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Abstract—The paper introduces a evolutionary algorithm,
based on Multi Population Genetic Algorithm (MPGA), to
support decisions about allocation and power sizing of generation
units within power systems. The effectiveness of the MPGA is
tested over two different radial distribution systems taking into
account five different scenario. The evaluated power systems are
the 33 and 69-bus radial distribution systems, which are bench-
mark systems from literature. The promising results achieved are
compared against recent literature results for the same problem.

Index Terms—Allocation, Sizing, Distribution Networks, Dis-
tributed Generation, Multi-Population Genetic Algorithm

I. INTRODUCTION

The electric power system delivers electric power from
a substation to final customers through distribution lines,
where radial, ring and mesh are the usual topologies for such
network system. According to the International Renewable
Energy Agency (IRENA), CO2 emissions have risen 1.3%
over the last five years. International policies have focused
on renewable energy sources to reduce such emissions. In the
case of electric power systems, the inclusion of distributed
generation (DG), based on renewable energy sources, has
increased worldwide [1]. The decentralized power systems
have become an option where distributed generator (DG)
units are connected directly to the power system as a source
of active electric power. The five major factors that have
arouse interest over distributed generation are: development in
distributed generation technologies, constraints for inclusion
of new transmission lines, increasing of customer demand
for highly reliable electricity, electricity market liberalisation
and concerns about climate changes [2]. The benefits of the
distributed generation must take into account its location in the
power network system and the power size of the generating
units. The best sizing of generator units can lead to energy

losses reduction and increase the level of reliability for the
whole electric power system. Also, the distribution power
systems are traditionally based on a radial topology, which
brings some technical challenges when adding a distributed
generator (DG) unit such as: power flow inversion, fluctuations
in voltage profile and increase of fault levels.

The present paper introduces a computational methodology,
based on Multi Population Genetic Algorithm (MPGA), to
support decisions about generation units placement and their
power sizing. The effectiveness of the MPGA is tested over
two different radial distribution systems at five different sce-
nario. The promising results achieved are compared against
recent literature results. This paper present a multi population
genetic algorithm (MPGA) whose major objective is active
power losss minimization in radial distribution system through
the reconfiguration and simultaneous allocation and sizing of
distributed generation. The MPGA is proposed of modular
form, where a module referring to reconfiguration and an-
other module is responsible by allocation and sizing of the
distributed generations, allowing that way a separate analysis
or together of the method.

The distributed generation allocation and sizing problem
is a nonlinear mixed-integer optimization problem, where the
authors in [3] identify solution approaches such as exact meth-
ods for Mixed Integer Non-Linear Programming (MINLP)
models [4], Teaching-Learning based Optimization (TLBO)
[5], and mainly metaheuristics: Ant Colony Search Algorithm
(ACSA) [6], Firefly Algorithm (FA) [7], Bacterial Foraging
Optimization (BFO) [8] and Particle Swarm Optimization
(PSO) [9], among others. An application of Genetic Algorithm
(GA) to solve the the distribution network reconfiguration
(DNR) problem for loss minimization is early reported by [10].
The authors in [11] proposed a refined genetic algorithm (GA)
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for distribution network reconfiguration aiming to minimize
the system power loss. In [12], a comparison between nonlin-
ear optimization algorithm and genetic algorithm is reported
for optimal allocation and sizing of DG units. GA searches
for optimal size of DG in [13] within a radial distribution
networks. GA is combined with PSO in [14] for allocation
and sizing DG on distribution systems. GA was applied for
allocation while PSO returned DG sizing. Non dominated
sorting genetic algorithm (INSGA-II) is applied by [15] for
optimal location and sizing of DG, minimizing the power
system losses and introducing a multi-objective function to
evaluate the voltage deviation and stability.

The paper is organized as follows: section II defines the
allocation and sizing of DGs problem. The proposed method is
introduced in section III and computational results are reported
in section IV. The conclusions of this work follow in section
V.

II. PROBLEM FORMULATION

The insertion of DG units have not only positive impacts,
but also negative impacts which depend strongly of the sizing
and allocation of DG [16]. The location and sizing of DG
within the electric power system can be influenced by several
factors: weather, technical and economic criteria, regulation
rules. Thus, appropriate tools to determine the locations and
sizing of DG become useful for decision-makers [17].

The power loss is currently the most approached technical
impact, when inserting a DG unit, as seen in [3]. It can be
calculated following equations (1)-(7).

Pi+1 = Pi − PLossi − PLi+1 + PDG+1 (1)

Qi+1 = Qi −QLossi −QLi+1 +QDG+1 (2)

V 2
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i=1

PLossi (6)

QLoss =

n∑
i=1

QLossi (7)

where,
ri+1 = Resistance of branch between bus i and i+ 1;
xi+1 = Reactance of branch between bus i and i+ 1;
Vi = Voltage of bus i;
Pi = Real power flowing out of bus i;
Qi = Reactive power flowing out of bus i;
PLi+1 = Real power load connected in bus i+ 1;
QLi+1 = Reactive power load connected in bus i+ 1;
PDGi+1 = Real Power generation of the DG connected at

bus i+ 1;

QDGi+1 = Reactive Power generation of the DG connected
at bus i+ 1.
PLossi = Active power loss of branch between bus i and

i+ 1;
QLossi = Reactive power loss of branch between bus i and

i+ 1;
The power balances are given by equations (1) and (2),

while the voltage comes from Kirchhoff’s law as given by
equation (3). The active and reactive power losses on bus i
is stated by equations (4) and (5), and the total losses follow
equations (6) and (7). There are some problem constrains that
must be handled which are describe by equations (8)-(13).

QDGi
≤ PDGi

. tan(α), ∀ i ∈ N \ F ; (8)

QDGi
≥ −PDGi

. tan(α) ∀ i ∈ N \ F. (9)

∑
i

PDGi
≤ β ·

∑
i

PLi
, i ∈ N \ F. (10)

∑
i

|QDGi
| ≤ β ·

∑
i

QLi
, i ∈ N \ F. (11)

∑
<i,j>∈arcs

yi,j = Nnos− Card(F ); (12)

vmin ≤ vRi, ∀ i ∈ N \ F. (13)

The equations (8) and (9) state limits for QDGi , where pf
is the DG power factor and α = arccos(pf) [18], [19]. The
distributed generation penetration is described by equations
(10) and (11). The parameter β sets the percentage that GD
power should not run against the feeder load. For instance,
β = 0.5 means that the DG power must not exceed 50% of
the feeder load. In equation (12), the decision variable xi,j ∈
{0, 1} defines if the switch is closed, xi,j = 1, between nodes
i and j, xi,j = 0; otherwise. Parameters Nnos and F are the
set of nodes and feeders, respectively. The minimal voltage
must hold following equation (13).

III. MULTIPOPULATION GENETIC ALGORITHM

A multi population genetic algorithm (MPGA) is proposed
in this section to solve the allocation and sizing of DG
problem. The MPGA’s pseudocode follows in Algorithm 1.

The procedure initialize() generates new individuals for
each population during its first execution. The next executions
of this procedure will initialize all individuals again, except
by the best one and that migrated from other population. The
fitness value of each individual is calculated by evaluate() and
the individuals are structured as a ternary tree by organize(),
based on their fitness value. The individuals are hierarchically
disposed within several clusters, where a cluster is com-
pounded by three individuals following two levels. The cluster
leader is positioned in the upper level, while two supporters
are in the lower level. The fittest individual is always the leader
of the cluster as shown by Figure 1. There are 13 individuals
hierarchically structured in a ternary tree, where the root node



Algorithm 1: MultiPopulation Genetic Algorithm
1 begin
2 repeat
3 for i = 1 to number of populations do
4 for j = 1 to population size do
5 initialize(pop(i).ind(j));
6 evaluate(pop(i).ind(j));

7 organize(pop(i));
8 repeat
9 for j = 1 to number of crossovers do

10 selectparents(ind1,ind2);
11 child ← crossover (ind1,ind2);
12 if mutation rate then
13 mutation(child);

14 repair(child);
15 evaluate(child);
16 add(child, pop(i));

17 organize(pop(i));
18 until converge(pop(i));

19 for i = 1 to number of populations do
20 migrate(pop(i));

21 until reach(stopping criterion);
22 bestIndividual ← getBestIndividual(pop);
23 return bestIndividual;

stores the individual with best fitness value over the whole
population.
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Fig. 1. Individuals structures in a ternary tree. Source: [20]

The procedure select() takes two individuals from a ran-
domly chosen cluster: one is always the leader of the cluster
and the other is randomly selected from its supporters. A new
individual is generated by crossover() and it can be modified
by mutation(), if the mutation rate holds. A repair() is
applied to remove unfeasibility from the new representation
of individual (child). The child is evaluated next and it will
replace its worst parent, if it has a better fitness value.

A total of number of crossovers new individuals are created
for each population. The evolution process over a population
converges when no new individuals are added after number
of crossovers executions. If the convergence happens, the pro-
cedure migrate() send the best individuals from the current
population to the next one. The stop criterion of Algorithm 1
is the time limit, returning the best route found within such
period.

A. Representation of Solution and Initialization

Figure 2 illustrates a solution of the DG problem encoded
as individual (chromosome).

Sw1 , 3 Sw5 , 6 . . . Sw7 , 9 Sw8 , 4 Sw m , n

Fig. 2. Structure of Individual Reconfiguration & DG

First, there is a sequence of genes storing the number
of tie switches which are normally open within the radial
distribution system: Sw1,3, Sw5,6,..., Swm,n. The other entries
store three components. The first one represents the allocation,
which means the bus i where the DG should be connected
in the power system network (PositionDG(i)). The second
component is the active power generation of the DG at bus i
(PDG(i)), and the third component is the DG reactive power
generation at bus i (QDG(i)).

The individual will be randomly generated, but some con-
straints must be handled. The sequence of normally open
switches is randomly selected since the radial structure of the
power system is kept. For instance, the initialization will not
lead to disconnected nodes or cycles in the power network
system. The values of PDG(i) and QDG(i) are generated
following an uniform distribution within [Pmin

DG , Pmax
DG ] and

[Qmin
DG , Q

max
DG ], respectively.

B. Crossover, Mutation and Repair

One crossover is proposed to deal with the sequence of
normally open switches and another to the entries with DG
allocation and sizing. The crossover for the sequence of
normally open switches follows two steps:
• Step 1: The child is created adding each gene of the Ind1

and Ind2 as illustrated in figure 3.

Child step  1

Ind 1 Ind 2

Sw1 , 3 Sw3 , 4 Sw6, 2 Sw9 , 15Sw3 , 23 Sw7 , 6 Sw1, 3 Sw8, 21 Sw8 , 9 Sw1, 3

Sw1 , 3 Sw3 , 4 Sw6, 2 Sw9 , 15Sw3 , 23 Sw7 , 6 Sw1, 3 Sw8, 21 Sw8 , 9 Sw1, 3

Fig. 3. Child in Step 1

• Step 2: The genes are randomly selected until reaching
the size of tie switches as Illustrated in figure 4.

An uniform crossover is applied over Ind1 e Ind2 to
select genes from entries (PositionDG(i), PDG(i), QDG(i))
as illustrated in Figure 5.



Child step  1

Sw1 , 3 Sw3 , 23 Sw8, 21 Sw8 , 9Sw7 , 6

Child step  2

X X X X X
Sw8, 21

Fig. 4. Child in Step 2
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Fig. 5. Allocation and Sizing Crossover

Finally, BLX-α crossover [21] defines the new sizing for
PDG(i) and QDG(i) in child. The mutation operator is applied
only over the sequence of normally open switches. An entry is
randomly selected from the sequence and its switch is replaced
by another one as shown by Figure 6

Sw19, 2 Sw3, 4 Sw3, 23 Sw6, 26 Sw9, 10

Sw8, 14Sw3, 4 Sw3, 23 Sw6, 26Sw19, 2

Child - after mutation

Child - before mutation

Fig. 6. mutation example

A repair() is executed to deal with unfeasible represen-
tation of solution (child). First, the duplicate switches are
removed from the sequence of switches as illustrated by Figure
7. Next, the repair() also ascertain if the problem constraints

Sw19, 2 Sw3, 4 Sw3, 23 Sw6, 26 Sw19, 2

Sw8, 14Sw3, 4 Sw3, 23 Sw6, 26Sw19, 2

Child - after repair

Child - before repair

Fig. 7. Repair in Reconfiguration

given by equations (8)-(9) holds. If these constraints are
violated, repair() will randomly select a new value for QDGi

within those limits. For equations (10)-(11), new values of

QDGi
and PDGi

are randomly set when the left hand side
exceed the right side on these equations.

C. Fitness Function

The main objective in this optimization problem is to reduce
the active power losses of the distribution networks after the
allocation and sizing of the DGs. However, constraints radial
structure (equation (12)) and minimum voltage (equation (13))
must be satisfied. Thus, the fitness will reduce power losses
(see equation (4)) and penalize constrains violation as describe
by equations (14)-(16), where M is a big number.

Fitness =
∑
i

(
ri+1.

P 2
i +Q2

i

V 2
i

)
+M.(Γ +

∑
i

Λi) (14)

Γ =

∣∣∣∣∣ ∑
<i,j>∈arcs

yi,j − (Nnos− Card(F ))

∣∣∣∣∣; (15)

Λi =

{
vmin − vRi If vmin > vRi,

0 otherwise.
(16)

IV. TEST RESULTS

The proposed evolutionary algorithm for allocation and
sizing of distributed generators will solve two benchmark
systems from literature: 33 and 69 bus systems reported
in [22] and [23], respectively. MPGA was coded using the
Professional Optimization Framework (ProOF) [24] and it ran
over a machine with Intel Core i7 processor, 1.80 GHz and
16 GB RAM.

The 33 bus-system is shown in Figure 8 and it has 12.66 kV
of base voltage, 37 branches, 32 normally closed switches and
5 normally open. The normally open switches are numbered
from 33 to 37, while the normally closed are numbered from 1
to 32. The total substation loads for the base configuration are
5084.26 kW and 2547.32 kVAr, and the total real and reactive
power loads are 3715 kW and 2315 kVAr. The initial power
loss of this system is 202.67 kW and, after reconfiguration
to reduce losses, the active power loss is 139.55 kW, which
means a loss reduction of 31.14%.

Fig. 8. The base configuration of the 33-bus radial distribution system



The 69 bus system has 12.66 kV of base voltage, 73
branches, 68 normally closed and 5 normally open switches
as illustrated by Figure 9. The switches normally open are 69
to 73, while the closed ones are labeled from 1 to 68. The
total real and reactive power loads on the systems are 3802.19
kW e 2694.06 kVAr. The initial power loss of this system
is 224.95 kW and, after its reconfiguration, the power loss
becomes 99.59 kW, which means a reduction of 55.72 %.

Fig. 9. Source: J. S. Savier and Debapriya Das, 2007.

The MPGA is validated following the same methodology
described in [25], where five different scenarios are evaluated:
• Scenario 1: The initial configuration of the benchmark

system is taken, which means without any reconfiguration
and allocation of DG.

• Scenario 2: The benchmark system from Scenario 1 is
now reconfigured to reduce power losses, but without the
allocation of DG.

• Scenario 3: A total of 3 DG units is allocated to the
benchmark system on Scenario 1.

• Scenario 4: A total of 3 DG units is allocated to the
benchmark system on Scenario 2.

• Scenario 5: The decisions about 3 DG units allocation
and reconfiguration are simultaneously made for the
benchmark system from Scenario 1.

The limits of DG unit sizes up to 2 MW and distributed
generators (DGs) operate with unit power factor (i.e, they are
used for supplying active power only). The maximum allowed
number of DGs unity are three with penetration factor level
β = 100% (e.g, β = 1). DG can be connected to any bus,
except by substation, and only one DG unit is attached to a
bus. Table I, shows the results obtained by MPGA regarding
the 33-bus system.

The active power loss in base scenario (Scenario I) is
202.67 that is reduced to 139.55, 71.45, 58.87 and 55.88
from scenarios 2 to 5, respectively. It can also been seen in
Table I that the active power loss reduction in scenario 2,
when compared to the active power loss in base scenario,
is 31.14% of reduction. However, the allocation of DGs in
Scenario 3 reaches 64.74% of reduction, even without a system
reconfiguration. The reduction of power losses becomes better
when the DGs are allocated after the system reconfiguration
(70.95% in Scenario 4) and even better when simultaneously
done with reconfiguration (72.42% in Scenario 5). Another
aspect related to the allocation and sizing of DG units is the
voltage profile. There is voltage profile improvement, where
the minimal voltage of the Scenario 1 is 0.913112 p.u. at bus

18, while they are equal to 0.937835 (bus 32) in Scenario
2, 0.96864 p.u. (bus 33) in Scenario 3, 0.9630 p.u. (bus 31)
in Scenario 4 and 0.97235 p.u (bus 33) in Scenario 5. This
means an improvement of 2.70%, 6.08%, 5.46% and 6.48%,
respectively. The voltage profile reached for each bus is shown
in Figure 10.
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Table II shows the same results regarding the 69-bus system,
which are similar to those reported for 33-bus system. For
the base scenario, the active power loss is equal 224.93
that becomes 99.59 (55.72% of reduction) in Scenario 2,
69.98 (69.02% of reduction) in Scenario 3, 41.93 (81.35%
of reduction) in Scenario 4 and 36.55 (83.75% of reduction)
in Scenario 5. All scenarios with allocation and sizing of DG
improved the voltage profile. The best voltage profile happens
for Scenario 3 at bus 65 with voltage level increased by 1.14%.
Figure 11 shows voltage profile for each bus.
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The lowest power loss is reached in scenario 5 for both
benchmark systems. Thus, we have here an indication that
the decisions made, taking into account the simultaneous
reconfiguration and allocation of distributed generators, could
yield better results.

In order to illustrate the performance of the proposed
method, the MPGA is also compared against other techniques
from the literature that deal with allocation and sizing of DGs:
Meta-heurı́stica Harmony Search Algorithm (HSA) [26], Uni-
form Voltage Distribution based constructive reconfiguration
Algorithm (UVDA) [27] and Cuckoo Search Algorithm (CSA)



TABLE I
SIMULATION RESULTS OF 33-BUS

Item Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Real power loss (kW) 202.67 139.55 71.45 58.87 55.88

% Real power loss - 31.14 64.74 70.95 72.42

Vmin(p.u) / Bus Nº. 0.9131121 / 18 0.937835 / 32 0.96864 / 33 0.9630 / 31 0.97235 / 33

Switches opened 33, 34, 35, 36, 37 7, 14, 9, 32, 37 33, 34, 35, 36, 37 7, 14, 9, 32, 37 32, 7, 9, 28, 8

DG Placement - - 14, 24, 30 8, 24, 30 5, 14, 25

Size of GD (MW) - - 0.75393, 1.0996, 1.07143 0.93157, 1.06819, 0.95043 0.76092, 0.84756, 1.46741

TABLE II
SIMULATION RESULTS OF 69-BUS

Item Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Real power loss (kW) 224.93 99.59 69.98 41.93 36.55

% Real power loss - 55.72 69.02 81.35 83.75

Vmin(p.u) / Bus Nº. 0.96785 / 69 0.94273 / 61 0.97898 / 65 0.971090 / 61 0.974249 / 61, 62, 63

Switches opened 69, 70, 71, 72, 73 69, 70, 14, 61, 58 69, 70, 71, 72, 73 69, 70, 14, 61, 58 58, 70, 69, 14, 61

DG Placement - - 10, 23, 61 53, 60, 63 12, 23, 61

Size of GD (MW) - - 0.57631, 0.35008, 1.71571 0.56927, 1.47749, 0.48965 0.43507, 0.63363, 1.45341

[28]. All methods were applied to simultaneous reconfigura-
tion, allocation and sizing of DG at the same scenarios. Table
III and IV compare the results achieved by these methods
for 33 and 69-bus systems, respectively. In Table III, the
results show that the MPGA outperforms the other methods
in several scenarios. MPGA reaches better results than HSA
and UVD for scenarios 3,4 and 5, while is better than CSA
for scenarios 2 and 3. However, CSA and MPGA return a
similar reduction in scenario 4. Table IV reports similar results.
MPGA outperforms HSA in scenarios 3,4 and 5, UVD in
scenarios 3 and CSA in scenario 3. The results in scenario
5 are close to each other for MPGA, UVDA and CSA.

V. CONCLUSIONS

In this paper, we introduce a MPGA to reduce active power
loss minimization in radial distribution system. The method
must execute the reconfiguration, allocation and sizing of
distribution generated (DG) units. The method is validate by
solving two benchmark systems from the literature over four
different scenarios. The results achieved are compared against
three methods from literature: HSA, UVDA and CSA. The
proposed method is able to improve results when decisions
about system reconfiguration, allocation ans sizing of DG units
are done simultaneously. MPGA also report competitive results
when compared with HSA, UVDA and CSA within those
scenarios. As future works, MPGA will be applied to solve
more complex benchmark systems as well as real-world power
systems.
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Vmin(p.u) 0.913112 0.93783 0.96864 0.9630 0.97235

HSA [26] DG Placement - - 17,18,33 30,31,32 31,32,33
DG Size (MW) - - 1.7256 1.0909 1.6684
Open Switches 33,34,35,36,37 7,14,9,32,37 33,34,35,36,37 7,14,9,32,37 7,17,10,32,28

Real Power Loss (KW) 202.67 138.06 96.76 97.13 73.05
% Real Power Loss - 31.88 52.26 52.07 63.95
Vmin(p.u) 0.9131 0.9310 0.9670 0.9479 0.9700

UVDA [27] DG Placement - - 11, 29, 24 30, 15, 12 29, 15, 21
DG Size (MW) - - 2.731 2.243 2.689
Open Switches 33, 34, 35, 36, 37 7,9,14,32,37 33, 34, 35, 36, 37 7,9,14,32,37 7,10,13,27,32

Real Power Loss (KW) 202.685 139.55 74.213 66.602 57.287
% Real Power Loss - 31.15 63.39 67.14 71.74
Vmin(p.u) 0.9131 0.9378 0.962 0.9758 0.976

CSA [28] DG Placement - - 14, 24,30 12,16, 29 18, 25, 7
DG Size (MW) - - 3.2545 2.7978 3.2995
Open Switches 33, 34,35, 36, 37 7,14, 9, 32, 28 33, 34,35, 36, 37 7,14, 9, 32, 28 33, 34, 11, 31, 28

Real Power Loss (KW) 202.68 139.98 74.26 58.79 53.21
% Real Power Loss - 30.93 63.26 71.00 73.75
Vmin(p.u) 0.9108 0.9413 0.9778 0.9802 0.9806

TABLE IV
COMPARISON OF SIMULATION RESULTS OF 69-BUS SYSTEM

Method Item Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Proposed Method DG Placement - - 10, 23, 61 53, 60, 63 12, 23, 61

DG Size (MW) - - 2.6421 2.53641 2.52211
Open Switches 69, 70, 71, 72, 73 69, 70, 14, 61, 58 69, 70, 71, 72, 73 69, 70, 14, 61, 58 58, 70, 69, 14, 61

Real Power Loss (KW) 224.93 99.59 69.98 41.93 36.55
% Real Power Loss - 55.72 69.02 81.35 83.75
Vmin(p.u) 0.96785 0.4273 0.97898 0.971090 0.974249

HSA [26] DG Placement - - 63,64,65 58,60,61 60,61,62
DG Size (MW) - - 1.7732 1.8448 1.8718
Open Switches 69,70,71,72,73 69, 18,13, 56, 61 69,70,71,72,73 69,18,13,56,61 69,17,13,58,61

Real Power Loss (KW) 225.00 99.35 86.77 51.30 40.30
% Real Power Loss - 55.85 61.43 77.20 82.08
Vmin(p.u) 0.9092 0.9428 0.9677 0.9619 0.9736

UVDA [27] DG Placement - - 61, 11, 17 61, 11, 64 61, 11, 17
DG Size (MW) - - 2.431 2.72 2.683
Open Switches 69, 70, 71, 72, 73 14, 58, 61, 69, 70 69, 70, 71, 72, 73 14, 58, 61, 69, 70 14, 58, 63, 69, 70

Real Power Loss (KW) 225.0 98.58 72.626 37.84 37.11
% Real Power Loss - 56.19 67.72 83.18 83.51
Vmin(p.u) 0.9092 0.9495 0.9688 0.9801 0.9816

CSA [28] DG Placement - - 11, 18, 61 61, 64, 12 11, 65, 61
DG Size (MW) - - 2.9826 2.5606 2.8189
Open Switches 69, 70, 71, 72 73 69,70, 14, 57, 61 69, 70, 71, 72 73 69,70, 14, 57, 61 69, 70, 14, 58, 61

Real Power Loss (KW) 224.89 98.56 72.44 37.23 37.02
% Real Power Loss - 56.16 67.79 83.45 83.54
Vmin(p.u) 0.9092 0.9495 0.9890 0.9870 0.9869
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