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Abstract—Many decision making processes are based on choos-
ing options with maximum utility. Often utility assessments are
associated with uncertainty, which may be mathematically mod-
eled by intervals of utilities. Intervals of utilities may be mapped
to single utility values by so–called type reduction methods which
have been originally developed in the context of interval type–2
defuzzification: the method by Nie and Tan (NT), consistent
linear type reduction (CLTR), consistent quadratic type reduction
(CQTR), and the uncertainty weight method (UW). This paper
considers the problem of comparing pairs of utility intervals
using type reduction methods. Three different possible relations
between pairs of intervals (disjoint, overlapping, and inclusive)
are distinguished in an extensive experimental study, which yields
recommendations for the choice of type reduction methods with
respect to the level of risk that the decision maker is willing
to take. If the focus is on mean utility, then we recommend
the Nie–Tan method. For more cautious decision making, when
very low utilities should be avoided, we recommend consistent
linear type reduction with a high value of the cautiousness
parameter or consistent quadratic type reduction. For more risky
decision making with a strong focus on very high utilities we
recommend consistent linear type reduction with a low value of
the cautiousness parameter.

I. INTRODUCTION

In many decision making processes the best option is chosen
based on qualitative assessments of the utility of decision
options, such as movies, project proposals, machine tools, or
waste disposal sites. Such assessments are often associated
with uncertainty. One way of modeling this uncertainty is
to specify the utility of each option as an interval of mem-
bership values [1], [2], which leads to interval type–2 fuzzy
sets [3], [4], [5]. Another way of modeling this uncertainty
leads to general type–2 fuzzy sets that may be constructed
from intervals [6] and may then be processed in an efficient
algorithmic scheme [7]. Here, for simplicity, we restrict to
the case of interval type–2 fuzzy sets, and we are planning
to extend this to the case of general type–2 fuzzy sets in a
forthcoming publication.

The problem of comparing options with different intervals
of utilities is related to the problems of comparing numerical
intervals [8] and ordering fuzzy subsets of the unit interval
[9]. Comparing intervals of utilities is at the core of decision
making with interval type–2 fuzzy sets [10], [11], [12], [13].

In this paper we specifically consider comparing pairs of
intervals with so–called type reduction methods [14], [15],
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[16] that have been developed in the context of interval type–2
defuzzification [17], [18], in order to map interval type–2
fuzzy sets to type–1 fuzzy sets. In the literature, various
different type reduction methods have been proposed: the
method by Nie and Tan (NT) [19], consistent linear type
reduction (CLTR) [20], consistent quadratic type reduction
(CQTR) [20], and the uncertainty weight method (UW) [21],

The idea to apply such type reduction methods to decision
making has first been discussed in [22], where four simple
examples have been considered for illustration. This paper is
a substantial extension of the study at [22]. We distinguish
the three different possible relations between pairs of intervals
(disjoint, overlapping, and inclusive), and for each of these
relations we perform extensive statistical experiments evalu-
ating the resulting utilities obtained by the four considered
type reduction methods (NT, CLTR, CQTR, and UW), leading
to specific recommendations for selecting appropriate type
reduction methods with respect to the level of risk that the
decision maker is willing to take.

This paper is structured as follows: Section II briefly reviews
the different type reduction methods considered in this paper.
Section III describes the setup of our experimental study.
Sections IV–VI present the results of the experiments with
disjoint, overlapping, and inclusive pairs of intervals. Section
VII finally summarizes our conclusions.

II. TYPE REDUCTION METHODS

Type reduction maps each membership interval [u, u],
u, u ∈ [0, 1], u ≤ u, to a membership value u ∈ [0, 1]. We
call a type reduction method convex, if and only if for all
u, u ∈ [0, 1] it yields u ∈ [u, u].

In this paper we consider the following four type reduction
methods:

1) the Nie–Tan method (NT) [19]

uNT =
u+ u

2
(1)

2) consistent linear type reduction (CLTR) [20]

uCLTR = a · u+ (1− a) · u (2)

with the parameter a ∈ [0, 1] that quantifies the degree
of caution in the decision making process; for a = 0 we
call this the risky method

urisky = u (3)
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for a = 1 we call this the cautious method

ucautious = u (4)

and for a = 0.5 we obtain the Nie–Tan method (1).
3) consistent quadratic type reduction (CQTR) [20]

uCQTR = a · u+ (1− a) · u− (1− a) · (u− u)2 (5)

with the parameter a ∈ [0, 1]
4) the uncertainty weight method (UW) [21]

uUW =
1

2
(u+ u) · (1 + u(x)− u(x))α (6)

with the parameter α ≥ 0

For a = 1, CLTR and CQTR are both equivalent to the
cautious method, and for α = 0, NT and UW are equivalent.
The first three methods (NT, CLTR, CQTR) are convex, but
the uncertainty weight method (UW) is not convex. To see
this, consider for example the case u = 0.8, u = 1, α = 1,
for which (6) yields

uUW =
1

2
(0.8 + 1) · (1 + 0.8− 1) = 0.72 < 0.8 = u (7)

so in this example uUW = 0.72 is outside the interval [u, u] =
[0.8, 1].

III. INTERVAL COMPARISON

In our experiments we consider the following decision
making scenario based on comparing intervals using type
reduction: Assume we have two decision options 1 and 2
associated with uncertain utilities quantified by the utility
intervals [u1, u1] and [u2, u2], respectively. Based on these two
utility intervals we decide for either option 1 or option 2. If
the decision is option 1, then our decision utility u∗ will be
randomly drawn from [u1, u1], and if the decision is option
2, then our decision utility u∗ will be randomly drawn from
[u2, u2], with uniform distributions. The goal is to maximize
the utility u∗.

Each of the utility intervals [u, u] is generated randomly
using the following process: We randomly choose a mean
value

u ∈ [0, 1] (8)

and a value ∆u, so that

u = u−∆u, u = u+ ∆u (9)

To make sure that the membership values are normalized,
u, u ∈ [0, 1], the half spread ∆x of each interval has to be
randomly chosen in the interval

∆x ∈ [0,min{u, 1− u, }] (10)

as illustrated by the grey area in Fig. 1. So for normalized
intervals the membership (mean) and uncertainty (spread) are
not independent, but the maximum possible uncertainty is
maximal (max ∆u = 0.5), for membership u = 0.5, and
the maximum possible uncertainty decreases for lower or
higher memberships, until for memberships zero and one the
uncertainty can only be zero.
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Fig. 1. Possible means (horizontal) and spreads (vertical) of the randomly
generated intervals.
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Fig. 2. Experimental setup for comparing random pairs of intervals.

Here, for decision making we use one of the four type
reduction methods (NT, CLTR, CQTR, and UW) to map
the utility intervals [u1, u1] and [u2, u2] of the two decision
options to the single utility values u1 and u2. Then we decide
for the option with larger utility: option 1 if u1 ≥ u2, and
option 2 if u1 < u2. The resulting overall experimental setup
is illustrated in Fig. 2.

For pairs of intervals {[u1, u1], [u2, u2]} without loss of
generality we require u1 > u2. We distinguish three different
relations, as shown by the examples in Fig. 3:

disjoint overlapping inclusive
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Fig. 3. Each pair of intervals has one of these three different types of relations.
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Fig. 4. Utility distribution for disjoint intervals for the convex methods.

1) disjoint
u1 > u2 (11)

2) overlapping
u2 ≤ u1 ≤ u2 (12)

3) inclusive
u1 < u2 (13)

The reader may easily verify that any possible pair of intervals
will have one and only one of these relations. If we randomly
generate pairs of intervals using the method presented above,
then we obtain the following distribution of the three types
of relations: 55.9% disjoint, 23.7% overlapping, and 20.4%
inclusive.

For each of the three relations (disjoint, overlapping, inclu-
sive) we run 10, 000, 000 experiments (where the randomly
generated intervals are discarded if they do not match the
desired relation). In each of the experiments we use each of
the four type reduction methods (NT, CLTR, CQTR, and UW)
with various values of the parameters a and α to decide for
one of the two options, and for each case we report the average
utility u∗.

IV. COMPARING DISJOINT INTERVALS

We begin our experiments with the case of disjoint intervals
as shown in the left of Fig. 3. For disjoint intervals, we have
u1 > u2, so the convex methods will always pick the upper
interval [u1, u1] and therefore all convex methods (NT, CLTR,
CQTR) yield the same results. The histogram (normalized to
area one) of the ground truth utilities obtained by the convex
methods is shown in Fig. 4. Here, the relative frequency
of the utilities is monotonically increasing, with the highest
frequency for utility one and the lowest frequency (almost
zero) for utility zero. The average utility obtained in this
experiment is about 0.74.

Fig. 5 shows the results for the same experiment with the
uncertainty weight method (UW) for α ∈ [0, 1], α = 2, and
α = 4. These parameters have been chosen, so that example
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Fig. 5. Utility distribution for disjoint intervals for the uncertainty weight
method (UW).

TABLE I
UTILITIES OBTAINED FOR DISJOINT INTERVALS.

method mean u∗ u∗ ≤ 0.1 u∗ ≥ 0.9
convex 0.73724 0.00823% 0.30961%
UW α = 2 0.72114 0.01687% 0.30523%
UW α = 4 0.68281 0.05084% 0.29866%

curves are obtained that can be easily distinguished visually.
For α ∈ [0, 1] we obtain almost the same distribution as for
the convex methods (Fig. 4). For α = 2 the distribution is
similar, but with slightly higher frequencies for u∗ < 0.35 and
slightly lower frequencies for u∗ > 0.35. For α = 4 we obtain
even higher frequencies for u∗ < 0.35 and lower frequencies
for u∗ > 0.35, and for u∗ < 0.5 the highest frequency is at
u∗ ≈ 0.1.

Table I shows the mean utilities and the precentages of very
low utilities (u∗ ≤ 0.1) and of very high utilities (u∗ ≥ 0.9)
obtained by the different methods for disjoint intervals. In this
case, the best results (shown in bold) are obtained with the
convex methods, and with UW for α ∈ [0, 1], which yields
almost the same results. UW with higher values of α yields
lower mean utilities, more very low utilities (u∗ ≤ 0.1), and
less very high utilities (u∗ ≥ 0.9).

V. COMPARING OVERLAPPING INTERVALS

In our next set of experiments we consider overlapping
intervals as shown in the middle of Fig. 3. Also here we
observe that all considered convex methods yield exactly
the same utility distribution that is shown in Fig. 6. Notice
however that we may construct convex type reduction methods
for which this property does not hold. Compared with disjoint
intervals (Fig. 4), we obtain more medium and almost no very
high utility values for overlapping intervals, which reflects the
fact that intervals with medium membership are more likely
to overlap than intervals with high membership.

Fig. 7 shows the results for the same experiment with UW
for α ∈ [0, 0.2], α = 1, and α = 2. Again, these parameters
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Fig. 6. Utility distribution for overlapping intervals for the convex methods.
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Fig. 7. Utility distribution for overlapping intervals for the uncertainty weight
method (UW).

have been chosen to obtain example curves that can be easily
distinguished. For α ∈ [0, 0.2] we obtain almost the same
distribution as for the convex methods (Fig. 6). For α = 1 we
obtain higher frequencies for u∗ < 0.5 and lower frequencies
for u∗ > 0.5. For α = 2 lower utilities are even more frequent,
and higher utilities even less, and we can see a clear local
maximum at about u∗ ≈ 0.2.

Table II shows the mean utilities and percentages of very
low and very high utilities for the different methods for
overlapping intervals. Again, the best results are obtained with
the convex methods, and with UW for α ∈ [0, 0.2], which

TABLE II
UTILITIES OBTAINED FOR OVERLAPPING INTERVALS.

method mean u∗ u∗ ≤ 0.1 u∗ ≥ 0.9
convex 0.59834 0.02364% 0.12017%
UW α = 1 0.57580 0.02938% 0.11191%
UW α = 2 0.54080 0.04865% 0.10628%
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Fig. 8. Utility distribution for inclusive intervals for the risky, cautious, and
Nie–Tan (NT) methods.

yields almost the same results. UW with higher values of α
yields lower mean, more very low and less very high utilities.

VI. COMPARING INCLUSIVE INTERVALS

Our third set of experiments uses inclusive intervals as
shown in the right of Fig. 3. Here, the considered methods
yield significantly different utility distributions. The distribu-
tions for the risky, cautious, and Nie–Tan (NT, dashed) meth-
ods are shown in Fig. 8. The risky and cautious methods yield
distributions that are approximately symmetric with respect to
the axis u∗ = 0.5. The distribution for the risky method has
two maxima at u∗ ≈ 0.2 and u∗ ≈ 0.8, and the distribution
for the cautious method is quite flat in u∗ ∈ [0.3, 0.7]. The
NT method (dashed) yields significantly more higher and
less lower utilities, and the distribution has its maximum at
u∗ ≈ 0.8.

The risky, cautious, and NT methods are all instances of the
consistent linear type reduction (CLTR) for a = 0, a = 1, and
a = 0.5, respectively. Fig. 9 shows the distributions obtained
by two more instances of CLTR for a = 0.3 and a = 0.7,
about half way between the special cases a = 0, 0.5, and 1, in
comparison with NT (dashed). For a = 0.3 we obtain slightly
more very high utilities at the cost of of slightly more very
low utilities, and for a = 0.7 we obtain slightly less very low
utilities at the cost of of slightly less very high utilities.

Fig. 10 shows the distributions obtained by the consistent
quadratic type reduction (CQTR) for a ∈ {0, 0.5, 1}. In all
three cases, CQTR yields less utilities > 0.5 and more utilities
< 0.5 than NT, similar to the risky method in Fig. 8. However,
for a = 0.5 CQTR yields slightly less very low utilities (u∗ ≤
0.1) than NT.

Fig. 11 shows the result of the uncertainty weight method
(UW) with α = 0.2, which out of several tested choices for α
visually yields the lowest utilities for low u∗ and the highest
utilities for high u∗. Compared with NT, UW yields slightly
less very low utilities at the cost of slightly less very high
utilities.
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Fig. 9. Utility distribution for inclusive intervals for consistent linear type
reduction (CLTR).
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Fig. 10. Utility distribution for inclusive intervals for consistent quadratic
type reduction (CQTR).
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Fig. 11. Utility distribution for inclusive intervals for the uncertainty weight
method (UW).

TABLE III
UTILITIES OBTAINED FOR INCLUSIVE INTERVALS.

method mean u∗ u∗ ≤ 0.1 u∗ ≥ 0.9
risky 0.50009 6.4701% 6.4699%
cautious 0.49997 5.7576% 5.7518%
NT 0.55250 4.2540% 7.9728%
CLTR a = 0.3 0.54653 4.8214% 8.4823%
CLTR a = 0.7 0.54652 3.7435% 7.4106%
CQTR a = 0.5 0.52453 3.5894% 7.0388%
UW α = 0.2 0.54780 3.9357% 7.3379%

Table II shows the mean and the percentages of very low
and very high utilities for the different methods for inclusive
intervals. The risky and cautious methods yield the lowest
mean utility (mean u∗ ≈ 0.5) of all methods considered here,
and the NT method yields the highest mean utility (mean
u∗ ≈ 0.55). However, the methods listed in the bottom four
rows of this table yield very similar mean utilities as NT, but
CLTR a = 0.3 yields more very high utilities (u∗ ≥ 0.9), and
CLTR a = 0.7, CQTR a = 0.5, and UW α = 0.2 yields less
very low utilities (u∗ ≤ 0.1) than NT.

VII. CONCLUSIONS

In this paper we have experimentally studied the use of
different type reduction methods (Nie–Tan, consistent linear
type reduction, consistent quadratic type reduction, and the
uncertainty weight method) for comparing interval utilities
in decision making processes. We have distinguished three
relations between pairs of intervals: disjoint, overlapping,
and inclusive. In our comparisons we have considered the
distribution of the resulting (ground truth) utilities, the mean
utilities, and the relative percentages of very low (≤ 0.1)
and very high utilities (≥ 0.9). Our experiments show that
for disjoint or overlapping pairs of intervals, all considered
convex methods yield the same results and outperform the
nonconvex uncertainty weight method. However, the different
methods yield very different results for inclusive pairs of
intervals. Here, the best mean utility is obtained by the Nie–
Tan method, the lowest percentages of very low utilities are
obtained by consistent linear type reduction with a = 0.7,
consistent quadratic type reduction with a = 0.5, and the
uncertainty weight method with α = 0.2, and the highest
percentage of very high utilities is obtained by consistent linear
type reduction with a = 0.3. Therefore, our recommendation
for comparing intervals using type reduction is as follows: If
the focus of the decision making process is on mean utility,
then we recommend the Nie–Tan method. For more cautious
decision making, when very low utilities should be avoided,
we recommend consistent linear type reduction with a = 0.7
or consistent quadratic type reduction with a = 0.5. For more
risky decision making with a strong focus on very high utilities
we recommend consistent linear type reduction with a = 0.3.

In this paper we considered the case of comparing pairs of
intervals, i.e. we have two decision alternatives. As a future
work we are planning to extend this study to a larger number



of decision alternatives. In addition, we are planning to support
this experimental study with theoretical considerations.
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