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Abstract—A novel self-organizing fuzzy propor-
tional–integral–derivative (SOF-PID) control system is proposed
in this paper. The proposed system consists of a pair of control
and reference models, both of which are implemented by a
first-order autonomous learning multiple model (ALMMo)
neuro-fuzzy system. The SOF-PID controller self-organizes and
self-updates the structures and meta-parameters of both the
control and reference models during the control process “on
the fly”. This gives the SOF-PID control system the capability
of quickly adapting to entirely new operating environments
without a full re-training. Moreover, the SOF-PID control
system is free from user- and problem-specific parameters and
is entirely data-driven. Simulations and real-world experiments
with mobile robots demonstrate the effectiveness and validity of
the proposed SOF-PID control system.

Index Terms—ALMMo neuro fuzzy system, PID controller,
self-organizing system

I. INTRODUCTION

Since being firstly introduced eighty years ago, propor-
tional–integral–derivative (PID) controllers have been exten-
sively used in industry and defense [1]–[3] for automation and
process control thanks to their merits of, low costs, inexpensive
maintenance, simplicity in structure and capability for accurate
control. More importantly, the control parameters of the PID
controllers have clear physical meaning [4], they are explain-
able and interpretable by human experts. The fundamentals of
conventional PID controllers were summarized in [5].

However, the well-known drawbacks of the PID controllers
are: 1) there are some strong recommendations and algorithm
regarding PID tuning such as linear stability techniques [6],
[7]; 2) the performance is fragile for nonlinear, complex and
vague systems that have no precise mathematical models
[8]; 3) the performance is fragile for new data patterns.
The empirical approaches for parameter-tuning usually can
ensure a satisfactory performance of the PID controller, but
it requires heavy involvements of human expertise and a good
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understanding of the problem [6]. To address the second
drawback, various types of modifications have been made,
self-tuning adaptive PID controllers [9], [10] and fuzzy PID
controllers [8], [11]–[16] have been developed and applied
widely.

The architecture of adaptive controllers are pre-fixed dur-
ing the design stage, and the self-tuning schemes concerns
adjusting control parameters only [3], [11], [12], [17], [18].
Meanwhile, the vast majority of existing PID control models
lack self-organizing structure that can be adaptive to entirely
new environments. Therefore, in many real-world applications,
e.g., autonomous driving and mobile robots, the performance
of a well-tuned PID controller can significantly deteriorate
when new situations appear. In other words, the adaptive
(fuzzy) PID controllers are capable of dealing with the shifts
in the data pattern, but are unable to handling the drifts
[19]. More recently, self-evolving fuzzy rule-based controller
[21], [39] was introduced, which is able to self-update the
system architecture during the control process. In this paper,
we propose to improve the evolving mechanisms of these self-
evolving algorithms [22].

In this paper, we propose a self-organizing fuzzy PID
(SOF-PID) control system. The SOF-PID control system is
composed of two parts: i) reference model and ii) control
model. Both models are implemented as autonomous learning
multi-model (ALMMo) neuro-fuzzy systems [22]. A control
system consisting of two models was firstly introduced in
[23], where two neural networks are involved serving as
the respective feedforward and feedback controllers. This
type of structure inherits the advantages of both, feedfor-
ward and feedback controllers, and, generally, results in a
better tracking performance [24] A number of control sys-
tems with similar architectures were introduced afterwards.
[25] presents a generic algorithm-based feedforward-feedback
multiple-input–multiple-output (MIMO) control system pres-
surized water reactor power plant. In [26], a feedforward-
feedback fuzzy adaptive controller consisting of a pair of
a self-adjusting feedforward fuzzy model and a pre-fixed
error-feedback model is designed for multiple-input–multiple-
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output uncertain nonlinear systems. A temperature controller
for of functionally graded plates is proposed in [27], which
combines a feedforward inverse control model with a propor-
tional–derivative (PD) controller for disturbance/noise attenu-
ation. A robust evolving cloud-based controller is introduced
in [28]. This approach is composed of an AnYa type fuzzy
rule-based system [29], [30], which is used for heat-exchanger
plant control, and a reference model, which is for producing
the desired trajectory. Other successful implementation for
real-world problems of feedforward-feedback control systems
include, but not limited to sludge process pilot plant [31];
atomic force microscopes [32]; solid oxide fuel cell system
[33]; piezoelectric-driven mechanism [24], etc. Nonetheless,
the system structures of most existing approaches are designed
by human experts based on prior knowledge of the problems.
The control systems can be partially adjusted only, while the
rest parts have been pre-fixed. Although, a properly designed
control system usually demonstrates excellent performance
under the experimental scenarios, the system structure and
parameters can be less meaningful, and the performance
will deteriorate when the operating environment is changed
significantly.

ALMMo neuro-fuzzy system [22] is a new type of first-
order multi-model system based on AnYa type (neuro-)fuzzy
systems [29], [30]. Comparing with other more widely used
types of (neuro-)fuzzy systems, e.g. Zadeh-Mamdani type
[34], Takagi-Sugeno type [35], AnYa type models simplify
the design process by reducing it to the choice of prototypes
only, which are the most representative data samples and
can be identified in a fully data-driven, nonparametric man-
ner. This simplification significantly reduces the involvement
of human expertise and also lifts the requirement of prior
knowledge of the problems for system identification. The
system structure of the ALMMo system is built upon non-
parametric data clouds identified from streaming data in an
autonomous, self-organizing and transparent manner without
imposing any data generation models pre-defined in advance.
The meta-parameters of the system are updated accordingly
during the identification process without relying on any user-
and problem-specific parameters. ALMMo system is a generic
approach for nonlinear, nonstationary problem approximation,
and it has demonstrated its strong performance on various
benchmark problems [22] and successfully applied on real-
world problems including stock market index prediction and
foreign currency exchange rate prediction [36], [37].

Employing the ALMMo neuro-fuzzy system as the learning
engine, both, the control and reference models of the SOF-PID
control system are able to learn from data streams efficiently
and effectively, and self-organize the rule-based structure and
control parameters “on the fly”. In other words, the SOF-
PID control system is capable of “learning as you control”.
Moreover, the SOF-PID control system can adapt to an entirely
new operating environment effectively without the requirement
of full retraining.

The remainder of this paper is organized as follows. Section
II presents the general architecture of the SOF-PID control

system. The evolving mechanism of the proposed system is
given in section III, and the computtaional complexity analysis
is given in section IV. Section V demonstrates the effectiveness
and validity of the SOF-PID control system through numerical
experiments with mobile robots in simulated and real-world
environments, and Section VI concludes the paper.

II. THE PROPOSED SOF-PID CONTROLLER

A. General Architecture

The proposed SOF-PID control system works as an inverse
plant approximation model [39], and the architecture is given
in Fig. 1.

Fig. 1: Architecture of the SOF-PID control system.

As it is given by Fig. 1, SOF-PID control system consists
of a control model and a reference model. The control model
is for controlling the plant, and the reference model provides
the desired output for the control model. Each models has an
IF. . . THEN rule-based structure and is implemented using the
first-order autonomous learning multi-model (ALMMo) neuro-
fuzzy system [22] as the “learning engine”. The proposed
SOF-PID control system also offers the possibility of imple-
menting several subsets of PID-based controllers, e.g., P, PI,
PD, etc. In this paper, we consider the general implementation
of PID-based controllers by taking all three (proportional,
integral, derivative) components as the control model inputs.

For the control model, the ALMMo system will self-
organise during the process, a set of IF. . . THEN rules from
the controller inputs xt = [εt,Σt,∆t]

T , namely, the tracking
error, εt (the difference between the plant output, yt and the
desired trajectory, rt), the discrete derivative and integral of
the tracking error, ∆t and Σt:

εt = rt − yt; ∆t = εt − εt−1; Σt =

t−1∑
k=0

εk; (1)

where t denotes the current control step; t− 1 and t stand for
the consecutive control steps.

Each IF. . . THEN rule is formulated in the following form
as given below, and thus, it can be viewed as a PID controller
in its THEN part, but with the parameters learned from the



historical data and zone of influence limited and determined
by its IF part:

Rc
i : IF (xt ∼ pi,t−1) THEN (ui,t = aTi,t−1x̄t) (2)

where ∼ denotes the similarity or a fuzzy degree of sat-
isfaction/membership [30]; x̄t = [xTt , 1]T ; pi,t−1 is the
prototype of the ith IF. . . THEN rule at the current step,
which is identified and updated from the historical control
inputs x1, x2,. . . , xt−1 during the control process; ai,t−1 =
[Pi,t−1, Ii,t−1, Di,t−1, Ri,t−1]T ; Pi,t−1, Ii,t−1 and Di,t−1 are
the controller gains; Ri,t−1 is the compensation of the operat-
ing point; ui,t−1 = Pi,t−1εt + Ii,t−1Σt +Di,t−1)∆t +Ri,t−1
denotes the output of this IF. . . THEN rule. Therefore, each
IF. . . THEN rule in the rule base of the control model can be
viewed as a PID controller (with the structure given by Fig. 2),
and the overall control signal produced by the control model
is formulated by equation (3) as a fuzzily weighted linear
combination of outputs of the identified IF. . . THEN rules [22]:

ut = fc(xt) =

Mc∑
i=1

λi,tui,t. (3)

where fc(·) is the mathematical model between the inputs
and output of the control model, which itself is a non-linear
function approximated by the ALMMo neuro-fuzzy system ;
Mc is the number of IF. . . THEN rules in the rule base of
the control model; λi,t denotes the firing strength of the ith
IF. . . THEN rule, which is calculated as relative data density
determined by the following expression [22]:

λi,t =
γi,t(xt)∑Mc

k=1 γk,t(xt)
; (4)

where γk,t denotes the local data density calculated based on
the data cloud, Cc

k associated with the prototype of the kth
IF. . . THEN rule [22]:

γk,t(xt)

=
1

1 +
S2
k,t−1||xt−pk,t−1||2

(Sk,t−1+1)(Sk,t−1χk,t−1+||xt||2)−||xt−Sk,t−1pk,t−1||2

;

(5)

where Cc
k is composed of the historical controller inputs

associated with prototype pk,t−1; Sk,t−1 is the support of
Cc
k , namely, the number of members; χk,t−1 is the av-

erage scalar product, which is calculated by χk,t−1 =
1

Sk,t−1

∑
x∈Cc

k
||x||2; ||x|| denotes the norm of x and can be

calculated by ||x|| =
√
xTx.

The reference model shares the same operating mechanism
as the control except for the difference in the IF. . . THEN rule
bases. The IF. . . THEN rules identified by the reference model
are formulated in the following form due to the different input
signal:

Rr
i : IF (zt ∼ qi,t−1) THEN (ûi,t = bTi,t−1z̄t) (6)

where zt = [εt−1, yt−1]T ; z̄t = [zTt , 1]T ; qi,t−1 is the
prototype of the ith IF. . . THEN rule of the reference model,

and it is identified and updated from the historical control
inputs z1, z2,. . . , zt−1 during the control process; bi,t−1 =
[Qi,t−1, Yi,t−1,Wi,t−1]T ; Qi,t−1,, Yi,t−1 are the controller
gains; Wi,t−1 is the compensation; ûi,t = Qi,t−1εt−1 +
Yi,t−1yt−1 + Wi,t−1. The mathematical model between the
inputs and output of the reference model is denoted as:
ûi,t = fr(zt).

In the following subsection, the operating mechanism of the
SOF-PID control system is described in detail.

Fig. 2: Architecture of a PID controller.

B. Operating Mechanism

The SOF-PID control system requires to be initialized be-
cause the reference model of the proposed system is designed
to provide the desired output for the control model. Therefore,
in the first N control steps, the SOF-PID control system uses a
PID controller with the same architecture as depicted in Fig. 2
to control the plant, meanwhile it keeps collecting the data for
initialization. In this paper, we use the PID controller because
of its simplicity and ease of implementation. Nonetheless,
one can also initialize the system by legacy data or using
controllers of other types, i.e. fuzzy controllers, self-evolving
controllers for the starting period.

Stage 0. For the first N control steps, the proposed system
uses a PID controller to control the plant; meanwhile, keeps
collecting the data for initialization.

Stage 1. At the control step t = N , both the control and
reference models are initialized based on the historical data,
and then, it goes to Stage 2.

Stage 2. The proposed system reads the current tracking
error (t ← t + 1) and calculates the discrete derivative and
integral of the tracking error, namely, εt, Σt and ∆t using
equation (1).

Stage 3. The reference model produces the desired output
ût based on the inputs: zt = [εt−1, yt−1]T and updates its
structure and meta-parameters based on the control signal of
the previous control step ut−1.

Stage 4. The control model produces the control signal
ut based on the inputs: xt = [εt,Σt,∆t]

T and updates its
structure and meta-parameters based on the desired output,
ût.

Stage 5. The proposed system goes back to Stage 2 for the
next time control step.



It has to be stressed that the amount of historical data
for initializing the SOF-PID control system, namely, N is
not a problem- and user-specific parameter, and it can be
determined based on the user preference. Generally, the larger
N is, the better and more stable the proposed system performs.
Meanwhile, in the numerical experiment part (section VI), we
will demonstrate that the SOF-PID control system surpasses
the alternatives with a small value of N .

III. SELF-EVOLVING MECHANISM OF SOF-PID CONTROL
SYSTEM

In this section, the evolving mechanism of the proposed
SOF-PID control system will be presented. As it has been
stated in the previous sections, the SOF-PID control system
is composed of a pair of control and reference models, and
both models employ a first-order ALMMo system as the
“learning engine”. Both models self-organize and self-evolve
their system structure and meta-parameters following the same
algorithmic procedure, and, thus, we will focus on describing
the evolving mechanism of the control model. The evolving
mechanism of the reference model follows the same principles.
It is worth to be noticed that despite the SOF-PID control
system requires to be initialized by historical data, the control
and reference models learn from data on a sample-by-sample
basis.

The brief algorithmic procedure of the control model is
given as follows [22].

Step 0. System Initialization: The global meta-parameters
of the control model are initialized by the input at the first
control step, xt = [εt,Σt,∆t]

T (t = 1):

µt ← xt; Xt ← ||xt||2; Mc ← 1; (7)

where µt and Xt are the global mean and average scalar
product, respectively.

The first data cloud of the control model, Cc
Mc

is initialized
by xt: Cc

Mc
← {xt}. The meta-parameters of C, which

includes the prototype, pMc,t, scalar product, XMc,t, support,
SMc,t, accumulated firing strength, ΛMc,t, utility, ηMc,t, and
the control step when Cc

Mc
is initialized, IMc , are given as:

pMc,t ← xt; χMc,t ← ||xt||2; SMc,t ← 1;

ΛMc,t ← 1; ηMc,t ← 1; IMc
← 1;

(8)

The first IF. . . THEN rule in the rule base of the control model
is initialized as:

Rc
Mc

: IF (xt ∼ pMc,t) THEN (uMc,t = aTMc,t−1x̄t) (9)

and the consequent parameters of the IF. . . THEN rule are
initialized as:

aMc,t ← 0(L+1)×1; ΘMc,t ← ΩoI(L+1)×(L+1); (10)

where L is the number of inputs, L = 3 for the control model
and L = 2 for the reference model; 0(L+1)×1 is a (L+ 1)×1
dimensional vector; ΘMc,t is the co-variance matrix of the

IF. . . THEN rule Rc
Mc

; I(L+1)×(L+1) is a (L + 1) × (L + 1)
identity matrix; Ωo is a user-controlled parameter initializing
the co-variance matrix and Ωo = 10, which follows the same
setting as [22].

Step 1. Control Signal Generation: For the next control
step (t← t+1), the new input xt = [εt,Σt,∆t]

T is available.
Each IF. . . THEN rule within the control model produces the
firing strength λi,t (i = 1, 2, . . . ,Mc) using equation (4). Then,
the control signal is generated by: ut = fc(xt).

Step 2. Global Meta-Parameter Updating: The global
mean and average scalar product are updated by xt using the
following equations, respectively:

µt ←
t− 1

t
µt−1+

1

t
xt; Xt ←

t− 1

t
X2
t−1+

1

t
||xt||2; (11)

The data densities at xt and the identified prototypes pi,t−1
(i = 1, 2, . . . ,Mc) are, then, calculated by:

γt(w) =
1

1 + ||w−µt||2
Xt−||µt||2

; (12)

where w = xt,p1,t−1,p2,t−1, . . . ,pMc,t−1.
Step 3. System Structure Updating: To update the system

structure, Condition 1 is firstly checked:

Condition 1: IF (γt(xt) > max
i=1,2,...,Mc

(γt(pi,t−1)))

OR (γt(xt) < min
i=1,2,...,Mc

(γt(pi,t−1)))

THEN (xt is a new prototype)

(13)

If Condition 1 is met, Condition 2 is, then, checked to
determining whether the new data cloud that is associated with
xt is overlapping with any of the previously identified data
clouds:

Condition 2: IF (γt(xt) > 0.8)

THEN (xt is very close to pi,t−1)
(14)

where γt(xt)i s calculated by equation (5). If both Conditions
1 and 2 are satisfied, the nearest data cloud Ccn∗ to xt is found
out by equation (15):

n∗ = argmax
i=1,2,...,Mc

(||xt − pi,t−1||); (15)

and the new data cloud is merged with Cc
n∗ (Cc

n∗ ← Cc
n∗ +

xt):

Sn∗,t ←
dSn∗,t−1 + 1e

2
; pn∗,t ←

pn∗,t−1 + xt
2

;

χn∗,t ←
χn∗,t−1 + ||xt||2

2
;

(16)

where d·e denotes the operation of rolling up to the nearest
integer.

If Condition 1 is met, and Condition 2 is unsatisfied, the
new data cloud with xt as the prototype is added to the system
structure (Mc ← Mc + 1): CcMc

← {xt} with the meta-
parameters set by equation (8).



The IF. . . THEN rule RcMc
corresponds to CcMc

is initial-
ized in the same form as equation (9) with the consequent
parameters set as:

aMc,t−1 ←
1

Mc − 1

Mc−1∑
j=1

aj,t−1; ΘMc,t ← ΩoI(L+1)×(L+1).

(17)
Otherwise, if both Conditions 1 and 2 are not met, xt

is assigned to the nearest data cloud Cc
n∗ with the meta-

parameters updated as:

Sn∗,t ← Sn∗,t−1 + 1;

pn∗,t ←
Sn∗,t−1
Sn∗,t

pn∗,t−1 +
1

Sn∗,t
xt;

χn∗,t ←
Sn∗,t−1
Sn∗,t

χn∗,t−1 +
1

Sn∗,t
||xt||2.

(18)

For each data cloud Ccn∗ that does not receive new member
at the current control step, its meta-parameters are set as:

Si,t ← Si,t−1; pn∗,t ← pn∗,t−1; χn∗,t ← χn∗,t−1. (19)

Step 4. IF. . . THEN Rule Base Quality Monitoring: The
firing strength of each IF. . . THEN rule, λi,t is calculated by
equation (4) and the accumulated firing strength is updated
(i = 1, 2, . . . ,Mc):

Λi,t ← Λi,t−1 + λi,t. (20)

The utility of each rule is calculated by:

ηi,t ←
1

t− Ii
Λi,t. (21)

Based on the updated utility, Condition 3 is used for
removing the data cloud and fuzzy IF. . . THEN rule that
contributes little to the overall control signal [30], [38]:

Condition 3: IF (ηi,t > ηo)

THEN (Rc
n∗ and Cc

n∗ are removed)
(22)

where ηo is another user-controlled parameter for monitoring
the quality of IF. . . THEN rules, and ηo = 0.1 following [22].

If Rc
n∗ and Cc

j meet Condition 3, they are removed from
the system structure and Mc ←Mc − 1.

Step 5. Consequent Part Updating: After the system struc-
ture updating, the consequent parameters of the IF. . . THEN
rules in the rule base are updated by the FWRLS method as
(i = 1, 2, . . . ,Mc) [39]:

Θi,t ← Θi,t−1 −
λi,tΘi,t−1x̄tx̄

T
t Θi,t−1

1 + λi,tx̄Tt Θi,t−1x̄t
. (23)

ai,t ← ai,t−1 + λi,tΘi,tx̄t(ût − aTi,t−1x̄t) (24)

Step 6. Rule Base Updating: All the IF. . . THEN rules in
the rule base are updated with the new premise and consequent
parameters (i = 1, 2, . . . ,Mc):

Rc
i : IF (xt ∼ pi,t) THEN (ui,t = aTi,t−1x̄t) (25)

After this, the system goes back to Step 1 for the next control
step.

The reference model can be learned using the same princi-
ples as described in this section. It needs to be noticed that
the inputs of the reference model are zt = [εt−1, yt−1)]T and
the desired output of the reference model is the output of the
control model, ut. Detailed mathematical proof for the uniform
stability of the ALMMo system can be found in [40].

IV. EXPERIMENTAL STUDY

The performance of the proposed self-organizing fuzzy
PID (SOF-PID) control system has been evaluated through
several experiments. The experiments presented in this paper
are organized as follows. Firstly, experiments in a simulated
environment created in Gazebo (see Fig. 3) were performed to
verify the validity and effectiveness of the proposed SOF-PID
system. Then, the performance of the proposed controller was
evaluated in various real-world environments using a Pioneer
3DX Mobile Robot (see Fig. 4).

Fig. 3: Simulated Gazebo environment with the mobile robot
in the middle.

Fig. 4: Pioneer 3DX robot with a laser finder on top and 16
sonar sensors; 8 at front and 8 at rear.

A. Computational Complexity Analysis

In this section, the computational complexity of the pro-
posed self-organizing fuzzy PID (SOF-PID) control system is



analyzed. As the proposed control system is composed of a
pair of control and reference models and the two components
are, practically, the same except for the differences in terms of
model inputs and output, we only analyze the computational
complexity of the control model for clarity. It has to be stressed
that the same conclusion applies to the reference model as
well.

At the initial stage, the proposed approach requires to be
primed by a PID controller until sufficient historical data has
been collected. The computational complexity of the SOF-PID
system at this stage is the same as a PID controller, namely,
O(LN).

Then, both control and reference models of SOF-PID are
initialized by historical data, and continue to learn and produce
control/reference signal at each control step. However, as the
computational complexity of the control model is dynamically
changing all the time, we assume that the analysis is conducted
at the tth time instance.

For the control model, the computational complexity of
step 0 is negligible since this step concerns mainly parameter-
initialization and will be performed once only. For step 1, the
computational complexity of calculating the local data density-
based firing strength is O(LMc) thanks to the recursive calcu-
lation form of equation (5) and the complexity for calculating
the control signal is also O(LMc).

Steps 2 and 3 concern mainly the system structure and
meta-parameter updating. The complexity for calculating the
data density in step 2 is O(L(Mc + 1)). The computational
complexity for updating meta-parameters globally and locally
per rule is O(L). The complexity for adding new rules to
the control model is negligible. Therefore, the computational
complexity of steps 2 and 3 is O(L(Mc + 1)).

Step 4 is mostly for calculating the local data density, and
thus, the complexity is O(LMc). Updating the consequent
parameters of IF. . . THEN rules consumes significantly more
computational resources because the co-variance matrix needs
to be updated at each control step and, thus, the compu-
tational complexity of step 5 is O(L2Mc). Step 6 updates
the IF. . . THEN rules in the rule base, and its computational
complexity is negligible as well.

Therefore, the overall computational complexity of the
control model of the SOF-PID is O(L2Mc) for each control
step. The computational complexity of the reference model
can be derived following the same principles.

B. Experimental Settings

In order to evaluate the performance of the proposed SOF-
PID system, control of the forward motion of the mobile
robot was implemented. The architecture of the overall forward
move framework with a controller as a dotted block is shown
in Fig. 5.

The simulated mobile robot (shown in the middle of Fig. 3)
in the Gazebo environment is equipped with a 360o scanning
LIDAR sensor. The proposed SOF-PID system takes as the
plant output, y the distance from the robot to the nearest
detected object measured by the LIDAR sensor. The Pioneer

3 robot is equipped with two types of input sensors that are
a laser range finder and a set of 16-sonar sensors targeting
at different angles, see Fig. 4. Similarly, the system takes as
the plant output, y the distance between the robot and the
nearest object in front measured by the two frontal sonars. The
minimum distance is set to r = 1 meter and r = 0.5 meter for
the two cases, respectively. In the experiments performed in
this paper, we use the same setting for the SOF-PID control
system unless specifically declared otherwise. The number of
time instances, N to initialize the SOF-PID using a PID prime
controller is set as: N = 10. The PID prime controller is
defined as follows:

u = Pε+ IΣ +D∆ (26)

where P = 0.25, D = 0.1 and I = 0.
In order to justify the validity and effectiveness of the

SOF-PID controller in various environments the experiments
involve the commonly used PID [5] and Takagi-Sugeno (TS)
fuzzy controllers [35] as comparative approaches following
the same experimental setting. For a fair comparison, the PID
controller used for comparison is the same as the PID prime
controller. The TS fuzzy controller is defined as follows:

IF (ε is V ery Low) THEN(u = 0.25ε+ 0.001∆) (27a)

IF (ε is Low) AND (∆ is High)

THEN(u = 0.5ε+ 0.002∆)
(27b)

IF (ε is Medium) AND (∆ is High)

THEN(u = 0.5ε+ 0.002∆)
(27c)

IF (ε is Medium) AND (∆ is Low)

THEN(u = ε+ 0.03∆)
(27d)

IF (ε is High) THEN(u = 2ε+ 0.02∆) (27e)

Fig. 5: Block diagram of SOF-PID controller for forward
move.

The membership functions of the antecedent parts of the
fuzzy rules are of triangular type and visualized in Fig. 6.



It is worth to be noticed that due to the specific requirements
of experimental scenarios, the mobile robot must not go across
the target in case of potential damages it may cause, both PID
prime controller and TS fuzzy controller do not involve the
integral of tracking error as input to prevent the mobile robot
from moving fast when it is close to the target. The mobile
robot will stop immediately if it goes beyond the target. All
the reported experimental results are the average of 10 Monte-
Carlo experiments unless specially declared otherwise.

Fig. 6: Membership functions of the antecedent part.

C. Experimental Results

In this subsection, the experiments are presented to verify
the proposed concept and the general principles.

Firstly, we perform experiments in the simulated Gazebo
environment with the mobile robot to evaluate the influence of
the different values of N = {5, 10, 15, 20}, namely, the num-
ber of steps used to initialize the controller, on the performance
of the proposed SOF-PID controller. The correspondingly error
and the plant output curves with different experimental settings
are shown in Figs. 7 and 8, respectively. The results of the PID
controller (with same setting as the PID prime controller used
by SOF-PID) are also presented as the baseline.

Fig. 7: The influence of different N on the SOF-PID control
system performance in terms of plant output.

Fig. 8: The influence of different N on the SOF-PID control
system performance in terms of tracking error.

As we can see from both figures, the proposed SOF-PID
controller requires a smaller number of steps to converge than
a PID controller in all the cases. One may also notice that SOF-
PID takes more control steps before the mobile robot reaches
the target when we increase the prime-training control steps.
This is due to the fact that the SOF-PID is essentially trying
to approximate the control error converging process of the
priming PID controller. As the integral of tracking error is not
used as the input of the PID prime controller, the converging
speed consistently decreases as the tracking error decreases.
As a result, increasing the prime-training control steps will
decrease the convergence speed of SOF-PID. Nonetheless, it
has to be stressed that the SOF-PID control system is not
mimicking the behaviour of the PID prime controller, but is
trying to learn the relationship between the controller inputs
and desired controller output from the historical data collected
by the PID prime controller and further to self-adjust its
control gains to adapt to the changing environment. The curves
in Figs. 7 and 8 further suggest that the newly proposed SOF-
PID controller can adapt to the environment even if it is trained
with only five samples.

To further evaluate the performance of the proposed SOF-
PID control system, four real-world experiments (see Figs.
9(a)-(d)) are performed. Details of the four experiment sce-
narios are given as follows:

Scenario 1 (Fig. 9(a)): The robot goes directly from one
side of the room to a grey cupboard at the other side. The
distance between the target (grey cupboard) and the starting
position of the robot is 3.17 meters. There is one soft bump
in the middle of the route.

Scenario 2 (Fig. 9(b)): This scenario is the same as the first
one except that there are two soft bumps on the route.

Scenario 3 (Fig. 9(c)): In this scenario, the robot starts on
the grass and goes straight to the target. The surface is changed
to a brick road half way through. The distance between the
starting position and the target is 4.07 meters.

Scenario 4 (Fig. 9(d)): In this scenario, the robot goes
straight and stops before the wall. The robot, firstly, goes
downwards on a slope, and then climbs another slope to reach



Fig. 9: Four different experiment scenarios.

the target. The distance between the starting position and the
wall is 5 meters.

The ground surface of each experimental scenario is com-
posed of either, patches with different levels of friction or
slopes with different gradients. The mobile robot will go
through a path with different surface conditions before reach-
ing the target, which allow us to evaluate the adaptability of
a controller to a changing environment.

The experimental results obtained with the SOF-PID system
are depicted in Figs. 10(a)-10(d), and the performance is also
compared with the performance of the PID and TS fuzzy
controllers in terms of number of control steps for the robot to
reach the target, the controller error and the plant output. From
Fig. 10 one can see that the SOF-PID control system performs
better than the other controllers in all the scenarios. It takes
much less control steps for the control error to converge to
zero compared with the two alternatives.

In order to illustrate the transparency and human-
interpretability of the proposed SOF-PID controllers, we also
illustrate the evolution of the number of fuzzy IF. . . THEN
rules in both, the control model and the reference model during
a particular experiment conducted on scenario 1 in Fig. 11. It
has to be noticed that Fig. 11 starts from the 11th control step
because the first 10 steps are performed with the PID controller
used for priming. The IF. . . THEN rules of both models at
the end of the process are also presented in Tables I and II,
respectively.

V. CONCLUSION

In this paper, a novel SOF-PID control system is proposed,
which consists of a pair of control and reference models.
The control model and reference model are both implemented
by first-order ALMMo neuro-fuzzy systems. Compared with
the alternative controllers, the SOF-PID control system is

capable of self-organizing and self-evolving its system struc-
tures and meta-parameters during the control process “on the
fly”, which enables the proposed system to adapt to new
environments autonomously without a full re-training. We also
mathematically prove the stability of the proposed system.
The SOF-PID control system is a generic approach and offers
different implementation possibilities. It effectively deals with
non-linear processes and requires no prior knowledge of the
dynamics of the process and plant. It only requires a very
short priming of 5-10 steps. Simulations on Gazebo platform
and real-world experiments using Pioneer robot demonstrate
that the proposed SOF-PID control system is able to provide
stable control performance even in changing environments and
its performance surpasses the alternative controllers.

It has to be stressed that the main purpose of this paper is to
demonstrate the general concept and principles of SOF-PID,
and provides primary experiments to prove the effectiveness
and validity. The drawback of the proposed control system
is the lack of theoretical idea about the stability. As future
works, we will analyse its stability and further investigate
the performance of the proposed SOF-PID control system in
various types of challenging environments and compared with
other advanced control approaches. We will also implement
it for controlling other types of mobile robot movements, i.e.
rotating, grabbing, as well as for other industrial processes,
i.e. temperature and pressure control.
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[31] D. Vrečko et al., “Improvement of ammonia removal in activated sludge
process with feedforward-feedback aeration controllers,” Water Sci.
Technol., vol. 53, no. 4–5, pp. 125–132, 2006.

[32] L. Y. Pao, J. A. Butterworth, and D. Y. Abramovitch, “Combined

feedforwardfeedback control of atomic force microscopes,” in American
Control Conference, 2007, pp. 3509–3515.
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