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Abstract—To apply clustering algorithms to big data, or to 
build clustering ensembles, it is a standard process to sample the 
original data set in a way that hopefully spans the original 
distribution. There are at least six ways to initialize the Maximin 
(MM) sampling algorithm. This paper contains experiments to 
determine whether samples produced by the six methods differ 
significantly; and whether they are superior to simple random 
sampling. Empirical evidence supports two conclusions. First, 
there is not enough difference in MM samples generated by the 
six initializations to support using any but the least costly 
method: viz., using the first sample in the data as the first MM 
point. Second, unless the input data have subsets (clusters) that 
are compact and separated in a well-defined sense, random 
sampling is demonstrably superior to MM sampling for even 
small data sets.   
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I. INTRODUCTION  

We have a collection of objects, 1 NO {o ,...,o } which may be 

almost anything, e.g., guitars, soccer players, medical 
treatments, stock market reports, samples of beer, etc. The 
objects can be represented by numerical data in one of two 
ways. If each object is associated with a set of p measurements, 
the data is feature vector data, p

N 1 NX { ,..., } x x . Or, pairs 

of objects may be represented by a relationship i j(o , o )   

between them, giving us relational data in the form of an 
N N matrix N ij i jD [d ] [ (o , o )]   . The relation i j(o , o )  is 

usually a similarity or dissimilarity relation. Any vector norm 

x  on p  can be used to transform NX  to i jND    x x . 

 There are many methods for clustering static data sets 
based on classical [1-4], fuzzy [5], probabilistic [6]  and 
possibilistic models [7].  Suppose that N is so large that 
clustering the data directly with one of the many available 
methods is intractable (or impossible). How large is this? No 
matter how big your computer is, there are data sets of interest 
that cannot be mounted, much less processed, in the usual 
manner for literal (or exact) clustering. What to do?  
 An oft-used approach is based on sampling. Clustering is 
done on the sample,  followed by (non-iterative) extension to 
the remainder of the data to approximate direct (or literal) 
clustering in the big data. Random sampling is by far the best 
known method for this approach.  Progressive sampling [8] has 
also been used [9, 10]. A third approach is based on Maximin 
(MM) sampling (cf. Section II). An extended form of MM 

sampling called MMRS comprising MM sampling followed by 
a random sampling step has been applied to the problem of 
approximate clustering in big data [11].  
 At least six different ways to initialize the MM sampling 
algorithm have appeared in the literature. The objective of this 
article is to study the quality of MM samples produced by the 
six initializations, with a view towards identifying the “best” 
way to initialize MM sampling. Towards this end, we use two 
measures that give meaning to the term “best” MM sample in 
the context of cluster analysis. Section II presents the MM 
algorithm. Section III exhibits the relationship of MM 
sampling to Dunn’s cluster validity index.  Section IV 
describes the data sets and quality measures used for the 
experiments. Section V contains our numerical studies, and 
Section VI presents our conclusions. 

II. THE MAXIMIN ALGORITHM 

The idea of (MM) sampling apparently first appeared in 1953 
[12], where it is described as a procedure for initializing a set 
of c prototypes (aka cluster centers).  Casey and Nagy [13] 
provide this summary of how to use the MM algorithm to 
construct initial prototypes.  
 

The first sample in the batch to be processed is 
designated cluster center number one. The distances 
of the remaining samples from this one are 
calculated, and the farthest sample is called center 
number two. The smaller of the two distances from 
each sample to these two centers is listed, and the 
sample having the greatest minimum distance is 
selected. The remaining centers are chosen in turn to 
have maximum separation from the existing centers. 
These initial cluster centers are well scattered over 
the sample space, an intuitively desirable property. 

 
Many authors have used the MM sampling scheme to facilitate 
initialization of a clustering or approximate clustering 
algorithm. Here is a typical specification of the MM for both 
object data or relational data. 

 
1 In: metric   p pd : :  p

N 1 N
X { ,..., }x x  

(or) N ijD [d ] : c  = desired # of MM samples  

2  Initialize: MMX  (or)  MMO  : 
3 If 

N
X : 

0m 1 Nrand{ ,..., }x x x  :  
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If 
N

D : 0m rand{1, ,N}  :  

4 
o o1 N m m

=(z ,...,z ) (d( ,1),...,d( ,N))Z x x  

(or) 
0 0m ,1 m ,N

(d ,...,d ) : 

5 For  t1 to c  do 
6       

t-1 t 1
1 m , 1 N m , N

=(min{z ,d( )},...,min{z ,d( )})Z x x x x        

(or)
t-1 t 1

1 m ,1 N m ,N
=(min{z ,d },...,min{z ,d })Z : 

7      
 


t j

1 j N

m argmax{z } :  

8        
tMM MM m

X X { }x (or)   
tMM MM m

O O [o ] : 

9 End for 
10 Out: c  MM indices 

1 c'
M'={m ,...,m } :  

c  MM samples p

MM
X

1 c'
m m

={x ,..., x } (or)  

c  MM objects 
N

O o o O
1 c'MM m m

={ ,..., }  

 
Algorithm 1. Exact Maximin Sampling 

 
Ties in Line 6 are broken arbitrarily. The literature contains a 
number of ways to initialize MM sampling in Line 3. Here is a 
(possibly incomplete) list of six ways that exact MM sampling 
has been initialized in the feature vector case: 
 

om 1 Nrand{ ,..., }x x x = a random point in NX   (1) 

o 1m x x = the first point in NX    (2) 

o

N

m j
j 1

/ N


 x x x = the grand mean of NX   (3) 

omx = the point in NX  furthest from x  (4) 

o 1m m{ , }x x  = the 2 points in NX  furthest apart  (5) 

 o

2

m 0 j 21 j N
m argmax

 
 x x  (6) 

 
Random selection of the starting index at line 3 in Algorithm 1 
all but guarantees that repeated runs of the MM algorithm will 
lead to different sets of MM samples. More generally, using 
each of the initialization methods (1) to (6) may result in 
different MM samples. The objective of this study is to 
determine whether one of the six initialization schemes is 
superior to the others in terms of good samples for cluster 
analysis. Method (3) starts at Xx . This necessitates a slight 
change in our testing scheme discussed in Section IV.  
 What are good samples for cluster analysis? We believe 
the primary requirement is that the cluster proportions in the 
c samples from NX  should be as close as possible to the 

corresponding proportions for each subset in NX . [If the 

proportions are regarded as prior probabilities, this amounts to 
requiring that the sample priors to match the parent priors, 
where we regard as NX  the parent.] This belief guides our 

choice of methods for determining which set of samples from 

a set of sample candidates should be called “best.”  For 
comparison, we will include a completely random sample 
(RS) in each of our tests. Our belief is that as N increases, the 
quality of MM samples compared to RS will decrease, and at 
some (data driven) crossover point, RS will be better in terms 
of distributional quality (RS is clearly superior to all MM 
methods in terms of CPU time). Next, we relate the quality of 
MM samples to a theorem concerning their distribution. 
 

III. LABELS, PARTITIONS AND DUNN’S INDEX 

 
Let c be an integer, 1 c n  . The crisp c-partitions of n 
objects are matrices U in cn

hcn ikM {U : 0 u 1 i,k;       

ik ik
i k

u 1 k; u 0 i}     . An equivalent representation is 

c

N 1 i j
i 1

X X ; X X i j


    , where i{X } are the crisp 

subsets comprising the c clusters.  We write iU {X } .Dunn 

[14] defined an internal cluster validity index for iU {X }  

based on the geometric rationale that “good” partitions of NX  

have compact and separated subsets. To understand this index 

let S and T be non-empty subsets of    p
, and let 

p pd :     be any metric.  The diameter  of S is 

 


 
, S

(S) max d( , )
x y

x y  and the set distance   between S and T 

is  
S
T

(S,T) min d( , )



 
x
y

x y . For any partition hcn iU M {X }  the 

separation index of U (universally known as Dunn’s index 
(DI)) is 

 
 

i j

1 i c 1 j c k
 j i 1 k c

( X , X )
D I( U ; X ) m in m in

m a x ( X )   
  

         
   

  

 (7)

 

Dunn called U compact and separated (CS) relative to the 
distance metric d if and only if : for all s, q and r with q≠r, any 
pair of points S, Xx y  are closer together (with respect to d) 

than any pair u, v  with q rX and X u v . He then proved that 

a set X has a crisp CS partition relative to d if and 
only 




hcnU M

max DI(U;X) 1 . The following result connects this 

property of Dunn’s index to the MM samples extracted from 

NX  by Algorithm 1: 

Theorem 1. Let c’ > c. Suppose there is a CS c-partition of 

1 NO {o ,...,o } . Then MM Algorithm 1 will select at least one 

object from each of the c clusters. 

Proof. Hathaway et al. [15] 
 
Theorem 1 is weak in the sense that most input data sets do 
NOT have a CS partition, and even if they do, it is not so easy 



to verify this. But Theorem 1 does assert that in some 
circumstances, the MM samples at least represent all c clusters 
in the data. To our knowledge, this is the only result of its 
kind, and it provides a bit of psychological reassurance that 
MM sampling doesn’t run too far off the rails.  

IV. SAMPLE QUALITY 
 

The data sets in our experiments are labeled, i.e., they have 
ground truth c-partitions hcNU M of NX . Let in  be the number 

of points in the i-th subset, so 
c

i
i 1

N n


 . Define the proportion 

vector of NX  in c as 

 1

c
cN n N,...,n N V .  (8) 

 

Using (1)-(6) at line 3 of Algorithm 1 yields c  MM samples, 

MM(k )X , with corresponding proportion vectors in c  

  c
MM(k ) 1 c ; 1 k 6n c ,...,n c      V .  (9) 

 

If c c   at least one of the in 0  in MM( )V . If  c c  , and all c 

labeled subsets are represented in the sample, then 

in 1 ;1 i c    . Therefore, an easy way to determine if all c 

subsets have been sampled is to examine MM( )V  for zeroes. 

Our aim is to determine how well the MM( )V match NV .  

Since these are samples from labeled data, we can make 
histograms that plot numbers of points in each labeled subset 
against numbers of points in the samples. This affords a visual 
assessment of the match between proportions in the parent and 
sample that is independent of N and p. For small c it is easy to 
make a fairly accurate assessment by visual comparison.  

Comparing MM( )V to NV analytically can be done in several 

ways. The distance N MMd( , ( ))V V in any convenient metric on 
c c  provides a matching measure: a zero distance 

corresponds to a perfect match between the proportions of the 
parent and sample. The two-sample Kolmogorov-Smirnoff 
(KS) test against the null hypothesis that N MMand ( )V V come 
from the same distribution can also be used. Matlab returns a 
p-value for the test at any level of significance. We will use the 
default level 0.05  for our experiments. Thus, if 
p 0.05   , we accept the hypothesis that the sample comes 
from the same distribution as the parent, and will indicate this  
by saying simply that the sample passes the KS test. In our 
experiments, the number of “samples” for the KS test is c, the 
number of labeled subsets, so the KS test, which is not very 
accurate for small sample sizes, is not expected to yield very 
informative results. We will say that a sample “covers” the 
input data when every labeled subset is sampled at least once. 

V. NUMERICAL EXPERIMENTS 

Initialization (3) begins at x . For this study we need labels for 
all of the points, and x  is not always in the data, so MM(3)X is 

obtained by initializing at x , and then replacing it after finding 

1mx  by renaming  
o 1m mx x . All of our experiments were 

performed on a CPU with INTEL core I7-8700k and 64 GB 
memory using MATLAB-2018a for implementation.  

Table 1. Data sets  
 

Name N p c 
X6 399 2 6 

X15 5000 2 15 
X31 3100 2 31 

WDBC 569 30 2 
 

Table 1 shows the four sets used in our experiments. We 
use three small data sets: X15 from [16], X31 from [17] and 
X6 from [18]; and the Wisconsin Diagnostic Breast Cancer 
(WDBC) data [19]. All 4 data sets are subjected to the same 
analysis, but we won’t be able to show all the figures in this 
short article. A complete set of graphs is available upon request 
form the first named author. 

The visually apparent clusters in X15 (Fig. 2) are drawn 
from Gaussian distributions with different means and 
covariance matrices. The cluster size (cardinality) ranges from 
300 to 350. Fig. 3 contains 8 histograms for data set X15 for 
c 10, 20, 50, 1000  . In all views, the histogram of the input 
data is fixed in the upper left, the random sample (RS, method 
#7) is lower right, and the MM samples obtained by Algorithm 
1 labeled #1 to #6 correspond to the six initializations at 
equations (1) to (6). There are two values printed on each 
histogram: ED is the value of N MMd( , ( ))V V  for d = Euclidean 
distance; p is the value of the 2 sample KS test returned by 
Matlab against 0.05  . 

 

Fig. 2. X15~N=5,000 points in p=2 dimensions, c=15 
 



Fig. 3(a) shows the results of collecting c 10  samples 
from X15. Since there are 15 clusters, all 7 samples will have 5 
or more 0’s. Visual examination  of the histograms reveals that 
RS (method #7) collects samples from only 8 of the 15 
clusters, whereas all 6 MM samples contain one from each of 
10 clusters. The ED metric indicates a slight preference for 
initialization (2); the KS test for all 7 methods fails. Fig. 3(b) 
shows the results for c 20  . Initialization (2) remains the ED 
winner, and RS misses points from 4 of the 15 clusters. All 
seven methods again fail to confirm the hypothesis of the KS 
test.  

 
Fig. 3a: c =10  MM Samples of X15 

 

 
Fig. 3b: c =20  MM Samples of X15 

 

For c 50  in Fig. 3(c), initialization (6) is a slight winner 
for ED. Methods 2, 4 5 and 7 are accepted by the KS test, but 
the RS collected by method #7 still fails to collect samples 
from all 15 labeled subsets. But at c 1000  in Figure 3(d), the 
story changes. Here RS takes the prize, with the lowest ED 
value (0.06 vs 0.02) and highest KS acceptance value (0.88 vs. 
0.05). Please make a visual comparison of the 7 sample 
histograms to the input data in Fig. 3(d): method #7 (RS) is 
clearly a better visual match to the input data than any of the 
MM samples. So, for N=5000 and c=15, the quality of RS 
improves enough to be better than all of the MM methods. One 
last observation: compare the histograms for MM methods (4) 
and (5): in all 4 views in Fig. 3, these two methods produce 
identical samples. Do these two methods always produce the 

same samples? The answer is no. We will demonstrate this 
using data set X6. 

 
 

 
Fig. 3c: c =50  Samples of X15 

 
Fig. 3d: c =1000  Samples of X15 

 
Fig. 4: N MMED( , ( ))V V  and N RSED( , ( ))V V  for samples of X15  

 

To compare the evolution of samples drawn by the seven 
methods, consider Figure 4, which graphs N MMED( , ( ))V V and 



N RSED( , ( ))V V  for X15 for values of cup to 1000 samples in 

increments of 10. For values of c from 5 to about 50, 
initialization (2) provides the most favorable match by ED, but 
after that, all six initializations produce more or less equally 
good matches. Random sampling of the 15 subsets is erratic 
until c reaches 320. For greater numbers of samples, random 
sampling becomes the method of choice. 

Data set X31 (Fig. 5) has 100 points in each of 31 
Gaussian clusters.  None of the samples covers all 31 subsets 
for c 31  (not shown). Figure 6(a) shows the histogram for 
c 50   samples. MM methods 1, 2, 3 and 6 cover all 31 
clusters and ED is minimum for methods 2 and 3. MM 
methods 4 and 5 miss subset #31. The random sample only 
selects points from 22 of the 31 subsets. At c =1000 (Fig. 6(b)) 
all methods cover the data, but the RS still has the greatest ED. 
Figure 6(c) shows that this trend continues as c increases: RS 
produces samples that are about twice as bad with respect to 
the ED measure as any of the MM methods. The p-values for 
the KS test are surprisingly small for this experiment: all seven 
methods fail to pass the test for all choices of c . 

 
 

Fig. 5 X31~N=3100 points in p=2 dimensions, c=31 
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Fig. 6(a): c =50  samples of X31  

 
Fig. 6(b): c =1000  Samples of X31 

 
Fig. 6(c): ED values for samples of X31  

 
Data set X6 (Fig. 7) has c=6 labeled subsets. There are 2 Gaussian 
clusters at the upper left, the right side contains a dense set of dark 
blue points imbedded in a sparse subset, and the lower left portion of 
the scatterplot is a “fried egg” set of clusters comprising a central 
“yolk, bright yellow” surrounded by a ring (the “egg white” ). The 
cardinalities of the 6 subsets are: 50, 92, 38, 45, 158, 16. See the 
color bar in Fig. 7 to associate the labeled subsets with their sizes. 
 

 
Fig. 7: X6~N=399 points in p=2 dimensions, c=6 



 

 
Fig. 8(a): c =5  samples of X6  

 

Fig. 8(b): c =100  samples of X6  
 
Figure 8(a) contains the histograms for c =5 samples, for 
which none of the methods can cover c=6 labeled subsets. 
However, please notice that all 7 samples pass the KS test with 
values well above 0.05. Figure 8(b) displays the results for 
c =100 . The KS test is indiscriminant in that it produces the 
same high value (0.99996) for all seven methods. On the other 
hand, the ED for RS clearly indicates that the random sample 
(#7) is the best match to the input distribution, and visual 
examination of the histograms confirms this. All six MM 
methods are dominated by samples from (dark blue) subset 1 
of X6, which is the subset of widely scattered, least dense 
points in the data set. Random sampling draws the most points 
from cluster 5 (the (beige) egg white), because this cluster 
contains 158 points, which is about 40% of the data. Not many 
of the points in subset 5 attract MM samples because of their 
proximity to each other.   
Figure 9 shows graphs for the distances N MMED( , ( ))V V and 

N RSED( , ( ))V V  for X6 for values of c up to 200. Method 7 

(RS) is clearly superior to all the MM methods for every set of 

samples beyond c =10 . MM initialization (2) appears to be the 

most consistent winner among the MM schemes for  c 60 , 
but all six initializations provide comparable results beyond 
this. The conclusion to be drawn from our experiment with this 
very small but interesting data set is that MM sampling is at its 
best when the condition of Theorem 1 is satisfied ~ viz., that 
there are CS clusters in the data. X6 clearly does not have 
them! 
 

 
 

 Fig. 9: ED values for samples of X6  
 
Figure 10 shows that initializations (4) and (5) don’t always 
produce the same MM sample. The solid red square in Fig. 9 is 
the grand mean ( x  ) of X6, and the hollow red square is the 
furthest point from it, chosen by method (4). The two points 
marked by diamonds on Fig. 9 are the points in the data 
furthest from each other, method (5). While this shows that (4) 
and (5) can produce different initializations, they produced 
identical samples in almost all of our experiments. 

 

 
 

Fig. 10: Initializations (4) and (5) for data set X6 
 

Our last experiment used the Wisconsin Diagnostic Breast 
Cancer data set. Fig. 11 shows the ED graphs for methods 1-7 
on this data set out to 200 MM samples. There is a very 



striking difference between RS (#7) and the six MM methods. 
For this experiment, none of the MM methods competes with 
RS for any number of samples. As the number of samples 
increases, RS improves (ED decreases), and all the MM 
methods also improve, albeit slightly. However, in terms of 
matching proportion vectors, RS is somewhere between 2 and 
3 times as effective as any of the MM schemes. Among the 
MM schemes, method (6) seems most effective, but all six 
initializations cross over each other, so it’s hard to declare any 
of them as “best.” 
 

 
 Fig. 11: ED values for samples of WDBC  

 

VI. CONCLUSIONS 
 

The experiments presented here are not extensive enough to 
support any strong conclusions. However, they do suggest that: 
(i) the  six initializations of MM at equations (1) to (6)  
produce roughly the same samples; (ii) initialization (2), 
choosing the first point in the data, which is always the fastest 
MM method, is often also the best of the six methods in terms 
of Euclidean distance match; (iii) statistical tests such as the 
KS test to assess sample quality are not reliable for small 
samples (small values of c), and further, are not applicable for 
unlabeled data anyway; and (iv) the distribution of subsets in 
the data is very important ~ MM sampling is at its best for CS 
data, and RS is much better if the data contain diverse patterns 
such as those in X6 . Initializations (4) and (5) produce 
identical samples in almost all of our experiments, but we 
demonstrated that this is not always the case. Since these two 
methods are the most costly in terms of CPU time, there is little 
to recommend either of them. 

Our conjecture is that as the number of samples increases, 
RS will overtake the quality of any of the MM methods for 
even CS data. Since RS requires no distance calculations it is 
always superior to MM sampling in terms of the CPU time 
spent to acquire the samples.  
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