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Abstract—Crowd-related accidents often occur in both nor-
mal and emergency situations. To prevent these problems, it
is highly suggested to investigate and simulate the risks of
overcrowding in a large-scale gathering by using a multi-agent
system. Such simulation enables the improvement of safe and
efficient pedestrian route guidance, depending on multiple sce-
narios with complicated environmental and traffic conditions.
In this paper, for practical safety pedestrian route guidance,
we propose a multi-objective evolutionary optimization method
to handle multiple scenarios in a large-scale firework event.
The pedestrian dataset is obtained with a multi-agent traffic
simulator, CrowdWalk. As the optimization of route guidance
is a multi-objective optimization problem, we modify a natural
evolution strategy based multi-objective optimization algorithm
by replacing the Pareto dominance relation with the scenario
dominance relation. This aims for the flexibility of pedestrian
route guidance in response to traffic demands. The computational
results demonstrate that the method can find a well-balanced set
of solution to multiple scenarios and maintain a trade-off among
multiple objectives in real world applications.

Index Terms—evolutionary algorithm, pedestrian simulation,
multiobjective optimization, multiscenario optimization.

I. INTRODUCTION

Managing crowds is an important issue for keeping partic-
ipant safety in large-scale events. In addition to evacuation
during a disaster, it has also been reported that unexpected
accidents can occur simply by gathering a large number of
participants at a particular location [1]. To clarify the risk
of a crowd accident and prevent overcrowding, it is useful
to simulate pedestrian flow using a multi-agent system [2]–
[4]. The simulator can provide detailed information about the
congestion, and optimize the safe crowd management plan.

In this paper, we consider the optimization for the pedestrian
route guidance during the fireworks event. After the event,
numerous people surge to the nearest station and traffic lights
control the pedestrian flow from the fireworks venue to the
station. To obtained efficient and safety route guidance, mul-
tiple objective functions should be brought into consideration
and need to be satisfied simultaneously. Here, two objective
functions are considered. The first objective function is the
traveling time. The second objective function is the congestion
degree. Since the station capacity is limited, the minimization
of the traveling time of pedestrians may increase the risk of

accidents due to overcrowding at the station. It is desirable to
reduce the traveling time while alleviating congestion.

To evaluate these objective functions, we first specify a
histogram of participants departing the venue for reproducing
real-world environments on the pedestrian simulation. The
concept of the pedestrian simulator is described in Fig. 1.
However, since it is difficult to estimate the histogram in
advance, the specified histogram does not always correspond
to the actual pedestrian traffic. From a practical point of view,
the route guidance must be evaluated over several different
pedestrian traffic conditions, which we refer to as scenarios.
That is, route guidance optimization can be considered as a
multiscenario, multiobjective (MSMO) problem. Recently, the
MSMO problem is widely studied in the research field of
engineering, such as the design of distributed energy supply
systems [5] and tractor-trailer design problems [6].

Fig. 1. The concept of the pedestrian simulator with multiple scenarios.

Let us consider the following K-scenario M-objective min-
imization problem with a decision vector x and its feasible
region X:

Minimize
{
fk1 (x), f

k
2 (x), ..., f

k
M (x)

}
subject to x ∈ X, k = 1, 2, ...,K,

(1)

where fki (x) is an i-th objective function with k-th scenario.
Let us consider two objective vectors with a single-scenario
case. The objective vector ak = (ak1 , a

k
2 , ..., a

k
M ) and bk =

(bk1 , b
k
2 , ..., b

k
M ) are two points in the M-dimensional objective

space with k-th scenario. The Pareto dominance relation “�”
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and the weak Pareto dominance relation “�” are defined as
follows:

Pareto Dominance : a � b⇔ ∀i, ai ≤ biand∃j, aj < bj .
(2)

Weak Pareto Dominance : a � b⇔ ∀i, ai ≤ bi. (3)

In a multiscenario case, it might happen that a solution a
Pareto dominate solution b in one scenario, but a dose not
Pareto dominate b in another scenario. Thus, existing mul-
tiobjective evolutionary algorithms (MOEAs) cannot directly
applicable to the MSMO problem. One straightforward idea to
handle multiple scenarios is to identify the worst scenario and
then find an optimal design for it [7]. The other idea for the
MSMO problem is to consider the scenario dominance relation
between two solutions [5], [6]. The scenario dominance “�s”
is defined as follows:

Scenario dominance : a �s b⇔ ∀k,ak � bkand∃l,al � bl.
(4)

In [5], a scenario dominance relation is combined with
MOEA (donated as S-NSGA-II). In [6], the concept of ε-
domination [8] is combined with scenario dominance.

Since the evaluation of the route guidance needs a time-
consuming simulation, in this work, we propose an evolu-
tionary MSMO method based on a natural evolution strategy
(NES). More precisely, we modify the NES-based MOEA
(MO-NES) [9] where the candidate solutions are sampled
efficiently from the principle of the natural gradient descent.
In the proposed method, the scenario dominance relation is
utilized to compare the candidate solution and the current
solution in the NES procedure.

Section II describes the procedure of the route guidance
optimization, and the pedestrian simulator CrowdWalk [10].
Section III gives the detail of the proposed method (MSMO-
NES). In Section III, we also examine the performance of
MSMO-NES on the numerical problem. Then, Section IV
reports the performance of the proposed method through the
simulation of the Kanmon Strait fireworks in Kita Kyushu
City in Japan. In the experiment, the proposed method is
compared with two MSMO algorithms and show that the
proposed method can obtain a well-balanced solution set to
multiple scenarios and maintain a trade-off among multiple
objectives. Finally, this paper is concluded in Section V.

II. ROUTE GUIDANCE OPTIMIZATION

A. Overview

Fig. 2 shows an overview of the route guidance optimiza-
tion. The route guidance optimization can be divided into
two components: (i) the pedestrian simulation, (ii) fitness
evaluation for the route guidance. The following subsections
explain each component in detail.

Fig. 2. The overview of the route guidance optimization.

B. A Model for Pedestrian Simulation

Simulation using a multi-agent system is widely studied
in the research fields of ecology, economics and traffic engi-
neering. CrowdWalk [10] is an activity tracker for multi-agent
traffic simulations assuming a large number of pedestrians. For
treating tens of thousands of pedestrians smoothly, CrowdWalk
simplifies every pedestrian flow in one-dimensional space
while updating each position according to the movement
model based on the driving force and the social influence.

To create a simulation model, the map and the departure
time of each pedestrian are to be specified. The map consists of
links and nodes, where the links and nodes represent the routes
for the traffic and intersections of the routes, respectively. Each
agent (i.e., pedestrian) leaves from the venue for the station at
a pre-specified time.

Fig. 3 shows the location of the nearest station, the fireworks
venue and nine traffic lights at the simulation model for
the Kanmon Strait fireworks. There are also three routes,
Routes 1-3, are designated from the venue to the station.
Since congestions mainly occur when the spectators moving
from the venue to the station after the event is over, we
assume all pedestrians moving from the venue to the station
in the simulation model. Before the pedestrian simulator is
conducted, a histogram of the number of pedestrians departing
from the venue at each time step is to be specified. As shown
in Fig. 1, a single histogram represents a single scenario. To
obtain a practically efficient and safety route guidance, we
prepare multiple scenarios considered simultaneously.

In the simulation model, the pedestrian flow is controlled by
the nine traffic lights. More precisely, in this framework, the
route guidance optimization is conducted by the optimization
of the control of the nine traffic lights. There are also three
points where pedestrian traffic is measured (i.e., points from
C1 to C3 in Fig. 3). The number of pedestrians, in practice,
are obtained via pedestrian detection for the movies taken by
RGB-D cameras. The pedestrian traffic information is utilized
in the control of the nine traffic lights. For the detail of the
control of the traffic lights, please refer to the next subsection.

Finally, we introduce detailed settings in the simulation
model. The simulation map consists of 11 nodes and links
connecting each other. These nodes include a single node
represents the station that is the destination of all pedestrians



Fig. 3. Map of the simulation model for the Kanmon Strait fireworks in Kita
Kyushu City in Japan. The points from C1 to C3 are the data points measuring
the pedestrian traffic. The points from G1 to G7 and J1 and J2 represent the
traffic lights.

and another node represents the venue where pedestrians
depart for the station. At the station node, an entry restriction
into the station is conducted since the capacity is limited. The
entry restriction is automatically operated based on the train
schedule.

Of the other nine nodes for traffic lights, the seven nodes
are to control the stop-and-go movement of pedestrians (G1 to
G7 in Fig. 3). The rest of two nodes are to divide a pedestrian
flow into two routes at the points J1 and J2. The pedestrians
select Route 1 or 2 at J1, and then Route 2 or 3 at J2. In other
words, all the nine traffic lights in this simulation model have
only two conditions.

C. Design Variables Representation and Fitness Evaluation

In this framework, the control of the nine traffic lights is
optimized. Each traffic light has only two conditions and their
conditions are changed according to the number of pedestrians
at the three points C1, C2, and C3 in Fig. 3. The number of
pedestrians and the condition of each traffic lights are updated
per minute.

To simplify the control of the traffic lights, thresholds for
the numbers of pedestrians at the three points and a default
condition are specified for each traffic light. Let us consider
the threshold vector θi = (θi1, θ

i
2, θ

i
3) for the i-th traffic lights

and the number of pedestrians pi = (p1, p2, p3) at the specific
time step. When the volume of traffic at any point is not larger
than the threshold (i.e., ∀j, pj(t) ≤ θij), the i-th traffic light
indicates the default condition at the next step. Otherwise, it
indicates another condition. For the traffic lights from G1 to
G7, the default condition is passable. For J1 and J2, the default
condition is specified in Routes 1 and 2, respectively.

In the route guidance optimization, the design variables
represent the thresholds of each traffic light. That is, the
design variable vector x has 9×3 = 27 elements. Since the
maximum number of pedestrians who can go through each

point is limited due to the limitation of the width of the street,
the number of pedestrians is normalized into the range [0, 1].
Therefore, the range of each element of the design variable is
also specified in [0, 1].

Next, we describe how to evaluate the fitness function under
each scenario. We consider two objective functions in this
framework. The first objective function f1(x) is the traveling
time of all pedestrians. The average of the traveling time values
of overall pedestrians is calculated as follows:

f1(x) =

N∑
n=1

Arrivaln −Departuren
N

, (5)

where N is the number of all pedestrians, Arrivaln and
Departuren is an arrival time and a departure time of n-th
pedestrian, respectively.

The second objective function f2(x) is the number of
pedestrians in the overcrowded area. For calculating f2(x), we
consider the local population density around each pedestrian.
The fitness function of f2(x) is as follows:

f2(x) =

N∑
n=1

{
1 (if dn > 2.17),

0 (otherwise),
(6)

where dn is the local population density around the n-th
pedestrian. The threshold of overcrowding is defined as 2.17
[ped/m2] or more based on Fruin’s standard level services [11].

When we consider the K-scenario problem, the route guid-
ance optimization handles 2K objective values. This optimiza-
tion can be formulated as follows:

Minimize
{
f11 (x), f

1
2 (x)

}
,Minimize

{
f21 (x), f

2
2 (x)

}
, ...,

Minimize
{
fK1 (x), fK2 (x)

}
,

(7)

where x is the design variable vector and fki (x) is an i-th
objective function with k-th scenario.

III. NATURAL EVOLUTION STRATEGY FOR MSMO

For a multiscenario, multiobjective route guidance opti-
mization, all scenarios are considered simultaneously. The
optimization methodology tries to find a solution set where the
trade-off relationships in all scenarios are well represented so
that decision-makers can analyze them to choose a preferred
solution. In other words, the desirable solution set needs to
keep a good balance among multiple scenarios and multiple
objectives.

Since the evaluation of the route guidance needs a time-
consuming simulation, in this work, we modify MO-NES
[9] to determine an appropriate route guidance set among
the multiple scenarios. MO-NES is one of the representative
MOEAs for solving single scenario problems with continuous
variables. The candidate solutions are sampled efficiently from
the principle of the natural gradient descent.



A. MO-NES Algorithm

Here, we briefly describe the procedure of MO-NES. In
MO-NES, a (1+1)-ES style hill-climber is derived from the
xNES algorithm [12] and the multiple (1+1)-xNES hill-
climbers are utilized to define the search distribution to ap-
proximate the Pareto front. The number hill-climbers is same
as the population size P. The search distributions of the (1+1)-
xNES hill-climber is denoted by three parameters (µ, σ,A).
These parameters represent the center, global step size, and
full covariance matrix, respectively. In each iteration, P hill-
climbers generate one candidate solution each. The search
distributions of the hill-climbers are updated by the principle
of natural gradient descent. The i-th candidate solution is
generated as follows:

µ′ ← µi + σiAizi, zi ∼ N(0, I),

σ′ ← σ,A′ ← A, i = 1, 2, ..., P,
(8)

where (µ′, σ′, A′) are the parameters of new hill-climber based
on the new sample solution from the i-th hill-climber, P is the
number of population and I denotes the unit matrix. We regard
the center of the new hill-climber µ′i as the design variable
vector of the i-th candidate solution.

After P candidates are sampled by P hill-climbers, an
indicator-based ranking scheme is conducted to determine
the success/failure of the samplings. In the scheme, current
solutions and candidate solutions are merged into a single
solution set and ranked according to (i) the Pareto dominance
relation, and (ii) hypervolume contribution [13]. In more
detail, the merged solution set is split into multiple fronts using
nondominated sorting [14]. Then the solutions in each front
are sorted by the hypervolume contribution. The lower rank
indicates the better solution.

Let us assume the current solution µi and the candidate
solution µ′i for the i-th hill-climber. To determine the suc-
cess/failure of the sampling of the i-th hill-climber, the rank
of the candidate solution rank(µ′i) and the current solution
rank(µi) is compared. If rank(µ′i) is smaller than rank(µi),
the i-th sampling is counted as a success. Otherwise, the
sampling is failure. According to the success/failure of the
samplings, the search distributions of the hill-climbers are
updated by the principle of natural gradient descent as follows:

If rank(µ′i) < rank(µi) then

σ ← σ exp η+σ , σ
′ ← σ′ exp η+σ ,

A′ ← A′ exp η+A [ziz
T
i − I].

else

σ ← σ/ exp η−σ , σ
′ ← σ′/ exp η−σ ,

(9)

where η+σ , η
−
σ , η

+
A is the learning rates to the global step size,

and full covariance matrix. Finally, the next population is
selected to keeping the best P out of 2P solutions according
to the ranking. The procedure of MO-NES is stated in Fig. 4.

Fig. 4. The procedure of the MO-NES algorithm.

B. Modification to MO-NES for MSMO (MSMO-NES)

To handling the MSMO problem, we made two modifica-
tions to MO-NES. One is the modification to the determination
of the success/failure of the samplings. In the original MO-
NES, current solutions and candidate solutions are merged
into a single solution set for the ranking assignment based
on the Pareto dominance relation. In the proposed method, the
current solution and the candidate solution of each hill-climber
are directly compared by the scenario dominance relation (4).
The comparison of the scenario dominance relation can be
classified into the following three cases: (a) the candidate
solution scenario dominates current solution, (b) both solutions
are nondominated (c)the current solution scenario dominates
the candidate solution.

In cases (a) and (c), the sampling is counted as a success and
failure, respectively. In case (b), the hypervolume contributions
of multiple scenario is comprehensively compared. First, the
hypervolume contribution on each scenario is calculated. Then,
the rankings of the hypervolume contribution with each sce-
nario are determined. We denote these rankings as scenario-
wise rankings. Each solution is assigned K scenario-wise
ranks, corresponding to K scenarios. Finally, a total ranking
of the scenario-wise ranks of both solutions are compared.
The solution having a smaller total ranking is regarded as the
better solution. Table I illustrates the process of assignment of
ranks and calculation of the scenario-based ranking with five
solutions for three-scenario optimization problem.

TABLE I
CALCULATION OF SCENARIO-BASED RANKING

*SC1, SC2, SC3 means Scenario 1, Scenario 2, Scenario 3, respectively.

The other modification is the selection of the next popula-
tion. The original MO-NES selects the best P solutions from



2P solutions as the next population according to the indicator-
based ranking scheme. In the proposed method, the current
solution is replaced only by a better candidate from the same
hill-climber. This modified MO-NES algorithm is denoted as
multiscenario MO-NES (or MSMO-NES).

C. Performance examination in numerical problem

Here, we present results from the proposed method on the
following bi-scenario bi-objective problem (BSBOP) [15]. All
four objective functions are to be minimized.

f1(x) =

{
(x1 − 2)2 + (x2 − 1)2 for Scenario1,

(x1 − 1)2 + (x2 + 1)2 for Scenario2,

f2(x) =

{
x21 + (x2 − 3)2 for Scenario1,

(x1 + 1)2 + (x2 − 1)2 for Scenario2,

subject to x21 − x2 ≤ 0, x1 ≤ 1, x2 ≤ 1.

(10)

We compare the proposed method with two existing MSMO
algorithms. One is a worst-case aggregation approach [7]
where all scenarios combine for each objective function in
an aggregated manner. For the worst-case aggregation, the
aggregate function can be the max function evaluating the
worst value for all K scenarios as follows:

faggm (x) = max
1≤k≤K

f km(x). (11)

Since the aggregate function transforms the multiscenario
problem into a single scenario problem, any MOEAs can be
used to find a set of trade-off Pareto-optimal solutions. In this
paper, we adopt NSGA-II which is used in [7].

The other MSMO algorithm is a scenario-based multiobjec-
tive evolutionary algorithm (S-NSGA-II [5]) where NSGA-
II is modified to use the scenario dominance relation. The
parameters of MSMO algorithms are shown in Table II. The
algorithms run for a maximum 5,000 solution evaluations for
BSBOP.

TABLE II
PARAMETERS OF THE MULTISCENARIO MULTIOBJECTIVE ALGORITHMS

Figure 5 shows the obtained solutions on Scenario 1 objec-
tive space. We can see a clear difference in the distribution
of obtained solutions among the three algorithms. The trade-
off between the objectives is well observed by the non-
dominated solution set in S-NSGA-II. In contrast, the solution

set obtained from MSMO-NES appears to be scattered widely
over the objective function space. However, the convergence
of the nondominated solution of MSMO-NES is not inferior to
S-NSGA-II. The aggregation approach also shows the trade-
off, however, this solution set is dominated by the obtained
solutions from MSMO-NES and S-NSGA-II. That is, the
trade-off information obtained by the aggregation approach is
less informative for decision making in Scenario 1 objective
space.

Similarly, Fig. 6 shows the obtained solutions on Scenario
2 objective space. It is clearly observed that the convergence
of MSMO-NES is better than the other algorithms. In Fig.
7, the solutions are replotted in the worst-case aggregated
objective space by (11). Since the worst-case aggregated
objectives are directly optimized in the aggregation approach,
it is not surprising that the aggregation approach shows the
good convergence and diversity in this objective space. We can
also see that the obtained solutions by S-NSGA-II converge
in a specific area. MSMO-NES obtains the well-distributed
solution set in Fig. 7. When considering the comprehensive
performance in all objective function spaces, MSMO-NES
obtains the widely spread and well-converged solution set in
any objective function space. On the other hand, the number
of nondominated solutions is smaller than the other methods.

Fig. 5. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 1 objective space for BSBOP.

Fig. 6. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 2 objective space for BSBOP.

IV. MULTISCENARIO OPTIMIZATION FOR PEDESTRIAN
ROUTE GUIDANCE

In this section, the performance of the MSMO-NES is
examined throughout the route guidance optimization using



Fig. 7. Obtained solutions by the three different MSMO algorithms plotted
on the worst-case aggregated objective space for BSBOP.

the pedestrian simulation of the Kanmon Strait fireworks.
In the route guidance optimization, the number of people
departing from the fireworks venue to the station strongly
affect the performance of the route guidance. Since it is
difficult to estimate the trend of participation in the mass
gathering event, the route guidance must be evaluated over
several different pedestrian traffic conditions. For this purpose,
we assume four histograms of the number of people departing
from the venue to the station. Each route guidance is evaluated
with all traffic condition scenarios. That is, this route guidance
optimization problem is a four-scenario optimization problem.
Fig. 8 shows the four histograms of the number of pedestrians
departing from the venue. The total number of pedestrians in
the histograms is around 10,000. Figs. 9 - 12 show the obtained
solutions on Scenarios 1 to 4. Due to the heavy calculation cost
of the pedestrian simulator, the algorithms run for a maximum
1,000 solution evaluations in this section. Other parameters are
same as specified in Section 3.C.

Fig. 8. Four histograms of participants departing the fireworks venue in the
route guidance optimization.

From the comparison of the number of pedestrians at the
peak in the histograms in Fig. 8, the four scenarios are
categorized into two cases. In Scenarios 1 and 3, the max
number of pedestrians is around 140 and a stable number

Fig. 9. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 1 objective space for the route guidance optimization.

Fig. 10. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 2 objective space for the route guidance optimization.

Fig. 11. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 3 objective space for the route guidance optimization.

Fig. 12. Obtained solutions by the three different MSMO algorithms plotted
on Scenario 4 objective space for the route guidance optimization.



of pedestrians move over a long period. We denote these
scenarios as stable scenarios. On the other hand, in Scenarios
2 and 4, the max number of pedestrians is around 400 and a
large number of pedestrians move at once. We denote these
scenarios as unstable scenarios. From Figs. 9 and 11, solutions
obtained by S-NSGA-II are well-converged toward the left
hand side. That is, S-NSGA-II is good at the minimization
of traveling time in the stable scenarios. For the unstable
scenarios, MSMO-NES is good at the minimization of the
number of overcrowded pedestrians in contrast.

Obtained hypervolume values on each objective space are
also summarized in Table III. The best result over the three
algorithms is highlighted in bold for each objective space. To
calculate the hypervolume values, we specify the reference
point r as r = (3,000, 7,000). MSMO-NES obtain the highest
hypervolume value in 3 objective spaces out of 5. One
interesting observation is that the obtained hypervolume of the
aggregation approach is worse than that of MSMO-NES. This
may suggest the difficulty to solve the aggregated function
calculated from a large number of scenarios.

TABLE III
OBTAINED HYPERVOLUME VALUES

V. CONCLUSIONS

In this work, we proposed the multiscenario multiobjec-
tive evolutionary optimization method (MSMO-NES) for the
pedestrian route guidance optimization problem. The exper-
imental results showed that MSMO-NES is able to find a
solution set that represents the trade-offs in each objective
function space well. Future research topics include an auto-
matic generation of scenarios that evoke undiscovered risks
and a dynamic selection of conflicting scenarios during a mul-
tiscenario search. The development of data mining techniques
to be used to extract the knowledge from the obtained route
guidance is also an interesting topic.
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