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Abstract—Deployment of the Internet of Things (IoT) in
real industrial scenarios is fraught with unseen challenges and
planning intricacies. The inside engineering and methodologies
behind a successful Industrial IoT (IIoT) setup are seldom
discussed. In this paper, we describe a systems approach to
identify, integrate, and deploy the different IIoT modules in a
bottom-up manner. The process that go from first identifying and
labelling the various assets to be monitored, to their abstraction
and integration for a given industrial scenario, forms the major
crux of the work presented in this paper. We deployed several
sensor nodes in the Offshore Renewable Energy Catapult site,
located in Blyth, UK. Each sensor node monitored a specific
asset and communicated via LoRaWAN to our local Data Hub.
A simple query interface and visualisation dashboard allowed
real-time data assessment and rapid asset monitoring. To make
the proposed approach easy to comprehend and applicable to
other scenarios, we extracted a minimal translational bottom-up
flowchart. The systems approach described here offers a robust
methodology to plan out a real-world IIoT deployment.

Index Terms—IIoT, Sensors, Systems, Real-world

I. INTRODUCTION

Offshore industries—primarily oil and gas, and the wind
energy sectors—are facing a shortfall in the workforce, mainly
owing to the extreme and often dangerous working conditions.
To increase the safety of offshore infrastructures and render
them autonomous, there has been a surge in the use of
advanced technologies such as the Internet of Things (IoT),
Wireless Sensor Networks (WSN), and robots [1]. Monitoring
offshore assets is crucial in making economic decisions that
can keep a check on the production cost. Thus, IoT and WSN
systems hold significant value to such industries.

The advent of Industrial IoT (IIoT) has enabled the vision
of Industry 4.0, which involves data-centric architecture for
asset integrity management. For instance, by monitoring the
condition of an asset and feeding the data into a prognostic
model, the industries can better prepare for maintenance and
reduce the downtime. This predictive planning aids in making
economic decisions which can keep a rein on fluctuating oil
and wind energy prices.

Since the inception of IoT, there has been a plethora of
research in these domains. A substantial amount of literature
has been published in the domain of IoT ranging from:
introducing the new architectures [2], [3], [4], [5], compu-
tations [6], [7], [8], [9], network and communications [10],
[11], [12], [13], to different applications [14]. To the best

Fig. 1. Aerial view of ORE Catapult. Limpet sensor nodes (yellow pins)
and local server hub (green pin) mapped on the deployment site. The yellow
shaded area indicates the line of sight for LoRa from the local server hub.

of our knowledge, however, except a few [15], it is difficult
to find work where systems-based approaches to real-world
deployment and challenges faced in IIoT systems, especially
in offshore industrial environments, have been discussed. A
recent case study by Nagy et al. [16] presents a business model
for a Minimum Viable Product (MVP) that was developed
and tested for KK Wind Solutions1. The authors integrated
a system comprising a sensor node, a cloud, and a web
dashboard to track shipments for KK Wind Solutions. Though
they introduced the problem of monitoring wind turbines, the
paper did not reports the approach to practical deployment.

In this paper, we propose a bottom-up system approach to
cater to the unseen challenges faced during the deployment
of an IIoT. In addition, we present a methodology to identify,
integrate, and deploy the different IIoT components for a given
industrial site. We also report the experiences, and results
obtained from a successful test of the deployed IIoT at the
Offshore Renewable Energy (ORE) Catapult located in Blyth,
UK2.

1https://www.kkwindsolutions.com/
2https://ore.catapult.org.uk
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II. THE REAL-WORLD SCENARIO: BOTTOM-UP SYSTEM
PERSPECTIVE AND CHALLENGES

The ORE Catapult, located in Blyth, UK was chosen as the
site for the deployment. Fig. 1 shows an aerial view of the
deployment site.

A. Challenges

Though the proprietary systems available in the market offer
a higher level of reliability, they are seldom suited for unknown
situations as found in an actual industrial site. We identified
many key challenges described below:

1) The already available IIoT solutions are rigid and difficult
to adapt to the different types, shapes and characteristics
of assets found in an industrial site. Thus, customised
components that integrate what is available on the market
and suit the site to be monitored are in high demand.
However, to manufacture such a tailor-made system, the
first challenge is to identify the assets to be monitored.

2) Planning an optimum position for the placement of the
sensor is crucial in order to allow reliable communication
and targeted asset monitoring. This process is challenging
as it requires the monitored asset(s) to be in the line of
sight.

3) Industrial sites are prone to upgrades of their infras-
tructure and layout. The deployment approach should be
flexible to sudden changes in the environment.

4) Network Connectivity: Industrial sites are usually
equipped with large firewall systems. Integrating to their
LAN infrastructure could become an arduous task.

The site, shown in Fig. 1, consists of a variety of industrial
assets among which we identified those relevant to the scope
of our experiment, namely: pipes, pumps, a wind tower, and
shipping containers. A few of these assets were located in a
building, housing large electric generators, while several others
of them were distributed around the dock area. Thus, the first
step in the presented approach involves recognising the assets
to be monitored for the given industrial scenario.

B. Bottom-up Approach

1) High Level Abstraction: After identifying the essential
assets, we categorised them in two classes -

(i) Class-1: Passive Assets (e.g., containers, stairways, and
tower)

(ii) Class-2: Active Assets (e.g., water pump, flow pipes,
machines)

This abstraction is necessary to make our proposed approach
generic and relevant to other scenarios sharing the same
general features. Class-1 assets do not produce continuous
vibrations or any high-frequency movements, whereas Class-2
assets do generate them. The data collected from the sensors
need to be offloaded to a hub situated in a control room. A
control room is set up with end receivers and edge devices,
which collect the data from the sensors deployed on-site. If
the data packets are communicated using a low-frequency

wireless medium such as LoRa (Long Range) or LoRaWAN3,
there should be at least one window for reliable reception. In
addition to the class of an asset, its distance from the control
room determines the mode of communication. For the assets
near the vicinity of the control room, wireless modules such
as Bluetooth, Zigbee, and WiFi can be selected. For assets
spanning distances more than 100 metres will need long-range
communication methods such as the LoRa and Long-Term
Evolution (LTE). Since these assets are remotely situated,
the battery life of the sensor nodes should be long (a few
months). Though LoRa provides long-range and low power
communication, it has bandwidth constraints, thus can not
be used for high-frequency applications such as continuous
vibration monitoring.

Since Class-1 assets do not produce high-frequency measur-
ands, they are best suited for low power (and low bandwidth)
communication methods such as LoRa or LoRaWAN. In the
case of Class-2, however, the communication mode can be
decided depending upon the specific asset. In addition, an asset
can also be described based on the type of adhesion to its
surface, for instance – magnetic or non-magnetic.

2) Module Selection: An IIoT is a system made of different
electrical and non-electrical components or modules such as
sensors, communication devices, storage drives, protective
encapsulations for sensors, etc. The categorisation of assets
in the previous subsection aids in selecting specific modules
to be used. For instance, in contrast to the Class-1 assets,
a Class-2 may require an IMU or accelerometer to monitor
its vibration. Further, depending upon the sampling rate and
range requirements, a suitable communication module (WiFi
for a high rate and low range and LoRaWAN for a low rate
and high range) is determined.

III. SYSTEM COMPONENTS

We describe the different layers which are integrated to form
the proposed system. The modules selected (as described in
Section II-B2) are segregated and added to one of the layers.

A. Sensor and Data Communication Layer

In the industrial deployment presented in this work, we used
a new multi-sensing robotic platform called Limpet [17]. The
Limpet has been previously used in industrial settings [18]
and was developed as part of the ORCA Hub for inspection
and monitoring of offshore infrastructures. It is equipped
with nine different sensing modalities, which are: temperature,
pressure, humidity, optical, distance, sound, magnetic field,
accelerometer, and gyroscope. The Limpet system is integrated
with the Robot Operating System (ROS) to allow it to interact
with other robotic platforms.

The deployment consisted of assets situated in a wide area.
As a communication medium, we used LoRaWAN due to
its long-range capacity and low power needs. Short-range
networks such as those made of Zigbee and WiFi require a
substantial amount of repeaters and routing nodes which adds

3https://lora-alliance.org/



Fig. 2. Bio-inspired Limpet encapsulation.

to the system’s complexity. However, depending on the area
and application, these protocols are suitable for both low and
high sampled monitoring. The proposed system, thus, uses a
LoPy4 hardware together with the Limpet to enable LoRaWAN
communication. Since the Limpet is designed to be used on
offshore platforms, where data security is essential, and inter-
net connectivity is low, we have developed a local LoRaWAN
communication network. This setup removes the dependency
on internet connectivity and makes the communication secure.
The local network developed uses the LoRa Server project
provided by CableLabs5. In this communication setup, the
Limpet sends the sensor data through the UART to the LoPy,
which in turn sends these data packets to the data acquisition
module (explained later) located in the control room using the
LoRaWAN wireless protocol. A 5V lithium polymer battery
powers Lopy and Limpet. We will refer to this integration of
Limpet, LoPy, and a battery, as the Limpet sensor node (or
L-node). Fig. 2A shows an individual LoPy with its antenna
while a complete L-node is depicted in Fig. 2B.

B. Encapsulation and Adhesion Layer

A key element in the design of a device, meant to be part of
an IIoT, is the protective shell. The encapsulation is necessary
to shelter the electrical modules from the external, often harsh
environment, and it includes a versatile and reliable adhesion
method.

1) Encapsulation: The shape of the encapsulation designed
and shown in Fig. 2, was inspired by a real limpet (patella
vulgata). The shape minimises the structural stress caused by
external factors, such as drag [19] caused by wind and water
flow. This design is particularly important for devices meant
to survive in harsh environments. We used a 3D printer to
make the encapsulation of the desired shape and size. The

4https://pycom.io/
5https://www.loraserver.io/

final encapsulation is made of three main modules: antenna
caps, lid (base), and main shell (body). The body and the base
of the encapsulation can be attached using M6 screws. The
antenna cap fits onto a threaded protuberance. We used two
different methods to waterproof the 3D printed parts. The first
method was the application of a filler onto the bare 3D printed
parts followed by two layers of an acrylic spray paint. The
second method was to apply an epoxy coating directly to the
3D printed piece. In order to prevent water from seeping inside
the assembled protective housing, we tailored O-rings (Figs.
2B and 2C) to be placed around the base and the antenna cap.
For the O-rings to be effective, they have to be lubricated with
silicone grease. We ran permeability tests on the encapsulation,
i.e., water running on it from all the directions. In both the
cases, the painting, plus the O-rings, achieved the targeted
waterproofing level, i.e., IP546. To allow for the encapsulations
to be easily located and identified by humans or robots, we
chose bright, highly visible colours such as orange, blue, and
green.

2) Adhesion Methods: Based on the continuous liaison with
industries, we found steel-strap and magnetic adhesion meth-
ods to be appropriate for the assets found in ORE Catapult.
The modularity of the encapsulation design makes it easy to
switch from magnetic to steel-strap adhesion embedded in the
base of the encapsulation. The magnetic base can have a row
of 5 magnets (3mm depth, 10 mm diameter, and 1.8 Kg pull)
or a circular pattern with six magnets of the same type. The
steel-strap base has a slot with smoothed edges to enable the
insert of the steel band. Smoothed edges are meant to ease the
stress on the slot while tightening the strap.

C. Data Acquisition, Visualisation, and Querying

1) Data Acquisition: The sensors were deployed at dis-
tances varying from a few to 100s of meters from the control
room. With LoRaWAN as the main mode of communication,
the data acquisition system, nicknamed Data Hub, was set up
using a Sentrius™ RG1xx series LoRa-Enabled gateway from
Laird™, a NETGEAR® Nighthawk R7000 WiFi router, and an
Intel® NUC kit. The components were assembled inside a laser
cut box carefully designed to provide adequate airflow. Fig.
3A shows the chassis of the acquisition setup. The gateway
runs a packet-forwarder software, which is responsible for
forwarding the incoming packets to a network server using
a User Datagram Protocol (UDP). The network server and the
LoRa gateway are given IP addresses through a local Domain
Name System (DNS) server.

IIoT is associated with generating continuous data, in large
amount, and is in an unstructured format. Relational database
technologies have been a de facto standard in data storage
for many different applications. However, they are deemed
inadequate for IoT applications due to the limited processing
speed, and high storage expansion cost [20]. Thus, we selected
MongoDB, a NoSQL (Not only SQL) database, to store the
data received from the sensor nodes. Designing the right

6IEC standard 60529



Fig. 3. (A) The data acquisition setup - Data Hub. (B) A data sample of an
hourly time-series schema stored in the MongoDB.

schema for our deployment scenario is essential for better
scalability in the future. A schema is the way the unstructured
data is organised in the database. In our application, each
sensor node was transmitting data every 5 seconds, which
amounts to an average of 12 data packets per minute. Thus,
we had various options to choose from - store a separate
document every 5 seconds, every minute, or each hour or
day. We decided with an hourly data schema where 720
packets are written in a single document. This schema has a
considerably less number of reads than the one which writes
a separate document for every data packet received. Any IoT
system is associated with a massive amount of data queries.
Thus, optimising the read rate is crucial, especially for high
scalability. Fig. 3B shows the schema adopted in the work
presented in this paper.

2) Data Query and Visualisation: Though data aggregation
is essential, seamless accessing and displaying the necessary
information, serves the primary purpose of the proposed sys-
tem. We developed a dashboard-with-query processing engine
that showed the current status of the sensors for the node
selected. Since the dashboard can only present limited infor-
mation, we integrated a drop-down interface to query historical
data. we chose to show the data in the form f intuitive graps.
The dashboard-with-query engine was created using a Python
library called Dash running as a service app. The Data Hub
hosted the app. To make the app available publicly using an
URL, we used ngrok7 – a quick, secured, and reliable solution.
Due to the privacy concerns, we preferred collecting the data
on the Data Hub locally.

(a) (b)

Fig. 4. Two orange coloured L-nodes each on (a) a diesel pump (Class-2)
and (b) a container (Class-1).

IV. DEPLOYMENT IN THE REAL-WORLD

Our IoT system, as such, is characterised by easy deploy-
ment. In order to achieve a neat real-world deployment, we
designed a customised encapsulation, equipped with magnetic
or band-it adhesion mechanisms. The choice of the adhesion
mechanisms and the distribution of sensors are the result of
on-site visits prior to the industrial demonstration day. There
is no available off-the-shelf solution that would meet the
requirement of our unique sensor node, communication system
and demo site; therefore customisation and preparatory visits
to the ORE Catapult were vital to confer to our demo the
agility typical of IoT systems. The preparatory phase, during
which we visited the demo site and reassessed the design
and configuration of our network, allowed us to minimise
the malfunctioning risks. Once deployed, the Limpet network
works autonomously with minimal or no human intervention.
After identifying the assets to be monitored and selecting
the modules, we deployed the L-nodes and set up the data
aggregation and visualisation layers. The map in Fig. 1 shows
the location of the sensors, each of which is labelled with a
unique ID, to facilitate identification.

We placed the Data Hub in the control room, choosing the
optimum position to ensure reliable communication coverage
(line-of-sight) of the assets we intended to monitor. The
location of the Data Hub is crucial as we have chosen LoRa
as the mode of communication. Albeit LoRa should have
high wall permeability, in an industrial setup like ours, this
was not the case. We ensured seamless communication and
data acquisition with the Data Hub for each sensor before
deployment. Once this preliminary phase was complete, a
human operator deployed the sensor to its designated asset.

We deployed a total of seven L-nodes across multiple assets.
Signal to Noise Ratio (SNR) is a good factor in deciding the
optimum location of the sensors. In our case, LoRa SNR varied
between -10 dB and +10 dB.

7https://ngrok.com/



Fig. 5. A translational bottom-up representation of the proposed approach.

A high (and positive) SNR value denotes a good signal
strength. Each message packet sent via LoRa carries an SNR
value as a payload along with the actual data. This data format
aided us in deploying the sensors at appropriate positions on
the asset. Since the sensor nodes are meant to be operating for
periods in the order of months, reliability is a crucial factor.
Thus, testing the adhesion of the sensor node to the asset is
prime, especially in the case of vibrating Class-2 assets. We
ran a preliminary shock test on the L-nodes by artificially
creating vibrations on to the asset and recording the sensor
response, delay in transmission, and physical robustness. After
the testing, we calibrated the sensors against the known stan-
dard values of the gathered data. Fig. 4(a) and 4(b) respectively
shows L-nodes deployed on a pump and a container.

Depending on the material and shape of the asset, we
could select the appropriate adhesion method, e.g., a magnetic
adhesion for flat metallic surfaces. Deployment times have to
take into account setting up and assembling times. Assembling
seven L-nodes and setting up the local server (Data Hub),
requires up to two hours.

V. RESULTS

The crux of the work presented in this paper was to
devise a simple methodology that could aid in the integration
and deployment of different modules of an Industrial IoT.
The bottom-up flowchart portrayed in Fig. 5 shows a visual
condensation of the proposed approach. The figure shows a
flow of the process from asset identification of a given site
until the integration and deployment of different IIoT modules.
As an example, the green coloured text on the figure shows the
direction of flow when a wind tower is identified as an asset.
As can be seen from the figure, once an asset is identified
(wind tower in this case), it can be categorised into a class.
Now, based on the class, the type of sensors and the mode
of communication is decided. Since wind tower is a fairly
passive infrastructure, it does not require a high sampling rate.

In addition, usually, the wind towers are located offshore,
or far from the control centre, LoRaWAN will serve as an
appropriate mode of communication. The adhesion can be
easily selected to be the magnetic type due to the metallic
nature of the wind tower. Once all the lower-level components
are selected, these can be segregated into different layers and
then can be easily integrated and deployed as an IIoT.

We integrated three user-friendly interfaces for data visual-
isation and querying to form a dashboard-with-query app. We
first developed and tested a Dashboard application, shown in
Fig. 6, which allows for a quick and clear peek of the current
status of the sensors. The users can easily select the radio
button (shown in Fig. 6) corresponding to an asset of interest
and visualise a graph of the last hour of data variations of
different sensors. However, the dashboard can query only a
limited amount of information. For instance, a dashboard will
not suffice to visualise historical data. Thus, we developed a
second interface that allows a user to query the database by
feeding the desired range of date and time, along with the
node ID of interest. This click-based interface is shown in
Fig. 7. For the sake of clarity, we preferred to show the data
graphically; however, other visualisation representations can
also be chosen. It may also happen that a user needs to query
the database repeatedly, which could make the use of click-
based interface cumbersome. Thus, we also created a chatbot
primed to understand queries intended for sensor databases.
The chatbot was built using RASA8, an open-source machine
learning framework to develop contextual chat assistants. The
output of the chatbot for the query, ”whats the pressure value
of L-node 2 for past six months?”, is displayed in Fig. 8.

We collected the data continuously for the entire period of
the industrial demonstrations. To measure the applicability of
the different modules selected, we analysed the trends in the
sensor values for both the classes of assets. As a sample,

8https://rasa.com/



Fig. 6. The dashboard displaying the current status of the L-node placed on the tower.

Fig. 7. The click-based interface with the dropdown menus to select the date and time range, sensor ID, type of the sensor, and statistical feature.

Figs. 9 show the variations in the temperature for Class-1
assets. As can be seen from the figures, an hourly schema
with this class of assets (Fig. 3B) outlines a clear change in the
behaviour of the asset. Vibration monitoring finds promising
applications in industrial scenarios. Fig. 10 presents vibrations
detected during the functioning of a Class-2 asset (a pump).
In industrial environments, data is prone to display a noisy
signal; therefore, we used a moving average filter with a 10
seconds window to smooth the sensory data.

A. Key Issues in Industrial IoT Deployment

1) Accessibility: Industrial sites are prone to safety risks.
Finding personnel who could aid during the deployment
of sensors is a managerial challenge.

2) Line-of-sight: Low frequency long-range wireless com-
munication strength degrades under a dense infrastruc-
ture. Thus, it is crucial to locate a control room that
can be in line-of-sight to the area where the sensors are
deployed.

3) Adhesion: Though the two types of adhesion methods
(steel-strap and magnetic) used in this work are suitable
for a wide variety of assets, they may still not suffice. For
instance, a non-magnetic cuboid-shaped asset can pose a
challenge to place a sensor on it reliably.

4) Operating Time: Such sites also carry out other internal
activities, and thus the time provided for a third-party to
test their systems is limited.



Fig. 8. The output of chatbot to the query entered in English language.

Fig. 9. Hourly temperature variations reported by all seven L-nodes.

Fig. 10. An example of high frequency vibrations data filtered using a moving
average.

B. Solutions

A few solutions which helped us in tackling the above
challenges faced are briefly discussed below:

1) Accessibility: Working closely with the responsible staff
and planning in advance can reduce this issue.

2) Line-of-sight: We can solve this either as stated by

locating the optimal line-of-site location or through the
use of repeaters.

3) Adhesion: More permanent method of adhesion can be
considered, e.g., drilling, glue, welding. Novel methods
could employ bio-inspired adhesives.

4) Network Connectivity: Not relying on propriety infras-
tructure and using our own deployed network as much as
possible.

5) Operating Time: Advanced preparation and planning can
mitigate this challenge.

VI. CONCLUSIONS

In this paper, we presented a systems approach to deploy
an Industrial IoT (IIoT) in a real-world scenario. We offer
our experience and challenges faced in deploying an IIoT
system in an industrial set up. We implemented a bottom-
up approach to tackle these challenges. First, we studied the
site and identified the assets to monitor. We then classified
the assets into two classes - active and passive. Depending
on the class of a device, we selected the appropriate sensing
modality, sampling rate, and adhesion method (steel-strap or
magnetic) to best perform the monitoring. Next, we segregated
the modules into different layers - communication, encap-
sulation, and visualisation. Finally, we deployed the system
and monitored the assets in real-time. The integration of the
described steps constitutes our bottom-up approach to the
deployment of an IIoT. This abstraction allows for a general
translational model, which could be ported to other scenarios.
To ease the comprehension, the results presented a minimal
flow diagram (Fig. 5) extracted from the detailed methodology
presented in this paper. The experience and the results obtained
at the ORE Catapult during the ORCA Hub industrial demo
will aid in the future development of better, efficient, and more
robust IIoT systems.
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