 x D child-hyperspheres using the expression (4) and as
shown on Fig. 2.

G =GP 4 (=1)'x ((r — ') x &) )
where C(® represents the center of the i, child-hypersphere
withi =1,...,2 x D, r" = r/(1++/2) and &, the unit vector
at the dimension k. Once the initialization is done, FDA moves
on to the exploration phase.

Fig. 2. Illustration of the decomposition procedure in the case of a 2D
search space, where A is the biggest hypersphere inside the search space
(B), C1,C2,C3, and Cy are centers of the child-hyperspheres created at the
first level

B. Exploration procedure

The main objective of the exploration phase is to assess
the quality of each sub-region aiming to detect the most
promising hyperspheres to be further decomposed. Because
child-hypersphere cannot cover te entier search space, child-
hypersphere are inflated using a factor «. This increase pro-
duces overlaps between hyperspheres which allow covering the
entire search space to be covered. The analytical and detailed
explication on the value of a can be found in the original paper
[8]. This procedure is called relaxation and is also illustrated
in Fig. 2.

The quality of the child-hyperspheres are computed as per
[8] and only the best one is selected to be further decomposed
(using expression 4). FDA then moves down one level in the
search tree (I = [ 4+ 1). This repetitive pattern at each level
composes the fractal dimension of FDA.

Hyperspheres that have not been decomposed are sorted
according to their quality and stored in a stack for further
decomposition. If all hyperspheres at a level [ have been
explored, FDA selects the next one in the stack at level [ = [—1
to be partitioned. This would have the effect of creating a new
branch in the search tree.

C. Exploitation procedure

One the maximum depth k is reached, FDA enters in the
exploitation phase. The main objective is to find the best
solution possible from the most promising identified sub-
regions. To do so, FDA will trigger a local search aiming
to exploit all generated child-hyperspheres at the k;j level. At
this step, different learning-based optimization methods can be
used. However, to maintain a low complexity of the approach
a simple algorithm, called Intensive Local Search (ILS) was
implemented.

For each child-hypersphere ILS starts at the center C with
Z° and moves along each dimension with a step w for which
two solutions Z°! and 7*? are evaluated. Both solutions are
expressed in (5) and (6), respectively.

T =2° 4w X € 5)

=,

2 =7 —wxé; (6)

where € is the unit vector where the 7*" element is set to 1, and
other elements to 0. w is the step size in which €; changes. At
each step, the best solution among z*, *' and #*2 is chosen
to be the next current solution Z*, then ILS moves to the next
dimension. If no improvement has been made for £°, then w is
reduced by factor 1/¢. This local search stops when either the
stopping criterion or threshold w,,;, is reached. In this case,
wWmin Tepresents the tolerance or the desired precision of the
problem being solved.

Once ILS stops for the current ILS, the best solution found
locally,2®, is returned and the global solution is updated if an
improvement has been made.

Once all hyperspheres at the & — th level have been
exploited, if the stopping criterion has not been yet met, then,
FDA backtracks in the search tree, and the next hypersphere
to be decomposed is selected at the level | = [ — 1. This
procedure allows the algorithm to explore other regions of the
search space.

IV. METHODOLOGY

In this section, we describe in details the application of FDA
algorithm to the problem of CNN training hyperparameters
optimization (see Fig. 3).

FDA SEARCH OF
HYPERPARAMETERS

TRAIN

CIFAR-10 MODELS

—* RESULTS

STATE OF THE ART
HYPERPARAMETERS

Fig. 3. Comparison of multiple modules taken into account to benchmark
FDA optimization method. In Green color are represented the modules that
are common for both approaches. In Orange are highlighted the modules that
are being compared.



A. CNN Architecture

For the experiments we consider four popular archi-
tectures: VGG16 [27], NASNetMobile [11], MobileNetV2
[28], ResNetv2-50 [29]. They were selected for their omni-
availability and proven performance on different computer
vision problems.

The convolutional part of these networks is used as a base,
and a dense layer is added on top, followed by the predictions
layer. The dense layer is surrounded by two dropout layers as
shown in Fig. 4.

CMNN base — Dropout 4’{ Dense }—b Dropout 4’{ Softmax ‘

Fig. 4. Extra layers appended to the CNN base architecture.

The size of this added dense layer and the dropout rates are
included in the list of optimized parameters (see subsection
IV-B for more details).

B. Encoding of the problem

For optimization we have selected a set of training param-
eters: starting learning rate, momentum, dropout rates, period
T for cosine annealing rate scheduler [30] (see Fig. 5) and
additionally the size of the added dense layer. The range of
the hyperparameters being optimized is given in Table 1.
Caonstant

Warmup Cosine Annealing

Learning Rate

L
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Fig. 5. Three main phases have been followed for the learning rate scheduler.
First, a warm up period in order to easy the network the learning of some
stable values. Second, cosine annealing learning rate to decrease quickly the
learning rate when the network is in a plateau. Third, when the minimum
amount of epochs is reached in the previous stage, the learning rate is kept
as a constant.

V. EXPERIMENTS AND DISCUSSION

Here we present the results of the CNN hyperparameters
optimization by the means of FDA. The experiments were
conducted on the CIFAR-10 dataset.

The implementation was done using Python as a program-
ming language and the framework Keras [14] with Tensorflow
[31] as backend. Experiments were done using only three
NVIDIA V100 GPUs with 16GB of RAM.

TABLE I
VALUES RANGE OF THE CNN HYPERPARAMETERS THAT WERE
OPTIMIZED.
Parameters Value Range
Learning Rate [0,1]
Momentum [0,1]
Batch Size [32,512]
Period T for cosine annealing LR scheduler | [0,400]
Dropout rate 1 [0,1]
Dropout rate 2 [0,1]
Number of units in the dense layer [0,4000]

A. CIFAR-10

This benchmark is composed of 60000 32 x 32 colour
images divided into ten different classes. The training set is
composed of 50000 images and the test set of 10000 images.
The classes are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship and truck. The test set contains 5000 images of
each class and the test set, 1000 images of each class. Classes
are mutually exclusive no overlap exists between trucks and
automobiles. Automobile only includes cars and assimilated.
Truck includes only big trucks. Neither includes pickup trucks.
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Fig. 6. Examples of images in CIFAR-10 with their class labels.
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B. Training details

During the FDA phase, at each function evaluation (in
our case, accuracy estimation) we train a CNN with given
hyperparameters. The training is done using 80% of the initial
training set for training, and 20% for validation. For the
data augmentation (see Fig. 7), we apply color channel shift,
random shift and horizontal flip. We also use mixup [32] with
a fixed parameter o = 0.4. Illustrations of aforementioned data
augmentations techniques are given in Fig. 7.

Learning rate is decreased during the training with cosine
annealing learning rate scheduler [30]. Period T of the cosine
annealing learning rate scheduler is one of the parameters
being optimized; after T epochs learning rate will not decrease
any more. In the beginning of the training we have 5 ”warm-
up” epochs, during which we do not decrease the learning
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Fig. 7. Examples of the data augmentation techniques applied in CIFAR-10.

rate and do no use the mixup data augmentation. These
“warm-up” are used to quickly find a relatively good training
point, and then continue training using a smaller learning rate
(thus in a slower manner) and using more challenging data
augmentation. Overall scheme of learning rate schedule is
shown in Fig. 5.

For the final test, we have used all the 50k training data for
the training, and have increased the number of epochs from
50 to 200. The period T for the cosine annealing learning
rate scheduler is increased proportionally to the increase in
number of epochs, i.e. 4 times. The final validation accuracies
are obtained on the 10000 images composing the original
test set of the benchmark, which are unseen data during the
hyperparameter search done using FDA.

C. Results

In this subsection we discuss the experiment results and
make the comparison to the baseline.

TABLE II
COMPARISON OF RESULTS FOR THE DIFFERENT BENCHMARKED
ARCHITECTURES. TEST ERROR (%) (LESS IS BETTER).

Benchmark FDA
VGGl16 8.85 7.44
NasNetMobile | 20 18.5
MobileNetV2 16.77 15.34
ResnetV2-50 24.1 17.64

The hyperparameters found by FDA are given in Table III.
It is interesting to observe that:

e Some hyperparameters, like learning rate, are in close
range (from 0.003 to 0.006), while others change a lot
from one network to another, like batch size (from 52 to
272) or period T (from 280 to 1220);

o In the best performing network, VGG16, found momen-
tum value (0.87) is very close to the benchmark setting,
0.9;

o Period T of cosine annealing learning rate might be much
larger than the number of epochs, notably it reaches
1220 for VGG16 (while number of epochs is 200). This
corresponds to the very slow decrease of the learning rate
over the training process;

« Found values of dense layer size (545 and 1002) are close
to the ones that are commonly used: 512 and 1002.

o In contrast to the previous finding, dropout rate 1 for
NASNetMobile (0.7) is considerably higher than ordi-
narily used values.

The change of validation accuracy during the optimization
phase is illustrated on Fig. 8

Table II comparison results using the test error (%). For the
benchmark we use the state-of-art values of hyperparameters
found in the literature [27], [32], [33].

Validation Accuracy
°
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Fig. 8. Validation Accuracy of VGG-16 during the hyperparameters opti-
mization using FDA

It can be observed that:

e FDA has shown improvement over baseline in all the
experiments;

o Despite not achieving overall best result, Resnetv2-50
gets the biggest improvement with FDA;

e The rank of the networks in the table is the same for
benchmark and FDA; thus, although potentially after
the optimization the rank could have changed, initial
benchmark run is a good indicator to eliminate poor
candidates, and, consequently, to decrease the final op-
timization costs.

VI. CONCLUSIONS

In this work, we present the solution of NN hyperparameters
optimization using Fractal Decomposition Algorithm. We eval-
uate this method on four common CNN architectures (VGG16,
NASNetMobile, MobileNetV2 ResNetv2-50) with CIFAR-10
dataset. The experiment results show improvement over the
baseline hyperparameters choice.

Proposed pipeline follows a relatively computationally
cheap alternative to network architecture search: problem-
based hyperparameters tuning in the range of potentially good
network candidates. The experiments were conducted using
only 3 NVIDIA V100 GPUs for a total computation time of
15 GPU-Days, thus being potentially suitable for the wide
range of users. To further study FDA could be applied to hand-
crafted or automatically generated architectures and/or using
other benchmarks such as CIFAR-100.
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