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Abstract—This paper presents a novel differential evolution 

algorithm with Q-Learning (DE_QL) for the economical and 

statistical design of X-Bar control charts, which has been 

commonly used in industry to control manufacturing processes. In 

X-Bar charts, samples are taken from the production process at 

regular intervals for measurements of a quality characteristic and 

the sample means are plotted on this chart. When designing a 

control chart, three parameters should be selected, namely, the 

sample size (n), the sampling interval (h), and the width of control 

limits (k). On the other hand, when designing an economical and 

statistical design, these three control chart parameters should be 

selected in such a way that the total cost of controlling the process 

should be minimized by finding optimal values of these three 

parameters. In this paper, we develop a DE_QL algorithm for the 

global minimization of a loss cost function expressed as a function 

of three variables 𝒏, 𝒉, and 𝒌 in an economic model of the X-bar 

chart. A problem instance that is commonly used in the literature 

has been solved and better results are found than the earlier 

published results.  

Keywords—Differential evolution, Q-learning, X-Bar control 

charts, Economical design of control charts.  

I. INTRODUCTION  

Statistical control charts are generally used to control 
manufacturing processes. The main objective of a control chart 
design is to detect the process shift by distinguishing between 
two different sources of variation in a process. These variations 
are called as assignable and common causes of variability [1]. In 
general, there are two types of control charts, i.e., charts for 
variables and charts for attributes. X-bar is a type of variable 
control chart, which is most widely employed in the industry 
because of its simplicity. The purpose of these charts is to 
determine the assignable causes leading to nonconforming 
products in manufacturing. When these assignable causes are 
determined, corrective actions can be taken before a large 
number of nonconforming products are manufactured. In 
addition, these methods also provide effective tools for 
determining the process parameters and making an analysis of 
process capability. As mentioned before, in the design of a 
control chart, three parameters should be determined. These are 
sample size 𝑛, sampling interval ℎ, and width of control limits 
𝑘 for the chart. Selecting these three parameters is also known 
as the design of a control chart. 

 In general, control charts have been designed to minimize 
the two statistical errors, namely Type-I error (𝛼) and Type-II 
error (𝛽). However, in practice, the design of a control chart has 
some economical activities like sampling and testing, 
determining out-of-control signals, correcting and revising the 
out-of-control process, the loss of the company’s goodwill on 
the delivering nonconforming products to customers and so on. 
For these reasons, the economical design of a control chart has 
been attracting more attention over recent years [2]. 

The economical design is a mathematical model where 
parameters of a control chart should be found by minimizing an 
expected cost function, which includes costs of sampling and 
testing, costs related to determining out-of-control signals and 
possibly correcting the assignable cause(s), and costs of 
allowing nonconforming units to customers. Duncan [3] first 
proposed an economic model for the design of the X-bar chart 
where they assumed that a random shift in the process means 
due to single assignable cause and the moving from in-control 
to the out-of-control state have an exponential distribution. 
Panagos et al. [4] defined two distinct situations in economic 
design (i) the process continues in operation while searches for 
the assignable cause are made and (ii) the process must be shut 
down during the search. Detailed literature reviews can be found 
in Montgomery [2], Svoboda [5] and Ho and Case [6] on the 
economic design of control charts where it is observed that the 
majority of the researchers have considered X-bar chart and 
Duncan’s [3] single assignable cause model where the loss cost 
is expressed as a function of three variables 𝑛 , ℎ  and 𝑘 . 
Choosing these parameters on economic criteria is called 
economical design, and it is getting more and more popular due 
to its ability and capability of having the process under statistical 
control at lower cost [7–13]. The effectiveness of economic 
design depends on how accurately this loss cost function is 
minimized to determine the values of the three design variables. 
Several optimization techniques have been proposed to 
minimize these design variables [4–6,14]. However, very 
recently, some global optimization methods such as Genetic 
Algorithm [15], Particle Swarm Optimization [16,17], 
Simulated Annealing [18] have been developed to solve the 
problem on hand. tried for the same purpose. Some other global 
optimization algorithms have been also proposed for the 
economic design of charts other than the X-bar chart [19,12]. In 
addition to the above, teaching–learning-based optimization 
(TLBO) has been proposed for the minimization of the loss cost 
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function in the economic design of the X-bar control chart. In 
this paper, we develop a DE_QL algorithm for the global 
minimization of a loss cost function expressed as a function of 
three variables n, h and k in an economic model of X-bar chart. 
A problem instance that is commonly used in the literature has 
been solved and slightly better results are found than the earlier 
published results.  

The remainder of the paper is organized as follows: Section 
2 briefly explains the economic model of the X-bar chart, i.e., 
the formulation of the loss cost function. The traditional DE 
algorithm is briefly given in Section 3. The DE_QL algorithm is 
described in Section IV. Finally, computational results are given 
in Section V. 

II. FORMULATION OF COST FUNCTION 

The loss cost function formulated by van Deventer and 
Manna [7], based on the economic model of Lorenzen and 
Vance [14] has been considered for optimization by DE_QL in 
the present work. It is also considered in [20]. A brief description 
of the formulation is given below. Initially, it is assumed that the 
process will be the in-control state. And, it is also assumed that 
the quality characteristic of the process to be normally 
distributed with mean 0 and variance 𝜎2 . Suppose that the 
process is randomly disturbed because of the occurrence of an 
assignable cause at a rate of 𝜆 with an exponential distribution. 
With sample size and the width of control limits for the X-Bar 
chart are 𝑛 and k, respectively, 𝜇0 will be the centerline and the 

two control limits will be defined as 𝜇0  ± 𝑘𝜎 √𝑛⁄ . When the 
process is in-control, false alarm occurrences will be at a rate of  

𝛼 = 2 ∫ 𝜙(𝑧)𝑑𝑧
∞

𝑘
              (1) 

where 𝜙(𝑧) is the standard normal density. 

Then, the shift in the process mean will be 𝛿𝜎 , and the 
probability of the shift that will be detected on any sample will 
be as follows: 

1 − 𝛽 = ∫ 𝜙(𝑧)𝑑𝑧 +
(−𝑘−𝛿√𝑛)

−∞
∫ 𝜙(𝑧)𝑑𝑧

∞

(−𝑘−𝛿√𝑛)
                   (2) 

While the process is in control, the expected number of 
samples, 𝑠, will be 𝑠 = ∑ 𝑖𝑃∞

𝑖=0  where 𝑖𝑃 is the assignable cause 
happens between the ith and (i+1)st sample. For this reason, 𝑠 
can be rewritten as  

𝑠 = ∑ 𝑖(𝑒𝜆ℎ𝑖 − 𝑒𝜆ℎ(𝑖+1))∞
𝑖=0 =

1

𝑒𝜆ℎ−1
                                 (3) 

Besides, the average time of occurrence of the assignable 
cause within the ith and (i + 1)st interval can be written as 

𝜏 =
∫ 𝜆(𝑡−𝑖ℎ)𝑒−𝜆𝑡𝑑𝑡

(𝑖+1)ℎ
𝑖ℎ

∫ 𝜆𝑒−𝜆𝑡𝑑𝑡
(𝑖+1)ℎ

𝑖ℎ

=
1−(1+𝜆ℎ)𝑒−𝜆ℎ

𝜆(1−𝑒−𝜆ℎ)
=

1

𝜆
−

ℎ

𝑒𝜆ℎ−1
        (4) 

A production cycle has five periods: (i) the in-control period,  
1 𝜆⁄ + (1 − 𝜀1)𝑠𝑍0𝛼 , (ii) time to generate an out-of-control 
signal, ℎ (1 − 𝛽) − 𝜏⁄ , (iii) the time to take a sample and 
analyze the results, 𝑔𝑛, (iv) the time to find the assignable cause, 
𝑍1 and (v) the time to eliminate the assignable cause, 𝑍2. See 
details in [20]. By considering all these five components, the 
expected cycle time can be written as follows: 

𝐸(𝑇) =
1

𝜆
+ (1 − 𝜀1)𝑠𝑍0𝛼 +

ℎ

(1−𝛽)
−  𝜏 + 𝑔𝑛 + 𝑍1 + 𝑍2   (5) 

Where 𝜀1 is an indicator variable 

= {
1 𝑤ℎ𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟  𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 𝑐𝑎𝑢𝑠𝑒
0 𝑤ℎ𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑒𝑎𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑎𝑠𝑠𝑖𝑔𝑛𝑎𝑏𝑙𝑒 𝑐𝑎𝑢𝑠𝑒

 

𝑍0=expected search time for a false alarm signal, and 
𝑔 = time to sample and chart one item. 
 The cost model consists of the fixed cost 𝑎 and variable cost 
𝑏 for sampling, as well as following costs 

• The expected cost when the process is in-control 𝑄0 𝜆⁄   

• The expected cost when the process is out-of-control 
𝑄1 (1 − 𝛽) − 𝜏⁄ + 𝑔𝑛 + 𝜀1𝑍1 + 𝜀2𝑍2  

• The expected cost during search period due to a false 
alarm 𝑠𝑌𝛼,  

• The expected cost for search and repair of true alarm 
𝑊 

• The expected cost due to fixed and variable cost of 
sampling, (a + bn)[ {1 𝜆⁄ +
ℎ (1 − 𝛽) − 𝜏 + +𝑔𝑛 + 𝜀1𝑍1 + 𝜀2𝑍2}/ℎ⁄ ].     

Thus the total quality cost per cycle can be written as 
follows: 

𝐸(𝐶) =
𝑄0

𝜆
+ 𝑄1 [

ℎ

(1−𝛽)
−  𝜏 + 𝑔𝑛 + 𝜀1𝑍1 + 𝜀2𝑍2] + 𝑠𝑌𝛼 +

𝑊 + (𝑎 + 𝑏𝑛) × [
{1 𝜆⁄ +ℎ (1−𝛽)−𝜏+𝑔𝑛+𝜀1𝑍1+𝜀2𝑍2⁄

ℎ
]                      (6) 

Where 

𝑄0= quality cost per hour while producing in-control, 

𝑄1= quality cost per hour while producing out-of-control 

𝜀2 is an indicator variable 

= {
1 𝑤ℎ𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟𝑒𝑝𝑎𝑖𝑟
0 𝑤ℎ𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑒𝑎𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟𝑒𝑝𝑎𝑖𝑟

 

𝑌 = cost per false alarm, and 

𝑊 = cost to locate and repair the assignable cause. 

Finally, the expected loss cost per unit time can be written as 
follows: 

𝐸(𝐿) =
𝐸(𝐶)

𝐸(𝑇)
               (7) 

 The cost function 𝐸(𝐿) has three decision variables that are 
the sample size 𝑛, the sampling frequency ℎ, and the control 
limit width parameter 𝑘. In the economic design of the X-bar 
control chart, this function should be minimized. Thus, it is an 
unconstrained optimization problem having a discrete-
continuous, nonlinear, nondifferentiable objective function with 
bound constraints of 1 ≤ 𝑛 ≤ 20 , 0.1 ≤ ℎ ≤ 5.0 , 0.1 ≤ 𝑘 ≤
5.0. 

III. DE ALGORITHM 

The traditional DE algorithm [21] begins with a population 
of NP individuals. Each individual in NP has a D-dimensional 



vector with parameter values. Each vector is obtained randomly 

and uniformly within the search ranges [𝑥𝑖𝑗
𝑚𝑖𝑛 , 𝑥𝑖𝑗

𝑚𝑎𝑥] as follows: 

 𝑥𝑖𝑗
0 = 𝑥𝑖𝑗

𝑚𝑖𝑛 + (𝑥𝑖𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑚𝑖𝑛) × 𝑟 () 

where 𝑥𝑖𝑗
𝑔

 is the 𝑖𝑡ℎ  target individual with respect to 𝑗𝑡ℎ 

dimension at generation 𝑔; and 𝑟 is a uniform random number 
in [0,1]. Note that for each individual in the population, we keep 
the following information: 𝑓(𝑥) is the objective function value;  

In each generation, mutation and crossover operators with 
parameters 𝐹  and 𝐶𝑟  are applied to each individual 𝑥𝑖  ( 𝑖 =
1, . . , 𝑁𝑃 ). First a mutant individual 𝑣𝑖  and then, a trial 
individual 𝑢𝑖 is generated. If 𝑓(𝑢𝑖) is better than 𝑓(𝑥𝑖), 𝑥𝑖 will 
be replaced by 𝑢𝑖. The algorithm evolves the population until 
the termination criterion (TC) is achieved, and then the best 
solution of the population is reported. The pseudo-code of DE 
is shown in Fig. 1.  

Step 1. Determine parameters: 𝑁𝑃, 𝐹, 𝐶𝑟 and 𝑇𝐶  

Step 2. Initialization: Randomly generate a population  𝑁𝑃 =
{𝑥1, . . , 𝑥𝑛} and evaluate each solution in 𝑁𝑃.  

Step 3. Population update: For each individual  
a. Perform a mutation operator on 𝑥𝑖 to generate 𝑣𝑖.  
b. Perform a crossover operator on 𝑣𝑖 and 𝑥𝑖 to generate 

a trial vector 𝑢𝑖.  
c. Update target individual  replace 𝑥𝑖 with 𝑢𝑖 if 𝑓(𝑢𝑖) ≤

𝑓(𝑥𝑖) 
Step 4: Termination: If stopping criterion is satisfied, report the 
best solution 𝑥𝑏𝑒𝑠𝑡  in 𝑁𝑃. Otherwise, go to Step 3. 

Fig. 1. Differential evolution Algorithm  

Some traditional mutation strategies are presented in the 
literature as follows: 

S1. DE/rand/1: 

𝑣𝑖
𝑔

= 𝑥𝑎
𝑔−1

+ 𝐹 × (𝑥𝑏
𝑔−1

− 𝑥𝑐
𝑔−1

)                             

S2. DE/current to best/1: 

𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝑥𝑏
𝑔−1

)   

S3. DE/Current to pbest/1: 

 𝑣𝑖
𝑔

= 𝑥𝑖
𝑔−1

+ 𝐹(𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

) + 𝐹(𝑥𝑎
𝑔−1

− 𝑥𝑏
𝑔−1

)                                                            

S4. DE/Best from Best to current/1 

𝑣𝑖
𝑔

= 𝑥𝑏𝑒𝑠𝑡
𝑔−1

+ 𝑈(−1,1) × (𝑥𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖
𝑔−1

)  

Where 𝑎, 𝑏, 𝑐 are three randomly chosen individuals from 
the target population such that (𝑎 ≠ 𝑏 ≠ 𝑐 ∈ (1, . . , 𝑁𝑃)) and 
𝑗 = 1, . . , 𝐷. 𝐹 ∈ (0,2) is a mutation scale factor affecting the 
differential variation between the two individuals from the 

population. Note that 𝑥𝑝𝑏𝑒𝑠𝑡
𝑔−1

 is selected by tournament selection 

with size 2 and 𝑈(−1,1) is a uniform random number between 
-1 and 1. Note that DE/Best to current/1 is presented for the first 
time in this paper. In addition to the above, note that these 
mutation strategies are used in the DE-QL algorithm. 

During the generation of mutant individuals, they might be 
outside the search ranges. For this reason, parameter values 
violating the search range are restricted to below in this paper: 

𝑣𝑖
𝑔

= {
𝑥𝑖

𝑚𝑖𝑛 𝑖𝑓 𝑣𝑖
𝑔

< 𝑥𝑖
𝑚𝑖𝑛

𝑥𝑖
𝑚𝑎𝑥 𝑖𝑓 𝑣𝑖

𝑔
> 𝑥𝑖

𝑚𝑖𝑛
                 ,           (9) 

 
 Trial individuals are obtained by recombining mutant 

individuals with their corresponding target individuals as 
follows: 

𝑢𝑖
𝑔

= {
𝑣𝑖

𝑔
            𝑖𝑓 𝑟𝑖

𝑔
≤ 𝐶𝑟 𝑜𝑟 𝑗 = 𝐷𝑗

𝑥𝑖
𝑔−1

               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 () 

where the index 𝐷𝑗  is a randomly chosen dimension (𝑗 =
1, . . , 𝐷). It makes sure that at least one parameter of the trial 

individual 𝑢𝑖
𝑔

 will be different from the target individual 𝑥𝑖
𝑔−1

. 

𝐶𝑟 is a user-defined crossover constant in the range [0,1], and 

𝑟𝑖
𝑔

 is a uniform random number in [0,1]. A comprehensive 

review of DE algorithms can be found in [22-24] 

IV. DE_QL ALGORITHM 

A. Q-Learning Procedure 

In the DE_QL algorithm, the mutation strategy, as well as 

mutation and crossover rates, are all determined by the Q-

Learning algorithm. The Q-learning (QL) is one of the widely 

used reinforcement learning algorithms. The QL aims to choose 

an appropriate action based on experience by interacting with 

the environment. Once the agent (learner) performs a chosen 

action, it obtains a reward or penalty.  Then, it learns to choose 

the best action to perform by assessing the action alternatives 

using the cumulative rewards (Q-values).  

The Q-values can be calculated for each state-action pair by 

a Q-learning function given in Eq. (10). Then, Q-values are kept 

for all state-action pairs in a 𝑄(𝑠𝑡 , 𝑎𝑡)  table. Let 𝑆 =
[𝑠1, 𝑠2, … 𝑠𝑝] be the set of states, 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑝] be the set of 

actions, 𝑟𝑡+1  be the reward, 𝑙𝑓 ∈ [0,1] be the learning factor, 

𝑑𝑓 ∈ [0,1] be the discount factor and 𝑄(𝑠𝑡 , 𝑎𝑡) be the Q-value 

at time t. The learner aims to maximize its total reward [25]. 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 

𝑄(𝑠𝑡 , 𝑎𝑡) + 𝑙𝑓[𝑟𝑡+1 + 𝑑𝑓 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] () 

In the DE-QL algorithm, we assume that there is only one 

state for each parameter, where the reward value of 1 is given to 

an action that improves the current solution. We determine the 

mutation strategy (𝑆), crossover rate (𝐶𝑟), and mutation rate (𝐹) 

from the 𝑄(𝑠1, 𝑎𝑡) . Briefly, at each function evaluation, we 

update the action values in the 𝑄(𝑠1, 𝑎𝑡) for successful actions. 

In other words, if a target individual is improved by a chosen 

action list, a reward 1 is assigned to each of the chosen action 

list and 𝑄(𝑠1, 𝑎𝑡)  is updated.   Then, in the next function 

evaluation, the algorithm chooses the best action 

(value/strategy) for each parameter with the maximum action. 

Note that, in the DE-QL algorithm, we also choose the actions 

of the parameters randomly with a small jumping probability 

(𝑗𝑃 = 0.02) to escape from local minima. The action list of 

each parameter is given in Table I. 

 

 

 



TABLE I.  ACTION LIST OF THE PARAMETERS 

Parameters Action List 

𝑆 {1, 2, 3, 4} 

𝐹 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

𝐶𝑟 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

B. Linear Population Reduction Strategy 

To improve the performance of DE_QL, a population size 

reduction strategy is used as in the original LSHADE. The 

population size 𝑁𝑃 dynamically decreases with the increasing 

of 𝐹𝐸𝑠 according to Eq (12) 

𝑁𝑃 = 𝑅𝑜𝑢𝑛𝑑 (𝑁𝑃𝑚𝑎𝑥 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒

𝑀𝑎𝑥𝐶𝑃𝑈 𝑇𝑖𝑚𝑒
(𝑁𝑃𝑚𝑎𝑥 − 𝑁𝑃𝑚𝑖𝑛))       (12) 

C.   Strategy and Parameter Selection 

As mentioned before, mutation strategy, crossover, and 

mutation rates are selected from the action lists maximizing the 

QT, but the random selection is also carried out to escape from 

local minima. Ultimately, the outline of the DE-QL algorithm is 

given in Fig. 2 

 

Step 1. Determine parameters 

Step 2. Initialize population 

Step 3. Evaluate initial population 

a. 𝑓(𝑥1
0), . . , 𝑓(𝑥𝑁𝑃

0 ) 

b. Determine 𝑥𝑏𝑒𝑠𝑡 

Step 4. Population update:  For each 𝑥𝑖
𝑔−1

 

a. Choose a mutation strategy from 𝑄(𝑠1, 𝑎𝑡) with 𝑗𝑃 

b. Choose the mutation rate from 𝑄(𝑠1, 𝑎𝑡) with 𝑗𝑃 

c. Choose the crossover rate from 𝑄(𝑠1, 𝑎𝑡) with 𝑗𝑃 

d. Generate trial individual 𝑢𝑖
𝑔

 

e. Make a selection 

If (𝑓(𝑢𝑖
𝑔

) ≤ 𝑓(𝑥𝑖
𝑔

)) 

Then      𝑥𝑖
𝑔

= 𝑢𝑖
𝑔 

             R=1 and Update 𝑄(𝑠1, 𝑎𝑡) 
Else 

      Then      𝑥𝑖
𝑔

= 𝑢𝑖
𝑔

 

f. Update 𝑥𝑏𝑒𝑠𝑡  

Step 5. Update population size NP 

Step 6. Termination: If the termination criterion is satisfied, 

report 𝑥𝑏𝑒𝑠𝑡 . Otherwise, go to step 4. 

 

 Note that we do not use the normal distribution table to 

generate 𝛼 and 𝛽. Instead, we use the erf() function to estimate 

the 𝛼  and 𝛽 . Then, we comupte the objective function value 

E(L). The fitness function we employed in Fig. 3.  

Fig. 2. Outline of DE-QL algorithm 

int main(){ 

// constants 

double x, y, t, Val, ValB; 

double a1 = 0.254829592; 

double a2 = -0.284496736; 

double a3 = 1.421413741; 

double a4 = -1.453152027; 

double a5 = 1.061405429; 

double p = 0.3275911; 

//Parameters 

int sign; 

int n = Decision variable; 

double k = Decision variable; 

double h = Decision variable; 

double Alpha, Beta, dBeta, Tau, S, ET, EC, EC1, EC2, EL; 

double Teta = 0.01; 

double Shift = 1.0; 

double g = 0.05;//sampling time 

double A = 0.5;//fixed cost 

double B = 0.10;//SampleVarCost 

double Y = 50.0;// FalseAlarmCost 

double W = 25.0;//Repair cost 

double Q0 = 10;//incontrol quality cost 

double Q1 = 100; //out of control Quality cost 

double Z0 = 0.0; //false alarm search time 

double Z1 = 2.0;//assignable search time 

double Z2 = 0.0;//repair time 

double IV1 = 1.0;//Indicator variable 

double IV2 = 1.0;//Indicator variable 

// Save the sign of x 

x = -k; 

sign = 1; 

if (x < 0) sign = -1; 

x = fabs(x) / sqrt(2.0); 

// A&S formula 7.1.26 

t = 1.0 / (1.0 + p*x); 

y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x); 

Alpha = 2.0*(0.5*(1.0 + sign*y)); 

printf("%.10f\t", Alpha); system("pause"); 

x = k - 1.0*sqrt(n); 

sign = 1; 

if (x < 0) sign = -1; 

x = fabs(x) / sqrt(2.0); 

// A&S formula 7.1.26 

t = 1.0 / (1.0 + p*x); 

y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x); 

Val = 0.5*(1.0 + sign*y); 

x = -k - Shift*sqrt(n); 

sign = 1; 

if (x < 0) sign = -1; 

x = fabs(x) / sqrt(2.0); 

// A&S formula 7.1.26 

t = 1.0 / (1.0 + p*x); 

y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x); 

ValB = 0.5*(1.0 + sign*y); 

Beta = Val - ValB; 

printf("%.10f\t", Beta); system("pause"); 

dBeta = 1.0 - Beta; 

//calculate Tau 

Tau = 1.0 / Teta - h / (exp(h*Teta) - 1.0); 

printf("%.4f\t", Tau); system("pause"); 

https://www.bing.com/search?q=Error+function&filters=sid%3a39850027-eca4-075d-27d4-f7c77ab62767&form=ENTLNK


//Calcualte S 

S = 1.0 / (exp(h*Teta) - 1.0); 

printf("%.4f\t", S); system("pause"); 

//Calculate ET 

ET = 1.0 / Teta + (1.0 - IV1)*S*Z0*Alpha + h / (dBeta)-Tau + g*n 

+ Z1 + Z2; 

printf("%.4f\t", ET); system("pause"); 

//Calculate EC1 

EC1 = Q0 / Teta + Q1*(h / dBeta - Tau + g*n + IV1*Z1 + IV2*Z2) 

+ S*Y*Alpha + W; 

printf("%.4f\t", EC1); system("pause"); 

EC2 = (A + B*n)*((1.0 / Teta + h / dBeta - Tau + g*n + IV1*Z1 + 

IV2*Z2)) / h; 

printf("%.4f\t", EC2); system("pause"); 

EL = (EC1 + EC2) / ET; 

printf("%.4f\t", EL); system("pause");} 

Fig. 3. Objective function computation 

V. COMPUTATIONAL RESULTS 

      A numerical example in van Deventer and Manna [7] for 

designing an X-bar control chart has been selected for the 

present work where the data given are: 𝜆 = 0.01, 𝛿= 1, 𝑔 = 0.05, 

𝑎 = 0.50, 𝑏 = 0.10, 𝑌 = 50, 𝑊 = 25,𝑄0= 10, 𝑄1= 100, 𝑍0= 0, 

𝑍1= 2, 𝑍2= 0, 𝜖1= 1 and 𝜖2= 1. In this work,we minimize the 

loss cost function E(L) by the DE_QL  algorithm. Regarding 

three decision variables, sample size 𝑛 is rounded to integer 

value during optimization whereas the other two, i.e., sampling 

interval (ℎ) and width of control limits (𝑘) are taken as real 

values on a continuous scale, of course restricted to bound 

constraints. 

TABLE II.  ECONOMIC DESIGN RESULTS 

 

 

  The initial maximum population size NPmax=100 is 

established randomly with bound constraints. We carry out 10 

replications for the problem on hand and we run the DE_QL 

algorithm for 2.5 seconds. Population sized is reducted as per 

generation until a minimum population size minNP=5. Q_L 

parameters are taken as 1 simply. In each replication, the 

DE_QL algorithm was able to find the optimal solution. The 

optimum values of ℎ and k along with corresponding minimum 

values of expected loss cost E(L) obtained for all integer values 

of n varying from 1 to 20 have been listed in TABLE II. This 

table also presents the corresponding values of the two errors 𝛼 

and 𝛽. As shown in this table, the optimum value of cost E(L) 

decreases as 𝑛 value increases from 1 to 12 and then increases 

at higher values of 𝑛. This trend is also graphically shown in 

Fig. 4. The rate of reduction of loss cost E(L)is observed to be 

very large as the sample size increases in the beginning and then 

the rate gradually diminishes till the cost becomes minimum. 

Thus, the minimum possible cost is found to be E(L) = 10.8376 

and this occurs at 𝑛 = 12. The corresponding values of ℎ and 𝑘 

at an optimum solution are 1.8464 and 2.6198, respectively. 

The same trend of the relationship between E(L) and 𝑛 has also 

been reported by van Deventer and Manna [7] as shown in 

TABLE II. They have also obtained the most minimum cost at 

𝑛 = 12. On comparison of results, it is clear that at all values of 

sample size; the optimum costs obtained by the DE_QL 

algorithm are lower than that of van Deventer andManna [7]. 

This might be due to the rounding error in the objective function 

calculation by erf() function. 
 
 
 

 DE_QL Van Deveventer and Manna TLBO 

n h k alpha beta E(L) h k alpha beta E(L) h k alpha beta E(L) 

1 0.5962 2.1569 0.0310 0.8755 19.2018 0.7 2.1 0.3570 0.8634 19.2200 0.5969 2.1562 0.0319 0.8734 19.2036 

2 0.6851 2.2860 0.0223 0.8082 17.3503 0.7 2.3 0.0214 0.8120 17.3600 0.6856 2.2854 0.0222 0.8086 17.3518 

3 0.8092 2.3472 0.0189 0.7308 16.4208 0.9 2.3 0.0214 0.7149 16.4300 0.8104 2.3471 0.0193 0.7284 16. 4219 

4 0.9422 2.3884 0.0169 0.6511 15.8687 0.9 2.4 0.0164 0.6554 15.8700 0.9424 2.3879 0.0174 0.6472 15.8697 

5 1.0742 2.4203 0.0155 0.5731 15.5121 1.1 2.4 0.0164 0.5651 15.5100 1.0746 2.4202 0.0156 0.5726 15.5131 

6 1.2038 2.4485 0.0143 0.4996 15.2716 1.3 2.4 0.0164 0.4803 15.2800 1.2044 2.4484 0.0135 0.5084 15.2725 

7 1.3268 2.4763 0.0133 0.4327 15.1064 1.3 2.5 0.0124 0.4421 15.1100 1.3277 2.4763 0.0134 0.4318 15.1071 

8 1.4453 2.5038 0.0123 0.3727 14.9933 1.5 2.5 0.0124 0.3713 14.9900 1.4453 2.5037 0.0128 0.3678 14.9940 

9 1.5553 2.5315 0.0114 0.3197 14.9179 1.6 2.5 0.0124 0.3085 14.9200 1.5560 2.5314 0.0127 0.3063 14.9185 

10 1.6597 2.5602 0.0105 0.2736 14.8708 1.6 2.6 0.0093 0.2870 14.8700 1.6597 2.5600 0.0105 0.2736 14.8714 

11 1.7565 2.5892 0.0096 0.2335 14.8456 1.7 2.6 0.0093 0.2368 14.8500 1.7567 2.5894 0.0096 0.2336 14.8461 

12 1.8464 2.6198 0.0088 0.1993 14.8376 1.9 2.6 0.0093 0.1938 14.8400 1.8474 2.6196 0.0088 0.1991 14.8381 

13 1.9317 2.6502 0.0080 0.1697 14.8434 1.9 2.7 0.0069 0.1826 14.8500 1.9324 2.6505 0.0080 0.1701 14.8438 

14 2.0121 2.6816 0.0073 0.1446 14.8605 2.0 2.7 0.0069 0.1488 14.8600 2.0122 2.6819 0.0073 0.1446 14.8608 

15 2.0869 2.7138 0.0067 0.1232 14.8867 2.1 2.7 0.0069 0.1204 14.8900 2.0873 2.7139 0.0067 0.1232 14.8870 

16 2.1584 2.7462 0.0060 0.1050 14.9204 2.2 2.7 0.0069 0.0968 14.9200 2.1584 2.7463 0.0061 0.1048 14.9207 

17 2.2260 2.7785 0.0055 0.0894 14.9604 2.2 2.8 0.0051 0.0929 14.9600 2.2258 2.7790 0.0054 0.0898 14.9607 

18 2.2895 2.8118 0.0049 0.0762 15.0056 2.3 2.8 0.0051 0.0746 15.0100 2.2899 2.8120 0.0051 0.0748 15.0059 

19 2.3509 2.8448 0.0044 0.0650 15.0552 2.4 2.8 0.0051 0.0595 15.0600 2.3512 2.8453 0.0046 0.0640 15.0555 

20 2.4101 2.8782 0.0040 0.0555 15.1084 2.4 2.9 0.0037 0.0580 15.1100 2.4102 2.8785 0.0040 0.0552 15.1087 
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Fig. 4. Scatter plot of E(L) vs n 

      The mathematical model of the X-bar chart has nine 

factors with two-level cost parameters as shown in Table IV. 

The low and high values of all the nine parameters considered 

by Chen and Tirupati [26] and Ganguly and Patel [20] are 

also given in Table IV. Since each factor has two-level, we 

employ a 2𝑘– 𝑝 fractional factorial design of resolution IV to 

analyze the impact of the objective function parameters on 𝑛, 

ℎ , 𝑘, and 𝐸(𝐿). A 2𝐼𝑉
9−4  fractional factorial design with 32 

runs is chosen for the model. We run the DE_QL algorithm 

for each of 32 treatments and list the values of design 

parameters 𝑛, ℎ, 𝑘, and 𝐸(𝐿), respectively on Table V.  

TABLE III.  FACTORS AND THEIR LEVELS IN THE DOE 

  Level  
Num. of Par. Factors Low (-1) High (+1) 

1 Lamda 0.01 0.05 

2 Shift 1 2 

3 A 0.50 5 

4 B 0.10 1 

5 Y 50 500 

6 W 25 50 

7 Q0 10 50 

8 Q1 50 1000 

9 G 0.00 0.05 

TABLE IV.  DOE RESULTS 

Design n h k E(L) 

1 -1 1 1 1 -1 1 -1 1 4.9997 4.9840 51.2002 

-1 -1 1 1 -1 1 1 -1 1 4.9999 4.8062 60.2007 

1 -1 1 1 -1 1 -1 1 12 1.8165 2.2283 206.9663 

-1 -1 -1 1 -1 -1 -1 -1 11 4.9973 2.7798 15.6936 

1 1 -1 -1 1 1 1 -1 1 4.9999 4.8415 60.0206 

1 -1 -1 -1 -1 1 -1 -1 19 4.9982 2.3512 29.1625 

1 -1 -1 1 -1 -1 1 1 16 0.8578 2.7515 180.0285 

-1 -1 -1 -1 -1 1 1 1 12 3.4228 1.6107 106.9321 

-1 1 1 -1 -1 1 -1 -1 16 5.0000 2.5133 22.8200 

1 1 -1 1 -1 1 1 -1 1 5.0000 4.9605 60.2002 

1 -1 1 -1 -1 -1 1 -1 2 4.9996 4.9438 51.0203 

-1 1 1 1 1 1 -1 -1 12 5.0000 2.8341 25.4064 

1 -1 -1 -1 1 -1 1 1 5 0.1587 2.3901 168.8732 

-1 -1 -1 -1 1 -1 -1 -1 17 3.3322 2.7781 12.5174 

-1 -1 1 -1 1 1 1 -1 2 5.0000 4.6713 60.0206 

-1 1 -1 1 -1 1 -1 1 20 3.8380 2.6096 68.2466 

-1 -1 1 1 1 -1 -1 1 12 1.7613 2.6146 59.6329 

-1 -1 1 -1 -1 -1 -1 1 19 1.1987 2.6060 41.9298 

-1 1 -1 1 1 -1 1 -1 1 4.9990 4.9477 50.3003 

1 -1 -1 1 1 1 -1 -1 14 4.9983 2.5969 33.6355 

-1 1 1 1 -1 -1 1 1 13 1.7919 2.6226 98.1192 

-1 1 1 -1 1 -1 1 1 19 1.2228 2.6108 80.8942 

-1 1 -1 -1 1 1 -1 1 11 3.3561 1.6093 68.6214 

1 -1 1 -1 1 1 -1 1 20 1.6456 2.1708 167.0071 

1 1 -1 -1 -1 -1 -1 1 5 0.1625 2.3866 133.3722 

1 1 1 1 -1 -1 -1 -1 16 4.9953 2.6838 23.8362 

-1 1 -1 -1 -1 -1 1 -1 1 4.9997 4.9983 50.1202 

1 1 1 1 1 1 1 1 13 1.8579 2.2248 240.6472 

1 1 -1 1 1 -1 -1 1 16 0.8411 2.7680 144.5664 

1 1 1 -1 -1 1 1 1 19 1.6720 2.1352 202.1654 

1 1 1 -1 1 -1 -1 -1 14 3.0412 2.3263 20.7435 

-1 -1 -1 1 1 1 1 1 20 4.0120 2.7419 106.6465 
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Fig. 5. Main effects plot of parameters 

 

We provide the main effects plot of response variable 𝐸(𝐿) in 

Fig.  5. To minimize the 𝐸(𝐿), Lamda, Q0, Q1, and W should 

be chosen as low values as shown in Fig. 5. Shift, A, B, Y, and 

G could be either low or high values. 

VI. CONCLUSION 

This paper presents a novel differential evolution algorithm 
with Q-Learning (DE-QL) for the economical and statistical 
design of X-Bar control charts, which has been commonly used 
in industry to control manufacturing processes. In the X-Bar 
charts, samples are collected from the production process at 
regular intervals in order to measure a quality characteristic and 
the sample means are plotted on this chart. When designing a 
control chart, three parameters should be selected, namely, the 
sample size (n), the sampling interval (h), and the width of 
control limits (k). On the other hand, when designing an 
economical and statistical design, these three control chart 
parameters should be selected in such a way that the total cost 
of controlling the process should be minimized by finding 
optimal values of these three parameters. In this paper, we 
develop a DE_QL algorithm for the global minimization of a 
loss cost function expressed as a function of three variables 𝑛, 
ℎ, and 𝑘 in an economic model of the X-bar chart. A problem 
instance that is commonly used in the literature has been solved 

and competitive and or slightly better results are found than the 
earlier published results.  
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