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Abstract—The multi-objective evolutionary algorithm based
on decomposition (MOEA/D) has attracted the attention of
several investigators working on multi-objective optimization.
At each iteration, MOEA/D generates an offspring solution
from a parent’s neighborhood. The new solution is evaluated,
and, according to the decomposition approach, it can replace
one or more solutions from the neighborhood, maintaining the
population updated. In this sense, MOEA/D can be considered
as a steady-state algorithm that maintains updated its population
once a new solution is generated. In this work, we investigate the
performance of MOEA/D in the multi-objective 0/1 knapsack
problem considering a steady-state version and a proposed
generational version. We explore the benefits of the generational
version proposed in this paper. According to results, we show
that the proposed approach can obtain a suitable performance
in the multi-objective 0/1 knapsack problem employing between
two and eight objective functions. Additionally, we propose a two-
stage hybrid algorithm that employs the two different approaches
of MOEA/D (i.e., the steady-state and generational versions). Our
results reveal that the proposed hybrid approach can outperform
the original MOEA/D in the many-objective settings of the 0/1
knapsack problem.

I. INTRODUCTION

During the development of multi-objective optimization
techniques, different principles have emerged to deal with
the so-called multi-objective optimization problems (MOPs).
The use of Pareto optimality and performance indicators were
two popular approaches adopted by multi-objective algorithms
in the early days of the 2000s. However, as has been discussed
by several authors [1], [2], multi-objective algorithms adopting
either Pareto optimality or performance indicators become
inefficient as their performances decrease as the number of
objectives increases. This has motivated the development of new
strategies to deal with this type of problem. As a result, a novel
stream of multi-objective evolutionary algorithms (MOEAs)
based on decomposition has emerged as an alternative to deal
with MOPs. Due to its efficiency and effectiveness, the multi-
objective evolutionary algorithm based on decomposition [3]
(MOEA/D) has attracted the attention of several investigators
working on the multi-objective optimization field. MOEA/D
relies on the regularity property of continuous MOPs, which

establishes that, under some condition, the Pareto set (and
Pareto front) of a continuous MOP with M objectives forms
an (M − 1) dimensional piecewise continuous manifold in
the decision space (and the objective space) [3]. In this way,
MOEA/D solves several scalarizing (neighboring) subproblems,
which are formulated by the same number of weight vectors
in a cooperative way. This strategy to solve MOPs has become
very useful to deal with complicated MOPs [4], [3], [5]. In
the last decade, decomposition-based MOEAs have become
an excellent alternative to deal with multi-objective problems.
Thus, several variants or improvements of MOEA/D have
been developed [4], [6], [5]. On the other hand, swarm-based
metaheuristics using decomposition have also been investigated
by some researchers [7], [8], [9], [10].

Although MOEA/D has successfully employed in several
complicated MOPs [4], [11], its study in discrete problems is
still a path to investigate. In this paper, we study the perfor-
mance of MOEA/D in the multi-objective 0/1 knapsack problem
in a many-objective setting (i.e., employing more than three
objective functions). Particularly, we focus our investigation on
the performance of MOEA/D from the perspective of steady-
state and generational algorithms. In our study, we show that
a generational version of a decomposition-based MOEA can
obtain a good performance in discrete problems. Moreover,
we show that by hybridizing the two different approaches (i.e.,
the steady-state and generational versions), it can be possible
to outperform the original MOEA/D. As we will see later on,
the proposed approach is able to achieve competitive results
when solving multi-objective 0/1 knapsack problems adopting
between two and eight objective functions.

The remainder of this paper is organized as follows. Sec-
tion II introduces basic concepts related to multi-objective
optimization and decomposition. Section III presents some
studies related to steady-state and generational evolutionary
algorithms. In Section IV, we introduce the proposed approach
to solve the multi-objective 0/1 knapsack problem. Section V
presents the experimental study and the analysis of results.
Finally, in Section VI, we provide our conclusions and some
possible paths for future research.
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II. BACKGROUND

A. Preliminaries of Multi-objective Optimization

Assuming maximization, a general multi-objective optimiza-
tion problem (MOP) can be stated as:

maximize: F(x)
s.t. gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q
x ∈ X

(1)

where x = (x1, . . . , xn)ᵀ is an n dimensional vector of
decision variables. The vector F = (f1(x), . . . , fM (x))ᵀ

consists of M objective functions fj’s to be maximized.
gi(x) ≤ 0 and hj(x) = 0 represent the p inequality constraints
and the q equality constraints, respectively. The set of solutions
satisfying the constraints of problem (1) defines the feasible
region Ω ⊂ X . In the case of pseudo-boolean combinatorial
problems, the search space is defined by X = {0, 1}n.

The following definitions introduce the concepts of interest
in multi-objective optimization [12].

Definition 1: Let x,y ∈ Ω, we say that x dominates y
(denoted by x � y) if and only if: 1) fi(x) ≥ fi(y) for
all i ∈ {1, . . . ,M} and 2) fj(x) > fj(y) for at least one
j ∈ {1, . . . ,M}.

Definition 2: Let x? ∈ Ω, we say that x? is a Pareto optimal
solution, if there is no other solution y ∈ Ω such that y � x?.

Definition 3: The Pareto optimal set PS is defined by:
PS = {x ∈ Ω|x is a Pareto optimal solution} and its image
PF = {F(x)|x ∈ PS}) is called Pareto front PF .

In the multi-objective optimization, we are interested in
finding a finite number of solutions from the Pareto set,
maintaining a proper representation of the Pareto front.

B. Decomposing a Multi-objective Optimization Problem

It is well-known [12] that a Pareto optimal solution to the
problem (1) is an optimal solution of a scalar optimization
problem in which the objective is an aggregation of all the
objective functions fi’s (i ∈ {1, . . . ,M}). Many scalarizing
approaches have been proposed to aggregate the objectives
of a MOP. In this study, we adopt the Modified Tchebycheff
function since it offers a certain advantage over other
approaches [13].
Nonetheless, other scalarizing functions can also be easily
adopted. See, for example, those methods presented [14], [12].

Modified Tchebycheff approach. The modified Tchebycheff
function [13] transforms the vector of objective functions F
into a scalar maximization problem. Assuming maximization
problems, the modified Tchebycheff problem is written as:

minimize gmtch(x|λ, z) = max
1≤j≤M

{ 1
λj
|zj − fj(x)|}

s.t. x ∈ Ω
(2)

where Ω is the feasible region, z = (z1, . . . , zk)ᵀ is the
reference point such that zj = max{fj(x)|x ∈ Ω} for each
i = 1, . . . ,M , and λ = (λ1, . . . , λM )ᵀ is a weight vector, i.e.,
λj ≥ 0 for all j = 1, . . . ,M and

∑M
j=1 λj = 1.

For each Pareto optimal point x?, there exists a weight vector
λ such that x? is the optimum solution of equation (2) and each
optimal solution of equation (2) is a Pareto optimal solution
of equation (1). It is possible to obtain an appropriate repre-
sentation of the Pareto front by solving different scalarizing
problems. In such a case, the scalarizing problems are defined
by a set of well-distributed weight vectors, which establish
the search direction during the optimization process. In this
way, an appropriate approximation to the Pareto front can be
reached by optimizing a set of scalarizing functions.

C. Multi-Objective Evolutionary Algorithm based on Decom-
position

The Multi-Objective Evolutionary Algorithm Based on
Decomposition (MOEA/D) [3] transforms a MOP into several
scalarizing subproblems. Considering Λ = {λ1, . . . , λN} as a
well-distributed set of weighting coefficient vectors, MOEA/D
finds the best solution to each subproblem defined by each
weight vector using a scalarizing function. As pointed out
before, we employed the Modified Tchebycheff scalarizing
function, see Equation (2). Since the reference vector z =
(z1, . . . , zM )ᵀ (in Equation (2)) is unknown a priori, MOEA/D
states each component zj by the maximum value for each
objective fj found during the search. On the other hand, in
the case of a weighting coefficient λj = 0, λj is set to 10e−4,
for j = 1, . . . ,M .

In MOEA/D, a neighborhood (πi) of a weight vector λi is
stated as a set of its closest weight vectors in Λ. Therefore, the
neighborhood of a weight vector λi contains all the indexes of
the T closest weight vectors to λi. Thus, the reproduction and
replacement mechanism of a solution takes place exclusively
into the neighborhood of the concerned solution. Throughout
the evolutionary process, MOEA/D tries to find the best solution
to each subproblem, maintaining a population of N solutions
P = {x1, . . . ,xN} where xi ∈ Ω is the current solution to
the ith subproblem.

For the continuous case, there exist some variants of
the original MOEA/D introduced by Zhang and Li [3]. In
particular, MOEA/D-DE [4] is a variant of MOEA/D, which
was specifically designed to solve MOPs with complicated
PSs. The main differences between both algorithms (without
considering the evolutionary operators) are i) MOEA/D-DE
uses a probability (δ) to defined different neighborhoods and;
ii) MOEA/D-DE defines a maximum number of solutions (nr)
to replace into the neighborhood. Thus, a generalized version
of MOEA/D can be written as shown in Algorithm 1. This
version of MOEA/D (assuming maximization problems) is the
one adopted in this study.

III. STEADY-STATE AND GENERATIONAL
MULTI-OBJECTIVE ALGORITHMS

Since the early 1980s, the performance of the generational
and steady-state evolutionary algorithms have been studied [15],
[16], [17], [18], [19], [20], [21], [22]. These two types of
evolutionary algorithms differ in their replacement strategy. A
generational evolutionary algorithm generates several offspring



Algorithm 1: General Framework of MOEA/D
Input:
N : A number of subproblems to be decomposed;
Λ: A set of weight vectors {λ1, . . . , λN};
T : The neighborhood size;
Gmax: A maximum number of generations;
Output:
P : A final approximation of the Pareto set.

1 z = (−∞, . . . ,−∞)ᵀ;
2 Generate a random set of solutions P = {x1, . . . ,xN} in Ω;
3 for i = 1, . . . , N do
4 Bi ← {i1, . . . , iT }, such that: λi1 , . . . , λiT are the T

closest weight vectors to λi;
5 zj ← max{zj , fj(xi)}; // for j ∈ {1, . . . , k}

6 g = 0;
7 while g < Gmax do
8 foreach i ∈ perm({1, . . . , N}) do
9 if rand() < δ then πi = perm(Bi) ;

10 else πi = perm({1, . . . , N}) ;
11 Generate a trial solution y by using solutions with

indices in πi;
12 zj ← max{zj , fj(y)}; // j ∈ {1, . . . , k}

13 c = 0;
14 foreach j ∈ πi do
15 if gmtch(y|λj) < gmtch(xj|λj) and c < nr

then
16 xj = y;
17 c = c+ 1;

18 g = g + 1;

19 return P ;

solutions by generation. Generally, the number of children is
equal to the number of parents. Thus, the offspring solutions
replace the parents ((µ, µ)-selection) or compete between them
and survive the best individuals ((µ + µ)-selection). On the
other hand, a steady-state evolutionary algorithm chooses two
individuals from the population and generates a new offspring,
the new solution is inserted in the population (i.e., updates the
current population), and the worst individual is removed. Vavak
et al. [19] were interested in solving problems in nonstationary
environments. In these problems, the steady-state version of an
evolutionary algorithm outperformed the generational version
in terms of the convergence speed because the generational
version can use outdated fitness values. In [20], the authors
dealt with a scheduling problem. In their study, the authors
noticed that the generational version of a genetic algorithm
could outperform a steady-state genetic algorithm in terms of
the convergence and quality of solutions. Jones et al. [21] were
interested in the genetic robustness, which is a measure of
the average change in fitness of an individual as a result of
genetic codification. In their study, the authors used the two
peaks problem using both a generational and a steady-state
algorithm. They concluded that for this problem, the role of
genetic robustness is significantly different in both versions.
Therefore, they expect that it occurs the same in other problems.
Recently, Jiang et al. [22] proposed to combine the generational

and the steady-state versions of an evolutionary algorithm to
solve dynamic multi-objective optimization problems. Their
idea was to exploit the convergence speed of a steady-state
algorithm and the diversity achieved by its generational version.

MOEA/D can be considered as a steady-state evolutionary
algorithm because it creates a new individual (from a neigh-
borhood), which can replace one or more solutions (in the
neighborhood) according to its the scalarizing function value.
In the specialized literature, it is possible to find several studies
adopting MOEA/D to solve the multi-objective 0/1 knapsack
problem, see the related work presented in [3], [23], [24], [25],
[26], [27], [28], [29], [30]. However, all of these works employ
a steady-state version of MOEA/D paying particular attention
to different components of MOEA/D.

In [23], [25], the authors studied two scalarizing functions
and proposed a mechanism to combine them into MOEA/D.
Ishibuchi et al. [24] studied the behavior of MOEA/D when it
uses large populations. They concluded that the efficiency of
MOEA/D is not degraded by increasing the population size.
However, a large population can obtain a large number of non-
dominated solutions. Tan et al. [26] focused their study on how
to generate convex weight vectors in high dimensional objective
spaces. Thus, the authors proposed the use of the uniform
design to generate the weighting coefficients for MOEA/D in a
many-objective setting. Kafafy et al. [27] proposed to hybridize
MOEA/D with other metaheuristics. They used an adaptative
discrete differential evolution operator (called path-Relinking)
to generate promising solutions to the multi-objective problem.
Ke et al. [31] proposed to use the ant colony optimization
metaheuristic into MOEA/D. In this algorithm, a neighborhood
of MOEA/D is seen as an ant colony. Ishibuchi et al. [28]
studied different scalarizing functions into MOEA/D when
solving the multi-objective 0/1 knapsack problem. Sato [29]
proposed the inverted PBI scalarizing approach in MOEA/D
to improve the spread of the non-dominated solutions, and the
resulting approach was proved using the multi-objective 0/1
knapsack problem. In [30], the authors studied the behavior of
different MOEAs, including MOEA/D on the many-objective
0/1 knapsack problem using. According to results, MOEA/D
was able to outperform MOEAs based on other principles.
More recently, Zapotecas et al. [32], [33] employed geometric
operators into MOEA/D to deal with the multi-objective 0/1
knapsack problem in a many-objective setting. As we can
find in the specialized literature, investigations related to the
performance of steady-state and generational MOEAs based
on decomposition is a topic less studied which deserves to be
investigated.

In this paper, we study the behavior of MOEA/D and a
generational version of MOEA/D, which employs a survival
mechanism based on the scalar selection strategy (cf. Sec-
tion IV). In our study, we compare both approaches and propose
a new algorithm that combines the generational and the steady-
state version of MOEA/D. In the following section, we expose
(in detail) the proposed version of each algorithm.



IV. A GENERATIONAL MOEA/D AND A HYBRID
APPROACH

A generational version of MOEA/D can be stated by
generating the full pool of offspring solutions, and then, from
the parent and offspring population, a new population is
obtained. In the following sections, we introduce a generational
version of MOEA/D and a hybrid version that adopts the
generational and steady-state principles.

A. Generational MOEA/D

A generational version of MOEA/D creates the whole
offspring population whose cardinality is the same as the
number of parent solutions. In this way, from the parent and
offspring populations, a new population is obtained. In this
paper, we follow the principles of decomposition employing
the scalar selection mechanism in order to obtain the best
solutions to each scalarizing function. More precisely, the new
population is obtained from the set of parents and children
selecting the N best solutions to the N scalarizing subproblems.
Assuming maximization problems, Algorithm 2 shows the
generational version of MOEA/D, which is studied in this work.
In Algorithm 2, once an initial population is created (line 2),
the evolution of the generational MOEA/D is carried out by
selecting two random solutions from the current population
(line 10). These two solutions are crossed and mutated in
order to obtained two offspring solutions (line 11). The new
solutions are stored in the Q population (line 13). After the pool
of offspring solutions is fulled, the scalar selection mechanism
is carried as shown in Algorithm 3. As we can see, the best
solutions found in T (the union of parents P and children
Q) to each scalarizing subproblem is preferred (see line 3
in Algorithm 3). In this work, the generational version of
MOEA/D is called MOEA/D-Gen.

B. Hybrid Approach: Combining steady-state and generational
MOEA/D

The proposed hybrid approach considers the generational
and steady-state principles adopted by traditional evolutionary
algorithms. In this way, our proposed hybrid algorithm interacts
between a steady-state and a generational MOEA/D using a
specific rule. It is possible to define several rules to interact with
both algorithms. However, it can be generalized by defining a
probabilistic or deterministic event p subjects to a tolerance Ψ.
In this way, the probability of employing the generational
principle is performed by the probabilistic/deterministic event
with a threshold Ψ, otherwise the steady-state principle is
carried out. In algorithm 4, we present the general framework
of the hybrid algorithm (called here MOEA/D-HGen). As can
be seen, in line 8, the rule to interact between both principles
is introduced.

V. EXPERIMENTAL STUDY

A. Multi-Objective 0/1 Knapsack Problem

In order to test the performance of the different version of
MOEA/Ds, we adopt one of the most studied NP-hard problems

Algorithm 2: A generational MOEA/D
Input:
N : A number of subproblems to be decomposed;
Λ: A set of weight vectors {λ1, . . . , λN};
Gmax: A maximum number of generations;
Output:
P : A final approximation of the Pareto set.

1 z = (−∞, . . . ,−∞)ᵀ;
2 Generate a random set of solutions P = {x1, . . . ,xN} in Ω;
3 for i = 1, . . . , N do
4 zj ← max{zj , fj(xi)}; // for j ∈ {1, . . . , k}

5 g = 0;
6 while g < Gmax do
7 i = 0;
8 Q = ∅;
9 while i < N do

10 Chose randomly two solutions x1,x2 ∈ P ;
11 Generate two trial solutions y1 and y2 from

crossover and mutation using the parents x1 and x2;
12 zj ← max{zj , fj(y1), fj(y

2)}; // for j ∈ {1, . . . , k}

13 Q = Q ∪ {y1,y2};
14 i = i+ 2;

15 P = ScalarSelection(P,Q,Λ, z);
16 g = g + 1;

17 return P ;

Algorithm 3: Scalar Selection
Input:
P : The parent population;
R: The offspring population;
Λ: The set of weight vectors {λ1, . . . , λN};
z: The reference point;
Output:
P = {x1 . . . ,xN}: The updated population.

1 T = P ∪Q;
2 for i ∈ {1, . . . , N} do
3 xi = arg miny∈T gmtch(y|λi|z);

4 return P = {x1, . . . ,xN};

from combinatorial optimization, the knapsack problem in its
multi-objective formulation.

Given a collection of n items and a set of M knapsacks,
the multi-objective 0/1 knapsack problem (MO-KNP) seeks
a subset of items subject to capacity constraints based on a
weight function vector w : [0, 1]n → NM , while maximizing
a profit function vector p : [0, 1]n → NM . Formally it can be
stated as:

maximize: fj(x) =
∑n
i=1 pji · xi j ∈ {1, . . . ,M}

s.t.
∑n
i=1 wji · xi 6 cj j ∈ {1, . . . ,M}

xi ∈ {0, 1} i ∈ {1, . . . , n}
(3)

where pji ∈ N is the profit of item i on knapsack j, wji ∈ N is
the weight of item i on knapsack j, and cj ∈ N is the capacity
of knapsack j.

We consider the standard instances employing a random
uncorrelated profit and weight integer values taken uniformly



Algorithm 4: General Framework of MOEA/D-HGen
Input:
N : A number of subproblems to be decomposed;
Λ: A set of weight vectors {λ1, . . . , λN};
T : The neighborhood size;
Gmax: A maximum number of generations;
Output:
P : A final approximation of the Pareto set.

1 z = (−∞, . . . ,−∞)ᵀ;
2 Generate a random set of solutions P = {x1, . . . ,xN} in Ω;
3 for i = 1, . . . , N do
4 Bi ← {i1, . . . , iT }, such that: λi1 , . . . , λiT are the T

closest weight vectors to λi;
5 zj ← max{zj , fj(xi)}; // for j ∈ {1, . . . , k}

6 g = 0;
7 while g < Gmax do
8 if (p < Ψ)// the deterministic/probabilistic event

9 then
10 Q = ∅;
11 while i < N do
12 Chose randomly two solutions x1,x2 ∈ P ;
13 Generate two trial solutions y1 and y2 from

crossover and mutation using the parents x1

and x2;
14 zj ← max{zj , fj(y1), fj(y

2)};
// j ∈ {1, . . . , k}

15 Q = Q ∪ {y1,y2};
16 i = i+ 2;

17 P = ScalarSelection(P,Q,Λ, z);

18 else
19 foreach i ∈ perm({1, . . . , N}) do
20 if rand() < δ then πi = perm(Bi) ;
21 else πi = perm({1, . . . , N}) ;
22 Generate a trial solution y by using solutions

with indices in πi;
23 zj ← max{zj , fj(y)}; // j ∈ {1, . . . , k}

24 c = 0;
25 foreach j ∈ πi do
26 if gmtch(y|λj , z) < gmtch(xj|λj , z) and

c < nr then
27 xj = y;
28 c = c+ 1;

29 g = g + 1;

30 return P ;

from [10, 100]. The capacity is defined to half of the total
weight of a knapsack for each objective function, i.e. cj =
1
2

∑n
i=1 wji for j = 1, . . . ,M . In these conditions, about 50%

of the items are expected to be in the Pareto optimal front.
In our experimental study, we generate random problems

of 500 items for each objective space dimension. We consider
instances with 2, 3, 4, 5, 6, 7, and 8 objectives1. In order to
satisfy the constraints of the problem, we adopt a traditional
repair mechanism, which guarantees the feasibility of solu-
tions [34]. This mechanism removes items sorted in increasing

1The set of instances adopted in our comparative study are available at https:
//sites.google.com/view/mo-knp/

TABLE I: H values for the two-layered simplex-lattice design

M Layer Layer Number of
(objectives) configuration weights

2 1 H = 99 100
3 1 H = 19 210
4 1 H = 9 220
5 1 H = 6 210
6 2 H1 = 4, H2 = 3 182
7 2 H1 = 4, H2 = 2 238
8 2 H1 = 3, H2 = 2 156

order of the maximum profit/weight ratio over all knapsacks
one at a time until the constraints are satisfied.

B. Experimental Setup

We compare the decomposition-based MOEAs, i.e.,
MOEA/D, MOEA/D-Gen, and MOEA/D-HGen experimen-
tally. The algorithms were evaluated, adopting the one-point
crossover and the bit-wise mutation as in the original version
of MOEA/D [3]. For a fair comparison, the set of weight
vectors for all the algorithms was the same, and it was
generated using the Simplex-lattice design [35], as follows.
The settings of N (number of weights and population size)
and Λ = {λ1, . . . , λN} are controlled by a parameter H . More
precisely, λ1, . . . , λN are weight vectors whose component
scalar weights λij (i = 1, . . . , N and j = 1, . . . ,M ) take values
in
{

0
H ,

1
H , . . . ,

H
H

}
. In this way, the number of all possible

choice of vectors in Λ is given by N = CM−1H+M−1, where
M is the number of objective functions. As we know, this
number increases binomially with the number of objectives.
Therefore, this methodology becomes impractical when the
number of objectives increases. In this paper, we adopted the
two-layered simplex-lattice design [36] to deal with MOPs
in high dimensional objective spaces. This strategy uses the
simplex-lattice design to generate an outside layer and an
inside layer in the weights set. Fig. 1 illustrates the two-
layered simplex-lattice design in R3 when using H1 = 2 for
the outside layer and H2 = 1 for the inside layer. In this study,
we compare the decomposition-based approaches by using the
weights given by the two-layered simplex-lattice design for
problems with more than five objectives. Otherwise, a single
layer is employed. The complete configuration of H values for
different dimensions of the two-layered simplex-lattice design
is shown in Table I.

Table II presents the parameter settings used in our ex-
perimental study. The parameters for the adopted algorithms
are stated as suggested by their respective authors. T is the
neighborhood size, δ and nr are the probability of selecting
a determined neighborhood, and the maximum number of
replacements in the neighborhood. Pc and Pm are the crossover
rate and mutation rate.

As a preliminary investigation, we employ a deterministic
event that establishes the two-stage version in the proposed
MOEA/D-HGen algorithm. At the first stage, the generational
scheme of MOEA/D, which promotes exploration, is employed
by considering a period of time (the deterministic event). A



TABLE II: Parameters for MOEA/D, MOEA/D-Gen, and
MOEA/D-HGen

Parameter MOEA/D MOEA/D-Gen MOEA/D-HGen

T 20 — 20
δ 0.9 — 0.9
nr 2 — 2
Pc 1 1 1
Pm 1/n 1/n 1/n
Ψ — — 0.75

Gmax 5,000 5,000 5,000

subsequent exploitation phase is performed by the steady-state
MOEA/D. Thus, the parameter p (in Algorithm 4) is related to
the period of time in which the exploration phase is performed.
In our study, p = g

Gmax
, such that g and Gmax are the current

generation and the maximum number of generations executed
by MOEA/D-HGen. Therefore, the parameter p in Algorithm 4
increases with the number of iterations. Consequently, at the
beginning of MOEA/D-HGen, p = 0. In our experimental study,
the search for all the evolutionary approaches was restricted
to perform Gmax = 5, 000 generations.

C. Performance Assessment

In order to assess the performance of the algorithms con-
sidered in this study, 30 independent runs were performed for
each MO-KNP instance. We adopt the hypervolume indicator
to assess the proximity and distribution of solutions achieved
by the MOEAs. Mathematically the hypervolume indicator can
be stated as follows.
Normalized Hypervolume (HV) The hypervolume indicator
(HV ) was introduced in [37] to assess the performance of
MOEAs. This performance indicator is Pareto compliant [38],
and quantifies both proximity and distribution of non-dominated
solutions along the PF of MOP. The hypervolume corresponds
to the non-overlapped volume of all the hypercubes formed
by a reference point r (given by the user) and each solution
a in the PF approximation (A). Hypervolume indicator is
mathematically stated as:

HV (A) = L

(⋃
a∈A
{x|a � x � r}

)
(4)

Fig. 1: Illustration of the two-layered simplex-lattice design.
The outside layer is stated by H1 = 2 (generating six weights
vectors), while the inside layer is set by H2 = 1 (generating
three weights vectors)

where L denotes the Lebesgue measure and r ∈ RM denotes
a reference vector being dominated by all solutions in A.

Therefore, the normalized HV indicator (denoted here as
HVn) is defined by

HV n(A) =
HV (A)

ΠM
i=1|ri − ui|

(5)

where u = (u1, . . . , uM )T is the known ideal vector and M
denotes the number of objectives. Thus, HVn value is given
into the range [0, 1]. A high value of this performance indicator
means that the set A has a good approximation and distribution
along the true PF.

In our study, for a MO-KNP instance, the reference point
r = (r1, . . . , rM )ᵀ and the ideal vector u = (u1, . . . , uM )ᵀ

are stated by rj = minx∈T fj(x) and uj = maxx∈T fj(x),
where T is the set of non-dominated solutions found in the
final approximations obtained by the algorithms in all the
experiments.

D. Numerical Results and Discussion

Table III summarizes the results achieved by the algorithms
in the MO-KNP instances adopting between two and eight
objective functions. In each cell, the number on the left is
the average indicator value, and the number on the right (in
small font size) is the standard deviation from 30 independent
experiments for each MO-KNP instance. The best values for
each performance indicator and test problem are reported in
boldface.

a) MOEA/D vs MOEA/D-Gen: In Table III, we can
observe that the results obtained by MOEA/D-Gen were
highly competitive against those produced by the original
MOEA/D when solving the MO-KNP instance adopting up
to five objective functions. As can be seen, the performance
of the proposed MOEA/D-Gen deteriorated with the increase
of objective functions. Note besides that, the performance of
MOEA/D-Gen became much better than the original MOEA/D
for the two-objective knapsack problem. This performance can
be visualized in Fig. 2a. From this figure, we noted that the
proposed MOEA/D-Gen achieved a better approximation of
solutions towards the extreme portions of the Pareto front.
This behavior suggests that maintaining the whole offspring
population (as MOEAD/-Gen does it), it is possible to promote
diversity to achieve the extremes of the Pareto front. Although
this performance was not seen in high dimensional spaces, we
argue that an additional mechanism can be implemented to
improve the performance of MOEA/D-Gen when employing
more objective functions.

b) MOEA/D-HGen vs MOEA/D-Gen: Considering the
above discussion, we proposed the hybrid algorithm which
tries to interact between the exploration and the exploitation
of solutions during the search. From Table III, we can see
that MOEA/D-HGen outperformed the generational version of
MOEA/D-Gen in all the MO-KNP instances. As we can see in
Fig. 2b, the distribution and approximation of solutions along
the Pareto front was achieved in a better way by MOEA/D-
HGen. Moreover, the achievement towards the extremes



TABLE III: Table of results achieved by MOEA/D, MOEA/D-
Gen, and MOEA/D-HGen for the MO-KNP with 2, 3, 4, 5, 6, 7,
and 8 objectives using the normalized Hypervolume indicator.

Objectives MOEA/D MOEA/D-Gen MOEA/D-HGen

2 0.6464±0.016 0.6660±0.011 0.6704±0.013

3 0.5355±0.006 0.5205±0.008 0.5382±0.006

4 0.2853±0.007 0.2543±0.010 0.2868±0.008

5 0.1685±0.008 0.1389±0.007 0.1672±0.008

6 0.0937±0.009 0.0768±0.007 0.0939±0.007

7 0.0338±0.004 0.0297±0.004 0.0346±0.004

8 0.0123±0.002 0.0105±0.002 0.0126±0.002

portions of the Pareto front was outperformed by MOEA/D-
HGen. These results suggest that the hybrid algorithm adopting
the steady-state and the generational approaches can outperform
the generational version of MOEA/D.

c) MOEA/D-HGen vs MOEA/D: Finally, we discuss
the results obtained by MOEA/D-HGen and the original
MOEA/D. Table III provides a quantitative assessment of the
performance of the algorithms regarding the HVn performance
indicator. That means, the solutions obtained by MOEA/D-
HGen achieved a better approximation and distribution along
the Pareto front than those produced by MOEA/D in most of
the MO-KNP instances. The exception was the five-objective
knapsack problem when MOEA/D performed better than
MOEA/D-HGen. However, as can be seen, the proposed hybrid
algorithm was not significantly overcome. Fig. 2c shows the
Pareto front approximations achieved by MOEA/D-HGen and
MOEA/D. From this figure, it is possible to observe clearly
that the MOEA/D-HGen obtained a better distribution of
solutions along the Pareto front. The wide coverage of the
Pareto front obtained by MOEA/D-HGen can be seen more
clearly when comparing the original MOEA/D and MOEA/D-
HGen. This behavior suggests that combining the steady-
state and generational principle of evolutionary algorithms
can provide better performance than an algorithm based on
a single approach. Therefore, we conclude that the proposed
hybrid approach is a viable algorithm to deal with the multi-
objective 0/1 knapsack problem in high dimensional objective
spaces.

VI. CONCLUSIONS

In this paper, we investigated different versions of MOEA/D.
The original MOEA/D and two modified versions of MOEA/D
introduced in this paper. The first modification of MOEA/D
is a generational version of MOEA/D. This version creates
the whole offspring population with the same number of
solutions in the parent population. After that, the offspring
and parent populations are joined, and the best N solutions
are selected according to the principle of decomposition
implicitly introduced in the scalar selection mechanism. We
noticed that the generational version of our algorithm was
highly competitive, achieving a better diversity towards the
extremes portions of the Pareto front than the original MOEA/D.
However, such performance deteriorated when the number of
objectives increased. This way, we introduced a two-stage

hybrid algorithm that employs the two different approaches of
MOEA/D studied herein. Although several algorithms can
be adopted in our comparative study, to understand in a
better way the behavior of the algorithms, we compare the
proposed algorithms against MOEA/D. Our results show that
a combination between the steady-state and the generation
principle adopted by evolutionary algorithms can overcome
an algorithm based on a single principle. It is worth noticing
that our proposed hybrid algorithm adopts a determinist rule
to interact between the steady-state and generational principles.
However, we advise that the performance of the proposed
hybrid algorithm can be outperformed by tunning this parameter
properly. In our ongoing research, we focus our investigation
on this parameter. We consider that an appropriate tuning
(which can be dynamic) of this parameter can be improved the
performance of the proposed MOEA/D-HGen significantly.
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