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Abstract—The multiplicative complexity (MC) is a crypto-
graphic criterion that describes the vulnerability of a Boolean
function to certain algebraic attacks, and in many important
cryptographic applications also determines the computational
cost. In this paper, we use Cartesian genetic programming to
find various types of cryptographic Boolean functions, improve
their implementation to achieve the minimal MC, and examine
how difficult these optimized functions are to find in comparison
to functions than only need to satisfy some base cryptographic
criteria. To provide a comparison with other state-of-the-art
optimization approaches, we also use our method to improve
the implementation of several generic benchmark circuits. Our
results provide new upper limits on MC of certain functions,
show that our approach is competitive, and also that finding
functions with an implementation that has better MC is not
mutually exclusive with improving other performance criteria.

Index Terms—Genetic programming, Cartesian genetic pro-
gramming, cryptography, multiplicative complexity, optimization.

I. INTRODUCTION

Boolean functions are one of the basic cryptographic pri-
mitives used in implementation of many modern encryption
algorithms, sometimes being the only nonlinear element of the
cipher [1]. Their utilization ranges from being used as a filter-
ing function of a pseudo-random number generator in stream
ciphers [2], to being used for construction of safe substitution
boxes in block ciphers, or masking the implementation of other
cryptographic algorithms to guard them against side-channel
attacks [3], and many more.

The cryptographic uses of a Boolean function are governed
by its cryptographic properties, which determine how resistant
it is against specific types of attacks. Because many of the
desirable properties are in conflict with one another, functions
that possess good values of multiple properties simultaneously
are extremely rare, and how to find them has been a subject
of extensive research [2]–[7].

Evolutionary algorithms (EA) are a set of heuristic search
algorithms inspired by the natural evolutionary process [8].
They work by maintaining a population of individuals, each
of which contains a genotype that encodes a candidate solution
to the presented problem. The quality of each individual
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is appraised by a fitness function that evaluates how close
the individual is to the desired solution and assigns it a
fitness value. The algorithm then uses this fitness to select
the individuals from which to spawn a new population. There
are two main ways how new individuals are created. Mutation
takes a single individual and performs a small random change
in its genotype, following the idea that better solutions can
be found by making small incremental changes to an already
good solution. Crossover takes two individuals and mixes their
genotypes together, following the idea that better solutions
can be found by combining the good parts of already good
solutions.

A Boolean function can be represented in several ways, for
example, a truth table, graph, Walsh spectrum, or a logical ex-
pression. One notable subset of EAs is Genetic programming
(GP), which uses the logical expression representation that
allows it to efficiently store, mutate and recombine even very
large solutions using a comparatively short genotype [8]. For
example, in the context of cryptographic Boolean functions, a
bent function with a truth table of length 2n (with n being the
number of its inputs) can be encoded using as few as n − 1
operators.

In this paper, we use a specific type of GP called Cartesian
genetic programming (CGP) to evolve four types of crypto-
graphic Boolean functions, namely: bent, balanced, resilient,
and masking. Each of these functions needs to satisfy a dif-
ferent set of cryptographic properties, including nonlinearity,
balancedness, correlation immunity, and Hamming weight.
On top of the cryptographic properties, we also consider the
multiplicative complexity of implementation (MCI) of these
functions, which provides an upper bound for their MC [9].
To the best of our knowledge, this is the first work that
has considered this criterion when evolving these types of
cryptographic Boolean functions.

Our first objective is to find Boolean functions with given
cryptographic properties and reduce their MCI as much as
possible. Our second objective is to examine how difficult
functions with minimal MCI are to find in comparison to
regular cryptographic Boolean functions. Our third objective
is to reduce the MCI of several benchmark circuits from the
EPFL Combinational Benchmark Suite [10] (CAVLC encoder,
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ALU control unit, 8-bit decoder, and int-to-float converter), to
compare our method with other state-of-the-art optimization
approaches.

The rest of this paper is organized as follows. Section II
provides the necessary theoretical background, defines the
cryptographic properties of the Boolean functions we create,
and details the combinational circuits we use as our bench-
mark. Section III offers an overview of related works done on
our subject. Section IV describes the implementation of our
method and the fitness function used for each task. Section V
shows our experiment setup, how we optimized the evolu-
tionary parameters, what values of cryptographic properties
we reached, what experiments we performed, and provides
a discussion of the results. Finally, the paper concludes in
Section VI, which summarizes the results and considers the
possibilities for future research.

II. PRELIMINARIES

Boolean function is a function of the type Bn → B,
where B ∈ {0, 1} and n ∈ N. In other words, it is a
function that takes multiple binary inputs and provides a
single binary output. Boolean functions are usually represented
as an expression consisting of primary inputs and logical
operators. By evaluating this expression, we obtain a truth
table that specifies what output corresponds to each possible
combination of input values [11], [12].

The nonlinearity (NL) of a Boolean function is defined as
the Hamming distance between its truth table, and the truth
table of the nearest affine function (the number of bits that
would need to be flipped to turn one truth table into the other).
An affine function is a linear function that may have its output
inverted. And finally, a linear function is defined as a function
created by logical XOR of any number of its primary inputs.

Functions that reach the theoretical upper limit of nonlin-
earity given by equation.

Nf = 2n−1 − 2
n
2 −1, (1)

are called bent functions. They are rare and exist only for an
even number of inputs.

The number of ones in the truth table of a function is called
Hamming weight (HW). If the truth table contains the same
number of ones and zeroes, we call the function balanced.
If a function is not balanced, its inputs and outputs are not
statistically independent, making it unsuitable for most cryp-
tographic applications. Bent functions are never balanced, but
they have other uses, for example, as a non-linear component
of other larger Boolean functions [11].

A function is said to possess correlation immunity (CI) if
its output is statistically independent of any one of its primary
inputs. In other words, this means that if we were to take a
function and split its truth table in half based on the value of
any one of its primary inputs, the two halves would contain
the same number of ones. If the same were to be true even
if we split the truth table in quarters based on the value of
any two of the primary inputs, the function would possess

TABLE I
CIRCUITS SELECTED FOR OPTIMIZATION FROM THE EPFL BENCHMARK

SUITE, AND THEIR PROPERTIES.

Circuit inputs outputs MCI
Cavlc 10 11 704

Controller 7 26 199
Decoder 8 256 304
Int2float 11 7 267

correlation immunity of a second order. Similarly, we can
define the correlation immunity of up to order n (the number
of inputs), which is only reached by functions of constant one
or constant zero [12].

Functions that are both balanced and immune to first-order
correlation are called resilient and are suitable for use as a
filtering function in pseudo-random number generator of a
stream cipher [2]. Functions with a high order of correlation
immunity and low (but non-zero) HW are suitable for protect-
ing the implementation of various other cryptographic algo-
rithms against side-channel attacks, by masking the processed
intermediary values. We refer to them as masking functions
[3], [7].

The multiplicative complexity (MC) is defined as the min-
imum number of two-input ANDs necessary to implement a
function using only logical AND, XOR, and NOT operators
[13]. The multiplicative complexity of implementation (MCI)
is defined as the actual number of two-input ANDs used to
implement the function using the same set of operators [9].
As a result, known MC determines the target value when
minimizing the MCI of a given function, while known MCI
provides an upper bound for functions whose MC is yet to be
determined.

For 5 or fewer inputs, the MC of any function is at most
n − 1 [14]. For 6 to 8 inputs, there exist functions with MC
of up to n. For 9 and more inputs, the situation is largely
unexplored, because MC of any function with more than 6
inputs is extremely difficult to calculate. To the best of our
knowledge, there has never been found any Boolean function
with MC greater than n [15].

The importance of MC stems from the fact that functions
with low MC are vulnerable to certain algebraic attacks [14].
MCI, on the other hand, is important in functions used to
implement certain high-level cryptographic protocols (fully
homomorphic encryption, zero-knowledge protocols, multi-
party communication, and non-interactive proofs of knowl-
edge) [16]–[18]. In these applications, the linear operations
(XOR and NOT) can be computed locally, while the non-
linear operations (AND) require cooperation between multi-
ple parties, resulting in a significant performance bottleneck,
which makes the need to optimize these functions for a
minimal number of ANDs (rather than the overall number of
operations) readily apparent [16], [19].

A. Benchmark Circuits

To provide a comparison with other optimization methods,
we have selected four circuits from the EPFL Combinational



Benchmark Suite [10] and used our algorithm to minimize
their MCI. The individual circuits were selected based on the
number of their inputs, outputs, and initial MCI, which can be
seen in Table I.

Coding-cavlc is a part of Context-adaptive variable-length
coding (CAVLC) video encoder for the H.264/MPEG-4 AVC
format, containing look-up tables for coefficients, total zeros,
trailing ones and other signals.

ALU control unit is a combinational circuit from simple
Arithmetic Logic Unit Controller containing various signals
controlling ALU operations, register destinations, memory
operations, and jumps.

Decoder is a traditional 8-bit decoder, which converts a
number from a binary representation into one of 256 separate
signals.

Int to float converter is a circuit which coverts 10-bit integer
numbers, into a floating point representation using an exponent
of length 3 and mantissa of length 4.

III. RELATED WORKS

The earliest application of EAs to create cryptographic
Boolean functions was the use of a genetic algorithm to
find functions with high NL [20]. The works that followed
expanded the list of considered cryptographic criteria to create
functions that are balanced [5], [6], resilient [3], [5], or suitable
for masking [3], [4], [7], as well as functions possessing
additional cryptographic properties, like high algebraic degree
and algebraic immunity [5]–[7], [21], and others. Importantly,
the use of EAs in these works resulted in the discovery of new
Boolean functions with superior cryptographic properties.

GP has first been used to search for functions with 8 inputs
and optimal values of multiple cryptographic properties [22],
while CGP has been used to create bent functions with up
to 16 inputs [23]. Another variant of GP, the linear genetic
programming (LGP), has been used to create bent functions
with up to 24 inputs [1].

Multiple studies have shown that GP and its variants sig-
nificantly outperform other EAs, as well as other heuristic
search algorithms like hill climbing, simulated annealing, and
particle swarm optimization [2], [5], [6], [21]. The individual
variants of GP are mutually competitive, and each is suitable
for evolving Boolean functions with a different combination
of cryptographic properties [2], [4].

Current state-of-the-art techniques for MCI optimization do
not use an evolutionary approach. They rely heavily on manual
decomposition and optimization, and while they can guarantee
an optimal result, they are effective only for very small circuits
[24], [25].

Recently, a new automated logic synthesis approach has
been proposed. Starting with a working circuit, it implements
an enumeration cut algorithm to search for all possible sub-
circuits of up to 6 inputs (for whom the optimal MCI is
known) and rewrites them with a functionally-equivalent but
MCI-optimal replacement. Unlike the manual approaches, this
technique can be used even on very large circuits with over a
hundred thousand of nodes. On average, it managed to improve

the MCI of benchmark circuits by 34%, but does not guarantee
optimal results and fails to optimize circuits that can’t be
improved by local changes [9].

This approach has then been combined with two additional
operators, resubstitution and refactoring, to create a logic
synthesis toolbox (LST). Resubstitution tries to express the
function of each node by using other nodes already present in
the circuit, while Refactoring helps to overcome local optima
by re-synthesizing large parts of the circuit from scratch
without using any of the existing nodes. On average, LST
improved the MCI of benchmark circuits by an additional 15%
over the original ECA technique [26].

IV. IMPLEMENTATION

Cartesian genetic programming (CGP) is a type of GP orig-
inally developed for the automated design of combinational
circuits [27]. Each individual in the population represents
a circuit with several primary inputs (ni) and outputs (no)
and consists of several rows (nr) and columns (ni) of nodes
forming a Cartesian grid. The size of each individual in CGP
is therefore constant, unlike the tree-based representation used
in regular GP. Each node in the grid represents its own trivial
function, has a number of inputs defined by its arity, and
provides a single output. When evolving Boolean functions
or combinational circuits, the arity is two, the trivial function
is a logical operator, and the output is a binary value. The
inputs of each node can connect either to a node in one of
the preceding columns, up to L-back columns away, or the
primary inputs of the overall circuit. Meanwhile, the primary
outputs of the circuit can connect to any node in its grid.

Topologically, each individual forms a directed acyclic
graph, and the limitations put on its size and structure by
CGP make it suitable for implementation in hardware. If the
circuit is to be implemented only in software, the structural
restrictions are usually loosened and the circuit is represented
using a grid with a single row and unlimited L-back [27].

The advantage CGP has over regular GP, is that the output
of each node can be used in multiple following calculations,
making it easier to find an implementation with fewer opera-
tors. Its disadvantage, on the other hand, is that this property
also makes it extremely difficult to perform a meaningful
crossover between two individuals [28]. As a result, CGP
usually produces new individuals only by mutation and does
not benefit from having a large population, which usually
consists of a single parent and a small number (λ) of its
immediate offspring [27], [29].

Our implementation of CGP is written in C++ and paral-
lelized via a Message Passing Interface (MPI). We use an
island model of parallelization where each core maintains its
own separate population of candidate solutions and shares
its individuals with other neighboring cores over a cyclic, 2-
dimensional, uni-directional topology.

Our function set consists of XOR and AND, each of which
can have its first, second, both, or neither input inverted (giving
us a total of 8 trivial functions). When evolving cryptographic
Boolean functions, we create the initial population randomly



using a standard Mersenne Twister 19937 generator seeded by
a stochastic process. When evolving benchmark circuits, we
initialize the individuals with a known working solution and
randomize any remaining genes in its chromosome.

Our algorithm begins by evaluating the initial population
and then selecting the best individual, following one of three
possible scenarios. In the first scenario, the individual is
selected based purely on its cryptographic fitness. The second
scenario is similar to the first, but if there are multiple
individuals with optimal fitness, the algorithm picks between
them based on their MCI. In the third scenario, the algorithm
picks between the individuals primarily based on their fitness
and uses their MCI as a secondary criterion throughout the
whole evolutionary process. In all three scenarios, if there are
multiple individuals with the same fitness and MCI, the newer
individuals are picked over the old as a tertiary criterion.

If the selected individual is strictly better (not just newer)
than the previous best individual, the algorithm sends its copy
from the current core to all of its neighbors. Then it clears
the rest of the old population and inserts any individuals
received from the neighboring cores. Finally, the rest of the
new population is filled by offspring created by applying the
mutation operator on the selected parent. The algorithm uses
a node-based, one-point mutation, meaning it selects a given
number of nodes and randomizes both of their inputs and the
trivial function at the same time.

We have examined other types of mutation as well, namely,
a gene-based mutation that mutates either the trivial function
of a node or one of its inputs, and universal mutation, that
doesn’t select a given number of nodes, but rather individually
mutates each node with a small probability. However, neither
of these mutation operators performed better than our one-
point, node-based mutation.

If the mutation modifies any of the individual’s active
(output-affecting) nodes, it’s truth table, relevant cryptographic
criteria, fitness, and MCI are re-evaluated. The selection,
communication, mutation, and evaluation then repeat until the
algorithm either finds an individual with the desired fitness and
MCI or after reaching a pre-defined number of fitness function
evaluations.

We choose the island model of parallelization because with-
out the use of a crossover operator there is little use for closer
cooperation between the individual cores. On the contrary,
having several smaller local populations actually increases
the diversity of the global population, and may benefit the
evolutionary process by helping it to overcome local optima.
This is also the reason why we prefer new individuals over
the old during selection. The infrequent (compared to the
employer-worker model of parallelization) and asynchronous
communication also allows the algorithm to maximize the time
spent on computation.

The weakness of this model is that once a new best
individual is found, it takes several generations for it to migrate
to all of the other cores. However, because the number of
generations required to find a strictly better individual is
several magnitudes greater than the number of individuals

being sent, and the maximum number of inefficient generations
(i.e. 2d

√
n− 1e) is limited by our topology, this does not

present a significant issue.

A. Fitness function

We define the fitness function separately for each of the
Boolean functions and commonly for the benchmark circuits.
For bent functions, the fitness score is defined by equation:

Fbent = NL ∗ INP (2)

where higher values mean better fitness. INP is a real value
from 0 to 1 defined as the percentage of active (output-
affecting) inputs. Cryptographic Boolean functions must con-
sider all of their inputs to reach the optimal fitness. Penalizing
those that do not use all of them helps to guide the evolutionary
process and speeds up its convergence [1].

For balanced functions, we defined the fitness score by
equation:

Fbal = NL ∗ INP ∗BAL (3)

where higher values mean better fitness. BAL is a real value
from 0 to 1 defined as 1 if the function is balanced, and
linearly decreasing from 0.5 to 0, the greater is the difference
between the number of ones and zeroes in the function’s
truth table. This coefficient prevents nearly-balanced, highly-
nonlinear functions (like bent functions) from dominating the
evolutionary process.

Similarly, resilient functions aim to maximize the value of
equation:

Fres = NL ∗ INP ∗BAL ∗ FineCI (4)

where FineCI is a real value from 0 to 1 defined as the
percentage of primary inputs for which the correlation immu-
nity criterion is satisfied, and helps to guide the evolutionary
process better than an integer value would.

For masking functions, the goal is to minimize the value of
fitness defined by equation:

Fmask = HW + (3− CoarseCI)n (5)

where n is the number of primary inputs, and CoarseCI is an
integer value from 0 to 3. In this case we do not use a real
value because computing the CI for each triplet of primary
inputs individually is too computationally costly. To further
speed up the process and avoid deceptive local optima, we
penalize constant functions because while they have perfect CI,
they are cryptographically useless. Moreover, we also penalize
balanced functions, because while their CI can be extremely
high (for example, the CI of a parity function is n− 1), their
HW is very poor, and their CI is therefore not worth evaluating.

For benchmark circuits, we use a fitness function defined
simply as:

Fbench = DIF (6)



where DIF is the Hamming distance between the individual’s
truth table and the truth table of the initial template. Because
we seed the initial population of benchmark circuits with
a working solution, this fitness ensures that the selected
individual will always represent a working solution, and the
evolutionary process will focus solely on optimizing its MCI.

V. EXPERIMENTS

We conduct our experiments in four stages. First, we infer
the MC of our Boolean functions, and experimentally deter-
mine what levels of cryptographic properties and MCI is our
algorithm able to achieve for a varying number of function
inputs. Second, we select a specific number of inputs, level
of cryptographic properties, and MCI we can reliably achieve,
and individually optimize the evolutionary parameters for each
of these tasks. Third, we use the optimized parameters to
examine how difficult it is to accomplish each of these tasks
using the three different selection scenarios. Fourth, we use
our algorithm to reduce the MCI of the selected benchmark
circuits.

We perform all experiments on a computing cluster with two
Intel Xeon E5-2680v3, 2.5 GHz, 12 core processors, 128GB
DDR4@2133 MHz RAM, and InfiniBand FDR56 connection
network. Topologically, we connect the cores into a 4-by-6
mesh.

A. Setup

We start with bent functions. Because each of the primary
inputs of a Bent function must be processed in a nonlinear
way, the MC of a bent function is a least n/2. We examine
the bent functions of 6 to 16 inputs, and for each of them we
manage to find a function with optimal NL, and MCI.

For balanced functions, the situation is more complicated
because the optimal NL for functions with 8 or more inputs is
unknown. We examine balanced functions with 6 to 16 inputs,
and for functions of 6, 8, 10, and 14 inputs, we manage to
find functions with NL equivalent to the best value known,
and for 12 inputs with NL second to the best value known
[30]. Because balanced functions are non-trivial, their MC for
8 or more inputs is also unknown. Because, to the best of our
knowledge, this is the first work that examines the MCI of
balanced Boolean functions, our results provide a novel upper
bound for their MC.

For resilient functions, the situation is similar, and the
optimal NL and MC for functions with 8 or more inputs is
unknown. We examine resilient functions with 6 to 16 inputs.
For all sizes, the best resilient functions we can find have MCI
one lower than the bent functions with an equivalent number
of inputs and two times higher linearity. This means that while
our resilient functions generally do not achieve the best known
NL [30], their MCI is optimal for the NL that they achieve.

With masking functions, we aim to find functions with a
minimal (non-zero) HW and a CI of the third order, for which
the optimal HW values are known for up to 13 inputs [31].
Because each AND operator can reduce the HW of a function
at most by half, there is a known lower bound for their MC.

TABLE II
THE BEST VALUES OF NONLINEARITY, HAMMING WEIGHT, AND

MULTIPLICATIVE COMPLEXITY OF IMPLEMENTATION, ACHIEVED BY CGP
DURING OUR PRELIMINARY EXPERIMENTS WITH THE FOUR TYPES OF

CRYPTOGRAPHIC BOOLEAN FUNCTIONS.

Inputs Bent Balanced Resilient Masking
NL MCI NL MCI NL MCI HW MCI

6 28 3 26 5 24 2 16 1
8 120 4 116 6 112 3 16 3

10 496 5 492 10 480 4 32 4
12 2 016 6 2 008 11 1 984 5 32 6
14 8 128 7 8 120 16 8 064 6 – –
16 32 640 8 32 512 7 32 512 7 – –

For masking functions with 6 and 8 inputs, we find functions
with the known optimal HW of 16. For masking functions
with 10 and 12 inputs, we find functions with HW of 32,
which is equivalent to the best HW ever found by evolutionary
approaches [3], [7]. In all four cases, we find functions with
MCI equal to the lower bound for their MC, proving that the
lower and upper bound are the same, thus determining their
MC.

Lastly, for the four benchmark circuits, we do not aim
to achieve any cryptographic properties and focus solely on
reducing their MCI while maintaining identical output as the
original template. The MC of these non-trivial circuits is
unknown.

The results of our first set of experiments are summed up in
Table II. Based on these results, we decide to focus our second
set of experiments on bent functions with 16 inputs and NL
of 32640, balanced and resilient functions with 16 inputs and
NL of 32512, and masking functions with 10 inputs and HW
of 32.

B. Parameter Optimization

During the optimization, we focus on analyzing the impact
of three main evolutionary parameters, the population size
(λ), the number of columns (nc), and the number of nodes
selected during mutation (ma). For each function, we perform
a series of increasingly focused parameter sweeps, with 50
independent runs for each combination of population size,
mutation rate, and the number of columns. After each sweep,
we select the best values and repeat the experiment on a finer
scale until the values stabilize. Because we do not have the
space to show our results in completion, we illustrate them
with Table III, which shows the median number of evaluations
and runtime for each of the cryptographic Boolean functions,
with λ = 5, ma = 10, and variable nc.

The results of this stage and the best performing parameters
we found are summarized in Table IV. In all cases, small
populations performed better than the large. Because our im-
plementation of CGP does not perform any type of crossover
which would benefit from a larger population, this result is
not surprising. Also, because we’re using the island model of
parallelization with 24 islands and the population size is set
per-island, the effective global population is not 5 but 120
individuals.



TABLE III
EXAMPLE OF RESULTS OF A PARAMETER SWEEP TO FIND THE BEST-PERFORMING NUMBER OF COLUMNS FOR EACH OF THE FOUR CRYPTOGRAPHIC

FUNCTIONS (λ = 5,ma = 10).

Function Property Number of columns (nc)
50 100 200 400 800 1600

Bent runtime [s] 47.22 5.33 4.367 4.08 10.96 39.96
evaluations 454 848 34 572 17 064 8 940 12 744 24 360

Balanced runtime [s] 10.48 2.66 1.19 1.65 2.65 6.33
evaluations 98 664 16 752 4 512 3 480 3 000 3 768

Resilient runtime [s] 25.16 28.01 8.84 7.10 9.74 12.98
evaluations 225 252 23 760 6 816 4 680 5 124 4 788

Masking runtime [s] 100.37 45.58 28.118 27.73 50.104 129.22
evaluations 2 065 200 1 448 352 70 992 522 132 606 888 773 904

TABLE IV
BEST PERFORMING CGP PARAMETERS OPTIMIZED FOR EACH

CRYPTOGRAPHIC FUNCTION AND BENCHMARK CIRCUIT.

Function Population Mutation Number of
type size (λ) rate (ma) columns (nc)
Bent 5 10 400

Balanced 5 10 450
Resilient 5 10 500
Masking 5 10 200

Benchmark 5 1 min
Examined range 5-100 1-50 50-2000

Changes in mutation rate had a negligible effect, with any
value from 5 to 30 performing approximately equally well for
all cryptographic functions, with a slight bias towards a higher
number of mutations if longer chromosomes were utilized.
We assumed this is because most nodes inside the individual
usually remain inactive, meaning that a low mutation rate can
fail to make meaningful changes, while an extremely high
mutation rate can become destructive for the functioning part
of the chromosome and lead towards a random search.

For benchmark circuits, minimal mutation rates performed
the best, with mutation rates higher than three becoming com-
pletely ineffective. We assumed this is because the benchmark
circuits started with a fully working solution that takes up most
(if not all) of the nodes of the individual. Mutations therefore
always happen on active nodes, resulting in a new and distinct
circuit.

For cryptographic Boolean functions the best results were
obtained with a reasonable number of nodes in the low
hundreds, with the exact value slightly dependent on the
complexity of the function and strongly dependent on the
number of primary inputs. If the node count is too low the
evolution stalls, requiring an increasing number of evaluations
to create an improvement. If the node count is too high, there
is no additional reduction in the number of evaluations, but
each individual takes an increased amount of time to evaluate.

For benchmark circuits, the minimal number of nodes is
limited by the size of the initial working solution. In all
cases, this minimal value always performed the best, with
higher node counts performing slightly worse both in terms
of evaluation count and processing time.

C. Cryptographic functions

For each Boolean function, we perform experiments using
the three selection scenarios. In the first scenario, we consider
only the cryptographic properties of each function while
ignoring its MCI, and the evolution ends as soon as we find
a function with the desired fitness. We denote this scenario
as (Fit, 0) and use it as our baseline. In the second scenario,
we first search for a function with the desired fitness, then
optimize its MCI, and the evolution ends only when both the
desired fitness and MCI have been reached. We denote it as
(Fit, MC).

In our third scenario, we optimize both Fitness and MCI
at the same time by using fitness as the primary, and MCI
as the secondary selection criterion throughout the entire
evolutionary process. The evolution also ends only when both
the desired fitness and MCI have been reached, and we denote
it as (Fit + MC).

For each of these scenarios, we perform 100 independent
runs and measure the number of fitness function evaluations
necessary to find the desired function, its MCI, the number of
active nodes in the chromosome, and runtime.

Because the outputs of EAs generally do not follow a
normal distribution and a single stalled run can wildly in-
fluence the average, we measure the median (Q2) which, in
our opinion, is a better indicator of the expected performance
of the algorithm. To provide information about the spread of
obtained values we also provide the first (Q1) and third (Q3)
quartile of each experiment, all presented in Table V.

Our results show that for bent, balanced, and resilient
functions it is significantly easier to optimize both fitness
and MCI at the same time than it is to first find a function
with good fitness and then try to improve its MCI. For bent
function, co-optimizing both parameters at the same time is so
easy that the MCI-optimal functions do not take significantly
longer to find than functions optimized purely for their fitness.
Furthermore, decreasing the MCI of Boolean functions does
not lead to an increase in the overall number of active nodes,
and in some cases even helps to decrease it.

For masking functions, however, we observe the opposite
effect. Including the MCI in the evolutionary process more
than doubles the evolution time, while finding a function with
optimal fitness and then optimizing its MCI does not take



TABLE V
RESULTS OF EVOLVING THE FOUR TYPES OF CRYPTOGRAPHIC BOOLEAN FUNCTIONS WITH CGP, USING THE BEST PERFORMING PARAMETERS AND ALL

THREE SCENARIOS.

Scenario Evaluations MCI Columns (nc) Runtime [s]
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

B
en

t (Fit, 0) 5 322 8 280 19 230 11 13 18 35 40 45 2.47 3.74 8.71
(Fit, MC) 7 410 12 588 21 648 8 8 8 33 36 40 3.38 5.70 9.75

(Fit + MC) 5 418 8 640 15 054 8 8 8 32 36 40 2.51 3.93 6.76

B
al

an
. (Fit, 0) 2 514 3 216 5 364 11 14 17 32 40 44 1.32 1.69 2.73

(Fit, MC) 4 134 5 928 11 670 7 7 7 30 34 38 2.12 3.04 5.91
(Fit + MC) 3 492 4 548 8 364 7 7 7 29 33 39 1.80 2.35 4.24

R
es

il. (Fit, 0) 2 778 4 392 10 806 10 12 14 31 36 41 4.54 7.13 17.20
(Fit, MC) 4 590 7 452 15 930 7 7 7 29 33 38 7.35 11.87 25.08

(Fit + MC) 3 936 6 168 11 184 7 7 7 27 32 36 6.29 9.82 17.64

M
as

k. (Fit, 0) 322 920 623 400 860 487 4 5 7 19 21 24 13.51 23.55 34.16
(Fit, MC) 401 364 610 920 1 023 462 4 4 4 19 20 22 16.72 24.04 40.16

(Fit + MC) 804 078 1 514 760 3 624 264 4 4 4 18 20 21 30.89 56.28 131.38

TABLE VI
IMPROVEMENTS IN MCI OF THE BENCHMARK CIRCUITS AFTER 1

MILLION AND 10 MILLION EVALUATIONS OF THE CGP ALGORITHM.

Benchmark Initial 1M evaluations 10M evaluations
circuit MC Q1 Q2 Q3 Q1 Q2 Q3
Cavlc 704 586 582 577 498 492 489

Controller 199 85 82 79 56 54 52
Decoder 304 299 298 298 295 294 294
Int2float 267 190 186 181 139 137 131

TABLE VII
COMPARISON OF THE BEST RESULTS OF MCI OPTIMIZATION PROVIDED
BY THE ECA, LST, AND OUR CGP ALGORITHM, AND THE NUMBER OF

EVALUATIONS NEEDED TO FIND THIS VALUE.

Benchmark Logic synthesis [9], [26] CGP
circuit initial ECA LST initial best evaluations
Cavlc 536 494 394 704 387 131 568 624

Controller 86 85 45 199 39 661 846 896
Decoder 341 341 328 304 292 46 166 832
Int2float 133 100 85 267 92 175 548 528

significantly longer than finding the optimal fitness alone. We
assume that this is partially caused by the fact that, even with
their MCI not optimized, the functions were often already
optimal in this criterion as well, as Table V also shows.

D. Benchmark circuits

When experimenting with the benchmark circuits, we take
the initial function as provided by the benchmark suite [10]
and convert its representation from VHDL into our CGP
implementation. In all cases, the initial circuit consisted almost
entirely out of AND gates, and we did not perform any kind
of manual optimization.

Because the MC of these non-trivial functions is unknown,
we decide not to set a specific goal for our MCI optimization,
but rather to observe how its value is reduced after a certain
number of evaluations. For each circuit, we perform 100 inde-
pendent runs limited to 1 million and 10 million evaluations.
For each experiment, we provide the values of the first, second
and third quartile as seen in Table VI.

To truly test the limits of our algorithm we perform five
extra runs for each circuit, limited not by a given number
of evaluations but only by our available resources, which
are capped at 1 hour of cluster runtime for each run. For
these experiments, we provide the best MCI reached and the
number of evaluations necessary to find it. We also compare
our results to those provided by the enumeration cut algorithm
and logic synthesis toolbox presented in literature [9], [26].
Because our CGP uses a different representation, the initial
MCI is different, but functionally, these are indeed the same
circuits and their (unknown) MC is the same. These results
are presented in Table VII.

Our results show that our approach is capable of steadily
improving the MCI of a given circuit even past the 10 million
evaluations mark, and, if given enough time, outperforms the
competing approaches on most examined circuits. Note that
the results provided by both the ECA and LST were gained
by repeating their method until convergence was reached,
and therefore would not benefit from any further increase
in computational resources. Meanwhile, our method was still
finding better solutions and given enough time it could likely
optimize the circuits even further.

On the other hand, our method relies on the heuristic search
and repeated evaluation of the evolved functions, making it
unsuitable for improving circuits with more than 20 inputs,
while ECA and LST work directly on the graph representation
of the circuit, allowing one to improve even very large circuits.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explained the importance of the
multiplicative complexity of functions used in high-level cryp-
tographic protocols. We have selected four types of cryp-
tographic Boolean functions: bent, balanced, resilient, and
masking. We detailed their cryptographic properties, possible
uses, and tried to improve the multiplicative complexity of
their implementation.

To do this, we have implemented a parallel CGP algorithm,
optimized its evolutionary parameters, and performed several
sets of experiments on functions with up to 16 inputs. All
examined functions preferred a very small population size,



node count in the low hundreds, and a moderate mutation rate.
We have shown that for bent, balanced, and resilient functions,
it is preferable to search for the best cryptographic properties
and MCI at the same time, while for masking functions, it is
better to first find a function with the desired properties, and
only then try to improve its MCI.

We have shown that for bent and masking functions with 16
inputs it is easy to find functions with optimal MCI, provided
an upper bound for MC of some of the best balanced functions
known to exist. And to the best of our knowledge, this is the
first work that has examined these types of Boolean functions
under the MC or MCI criteria. To allow a comparison between
our method and other state-of-the-art optimization approaches,
we have also optimized MCI of several combinational circuits
from the EPFL benchmark suite. We have shown that our
method is competitive, and for circuits with a low number
of inputs, it outperforms the other approaches.

There are several ways our work could be expanded upon
with further research. For example, by broadening its scope
and including Boolean functions with other cryptographic
properties like algebraic degree and algebraic immunity, or fur-
ther exploring the relationship and necessary trade-off between
the nonlinearity and MCI for other sizes of input. Another
interesting venue would be to compare the performance of
CGP with regular, tree-based GP or LGP, which have already
been shown to provide great results when designing many
types of cryptographic Boolean functions. Or compare it
with other state-of-the-art approaches for designing Boolean
functions, like learning classifier systems.
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