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Abstract—In this paper, we focus on two main 3-valued logics
used by the fuzzy logic community. The Gödel-Dummett logic
and the Łukasiewicz one. Both are based on the same language
of implication and negation. In both, we consider fragments
consisting of formulas formed with one variable. We investigate
the proportion of the number of true (or satisfiable) formulas of
a certain length n to the number of all formulas of such length.
We are especially interested in the asymptotic behavior of this
fraction when length n tends to infinity. If the limit exists it is
represented by a real number between 0 and 1 which is called the
density of truth or the density of SAT. Using the powerful theory
of analytic combinatorics, we state several results comparing the
density of truth and the density of satisfiable formulas for both
Gödel-Dummett and Łukasiewicz logics.

Index Terms—Fuzzy logic, Gödel-Dummett logic, Łukasiewicz
logic, analytic combinatorics, generating functions, asymptotic
densities, density of truth

I. INTRODUCTION

Gödel-Dummett and Łukasiewicz 3-valued logics play
a crucial role in the mathematics of fuzzy logic. Nice overview
and the draught of the history of fuzzy logic is well presented
in classical Petr Hájek [9] paper and in the other paper at the
same volume by Vilém Novák [18]. Fuzzy logic is used to
express facts in which we are able to describe the vagueness
phenomenon and the notion of uncertainty treated as degrees
of truth. As it is mentioned in Vilém Novák’s paper

Fuzzy logic is a special many-valued logic address-
ing the vagueness phenomenon and developing tools
for its modeling via truth degrees taken from an
ordered scale. It is expected to preserve as many
properties of classical logic as possible.

In this paper we investigate only density problems for 3-
valued logics in the simplest case of one variable formulas. We
know that formulas expressing even simple fuzzy properties
within 3-valued logic may be extremely long. Hence the truth
or satisfiability of these formulas is difficult to estimate. Using
technics developed in this paper, we may calculate for long
formulas the likelihood of being satisfiable or tautology before
their actual evaluation.

This paper is a continuation of quantitative research in
logic and computability. For a formal logical system equipped
with predicate variables and logical connectives we denote
by Form the set of all formulas. The set Form is naturally
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equipped with the standard notion of length of formulas which
for a formula α ∈ Form will be denoted by l(α). One may
see that for every n ∈ N the set of formulas of length n is
finite. This leads to the following definition. For any set of
formulas A ⊂ Form we define its asymptotic density, denoted
by µ(A), as follows:

µ(A) = lim
n→∞

|{α ∈ A : l(α) = n}|
|{α ∈ Form : l(α) = n}|

, (1)

where |B| means the cardinality of the finite set B. Note
that the density may not exist for some sets of formulas. The
number µ(A) if it exists is an asymptotic probability of finding
a formula from the class A among all formulas from Form or
it can be interpreted as the asymptotic density of the set A in
the set of formulas Form. It can be seen immediately that the
density µ is finitely additive, so if A and B are disjoint classes
of formulas such that µ(A) and µ(B) exist then µ(A∪B) also
exists and µ(A ∪B) = µ(A) + µ(B). It is straightforward to
observe that for any finite set A, the density µ(A) exists and
is 0. Conversely for co-finite sets the density also exists and
is always 1. The density µ is not countably additive. A good
counterexample is to take the denumerably family {Ai}i∈N of
singletons of formulas from our language under any natural
order of formulas. Obviously µ(Ai) = 0 but µ(

⋃∞
i=0Ai) = 1.

If A is the set of tautologies of a given logic, then µ(A) is
called the density of truth of this logic.

There are numerous results on the density of truth and
other asymptotic properties of logics in literature. In the first
place, the density was computed for various fragments of
classical propositional logic (see [16], [20], [1] and [7]). The
problem of asymptotic equality between density of truth of
classical and intuitionistic logic with implication was raised
by Moczurad, Tyszkiewicz and Zaionc in [17] and continued
by Kostrzycka in [11]. In Kostrzycka paper it was shown that
the implicational fragments of classical and intuitionistic logic
with two propositional variables are asymptotically different.
Later on it was shown by Gardy, Fournier, Genitrini and
Zaionc in [5] that the asymptotic difference between classical
and intuitionistic logics of implication over the same language
with the finite numer of propositional variables tends to zero
when the number of variables tends to infinity. A similar
research was performed in [14] comparing classical and in-
tuitionistic logics of one variable in the language equipped
with implication and negation. Obviously, intuitionistic logic
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INT is a subset of classical one CL. The appropriate densities
of truth were obtained analytically. It occurred that numer-
ically µ(CL) ≈ 0.4232 whereas µ(INT ) ≈ 0.3953. So,
for the first time we get relative density result stating that
for a long implicational-negational classical tautology of one
variable there are about 93% chances to have the intuitionistic
proof. For more variables the difference between classical
and intuitionistic logics of implication and negation is getting
smaller as it is proved in [5]. As it was proved in [14]
the implicational- negational fragment with one propositional
variable of intuitionistic logic is equal to the appropriate
fragment of the Gödel-Dummett logic. Furthermore, one may
easily prove that the →,¬ fragment with one variable of the
Gödel-Dummett logic is, in fact, the appropriate fragment of
3-valued linear logic, see [13]. In this paper we shall denote
this fragment as G. Then, without getting into details, in [13]
we have obtained the density of the set of tautologies of
Gödel-Dummett logic and µ(E(G)) ≈ 0.3953. And this is
our starting point for a new research described in this paper.

II. NOVELTY OF THIS WORK

The main novelty of this work is the proof of existence
and the exact analytically obtained value of the density of
tautologies which is approximately 0, 3824 and the density of
satisfiable formulas of about 0, 8378 for fuzzy Łukasiewicz’s
logic of one variable. We prove that randomly chosen huge
formula of Łukasiewicz’s logic has quite good chances, almost
84% to be satisfiable. This way we may also compute the
relative density of Łukasiewicz logic being a fragment of the
classical logic answering the intriguing question how big
is the fuzzy logic fragment of the classical one. The class
consisting of classical tautologies of one variable has a density
of approximately 0.4232 obtained in papers [21] and [14]. The
density of our class of Łukasiewicz tautologies being a proper
subset of classical is approximately 0.3824. So finally, we
obtain that the random long formula chosen from the set of
classical tautologies has pretty good chances, more than 90%
to be provable in Łukasiewicz fuzzy logic.

III. GÖDEL-DUMMETT AND THE ŁUKASIEWICZ LOGICS

The Gödel-Dummett and the Łukasiewicz logics are differ-
ent propositional logics, both being a part of classical logic.
They are based on different axiom systems. And they have two
different semantics as well. However, as many-valued logics
they are both treated as important parts of the so-called fuzzy
logic technology. The Gödel-Dummett and the Łukasiewicz
logics have the Hilbert-style axiomatizations which are based
on the axiomatization for the Monoidal T-norm based Logic
(or shortly MTL), see [2]. Another important fuzzy logic is
the Basic fuzzy Logic (or shortly BL), the logic of continuous
t-norms, see [8]. In our research we focus on three valued
implicational-negational fragments of the Göodel-Dummett
logic and the Łukasiewicz one. Moreover, our approach in
counting tautologies will be purely semantic. Let us recall
the matrixes of these logics presented at Table I and Table
II. We use the symbols →G and ¬G for the Göodel-Dummett

implication and negation while→L and ¬L is reserved for the
appropriate Łukasiewicz connectives. We denote fragments of
the considered logics as G→,¬ and Ł→,¬. The implicational-
negational fragment of 3-valued Göodel-Dummett logic is
characterized by the matrix G = 〈{0, 12 , 1},→G,¬G, {1}〉,
where the operations {→G,¬G} are defined as in Table I. The
fragment of 3-valued Łukasiewicz logic is characterized by
the matrix L = 〈{0, 12 , 1},→L,¬L, {1}〉, presented in Table
II. One may see that the matrixes for implications differ in
exactly one place: 1

2 →G 0 = 0, while 1
2 →L 0 = 1

2 .

TABLE I
TRUTH TABLE OF 3-VALUED GÖODEL-DUMMETT LOGIC

→G 0 1
2

1 ¬G
0 1 1 1 1
1
2

0 1 1 0

1 0 1
2

1 0

TABLE II
TRUTH TABLE OF 3-VALUED ŁUKASIEWICZ LOGIC

→L 0 1
2

1 ¬L
0 1 1 1 1
1
2

1
2

1 1 1
2

1 0 1
2

1 0

This difference implies the difference for negations: ¬G( 1
2 ) =

0 and ¬L( 1
2 ) = 1

2 since negation ¬Gp is originally defined
in fuzzy logic as p →G ⊥, an analogous definition exists for
¬L. Other standard functors of conjunction and disjunction
are defined in the same way: p ∧ q = min{p, q} and p ∨
q = max{p, q} (we omit here the subscripts). The considered
logics treated as parts of the fuzzy logic may be enriched
with other functors i.e. strong conjunction. However, in our
paper we shall focus on the sets of implicational-negational
formulas. It is denoted as Form→,¬.

Example 1. Gödel-Dummett and Łukasiewicz logics are not
identical. For example the formula (¬p→ ¬q)→ (q → p) is
a tautology of Ł→,¬, but is not a tautology of G→,¬ and on
the contrary the formula ¬p → ¬(¬p → p) is a tautology of
G→,¬ but is not a tautology of Ł→,¬.

IV. FRAGMENT OF ŁUKASIEWICZ’S LOGIC WITH ONE
VARIABLE

The density of truth for the implicational-negational frag-
ment with one variable of the 3-valued Gödel-Dummett logic
has been already determined in [13]. We know analytically this
quantity. Numerically, it is approximately 0.3953. Below, we
present the semantic method of classifying formulas to deter-
mine generating functions and to count the density of truth for
the Łukasiewicz 3-valued logic. The language of implicational
- negational formulas Form→,¬p of one propositional variable
p consists of formulas from Form→,¬ built from the single
variable p by means of negation and implication only. One



variable fragments of 3-valued Gödel-Dummett logic G→,¬

and Łukasiewicz logic Ł→,¬ will be denoted respectively
by G→,¬p and Ł→,¬p . In the set Form→,¬p we introduce an
equivalence relation ≡ in the standard way:

Definition 2. For formulas ϕ,ψ ∈ Form→,¬p we write ϕ ≡ ψ
if both ϕ→ ψ and ψ → ϕ are tautologies of the of 3-valued
Łukasiewicz logic.

Since the relation ≡ is an equivalence relation it divides the
set Form→,¬p into some equivalence classes. Such a quotient
algebra of formulas is known as the Tarski-Lindenbaum alge-
bra. Every formula from our language Form→,¬p falls into one
of the 12 equivalence classes. Below, we lists the equivalence
classes represented by their simplest representatives.

I =[p]≡,

II =[¬p]≡,
III =[¬p→ p]≡,

IV =[p→ ¬p]≡,
V =[(¬p→ p)→ p]≡,

V I =[¬(¬p→ p)]≡,

V II =[¬(p→ ¬p)]≡,
V III =[(¬p→ p)→ ¬(p→ ¬p)]≡,
IX =[¬((¬p→ p)→ p)]≡,

X =[((¬p→ p)→ p)→ ¬((¬p→ p)→ p)]≡

T =[p→ p]≡,

0 =[¬(p→ p)]≡.

One may see that the class T is the class of tautologies
of Ł→,¬p whereas class denoted as 0 is the class of contra
tautologies. We may observe that all classes except IX and
obviously O are satisfiable meaning that all formulas from
those classes are satisfiable. We define semantic operations
{→,¬} on these classes by [α]≡ → [β]≡ = [α → β]≡ and
¬[α]≡ = [¬α]≡. We may displayed these operations in the
12×12 truth table presented in Table III. The order on classes
of equivalence is defined as [α]≡ ≤ [β]≡ iff [α → β]≡ =T.
It forms the following diagram of a distributive lattice with
the class of tautologies T being on the top (see Fig. 1.) This
lattice is denoted as L12 . From the finiteness of the Tarski-
Lindenbaum algebra presented above, we see that the logic
Ł→,¬p is locally finite (locally tabular). Therefore we are able to
use the proof technique developed in [12] which is summarized
in Theorem 7, Corollary 8. Using this in Section VIII we shall
prove the existence of the asymptotic density for the set of
tautologies and satisfiable formulas for the Łukasiewicz fuzzy
logic of implication and negation with one variable.
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Fig. 1. The lattice L12 of equivalence classes.

TABLE III
TARSKI-LINDENBAUM 12× 12 TRUTH TABLE ALGEBRA.

→ 0 I II III IV V VI VII VIII IX X T ¬

0 T T T T T T T T T T T T T
I II T IV T IV T II V V IV IV T II
II I III T III T T V I V III III T I
III VI V II T IV V VI VIII VIII II IV T VI
IV VII I V III T V VIII VII VIII I III T VII
V IX III IV III IV T II I V X X T IX
VI III III T III T T T III T III III T III
VII IV T IV T IV T IV T T IV IV T IV
VIII X III IV III IV T IV III T X X T X
IX V T T T T T V V V T T T V
X VIII V V T T V VIII VIII VIII V T T VIII
T 0 I II III IV V VI VII VIII IX X T 0

V. GENERATING FUNCTIONS

We shall investigate the ratio of formulas that are tautologies
or satisfiable among all formulas of size n. Our interest
lays in finding the limit of this fraction when n grows to
infinity which will be called density. For this purpose analytic
combinatorics has developed an exceptionally efficient formal
apparatus, in the form of analytic generating functions. A nice
exposition of the method can be found in Wilf [19], or in
Flajolet and Sedgewick [3]; see also Gardy [6, Section 5.2] for
a systematic application of these techniques to the computation
of probability distributions for Boolean functions.

Let (a0, a1, a2, . . . ) be a sequence of real numbers. The
ordinary generating series for the sequence (an) is the formal
power series

∞∑
n=0

anz
n .

Obviously, formal power series are in one-to-one correspon-
dence to sequences. However, considering z as a complex
variable, this series, as it is known from the theory of analytic
functions, converges uniformly to a function f(z) in some
open disc {z ∈ C : |z| < R} of maximal diameter, and
R > 0 is called its radius of convergence. So, when R > 0,
we can associate with the sequence (an) a complex function
f(z) =

∑∞
n=0 anz

n, called the ordinary generating function
for (an), defined in a neighbourhood of 0. In the other way, as
is well known from the theory of analytic functions, the expan-
sion of a complex function f(z), analytic in a neighbourhood



of z0, into a power series
∑∞
n=0 an(z − z0)n is unique. For

a function g(z) analytic in a neighbourhood of 0, we shall
denote by [zn]g the coefficient of zn in the series expansion
of g in 0.

Many questions concerning the asymptotic behaviour of the
sequence (an) can be precisely determined and resolved by
analyzing the behaviour of

∑
anz

n at the complex circle
|z| = R. The approach we take to determine the size of
asymptotic fraction of tautologies (or satisfiable formulas or
other classes of formulas) among all formulas of the fuzzy
logic under consideration.

VI. COUNTING FORMULAS AND THE BASIC GENERATING
FUNCTION

The length of a formula from the set Form→,¬p is defined
as follows:

Definition 3.

l(p) = 1, l(¬φ) = l(φ) + 1, l(φ→ ψ) = l(φ) + l(ψ) + 1

In fact, this definition reflects the size of the binary-unary
Motzkin tree, which is the number of internal nodes and leafs
of this tree. We may notice that for any positive integer n the
number of formulas φ ∈ Form→,¬p such that l(φ) = n
is finite. By Fn we mean the finite set of formulas from
Form→,¬p of the length n − 1 and, by |Fn| we mean the
cardinality of Fn. The sequence |Fn| enumerates the Motzkin
trees. We will also consider several subclasses of Fn. For any
B ⊂ Form→,¬p , we take Bn = B ∩ Fn and by |Bn|, we
denote the cardinality of the class Bn.

Lemma 4. The generating function f for the sequence |Fn|
is the following:

f(z) =
1− z

2
−
√

(z + 1)(1− 3z)

2
. (2)

Proof. The numbers |Fn| of formulas from Fn are given by
the recursion:

|F0| = 0, |F1| = 0, |F2| = 1, (3)

|Fn| = |Fn−1|+
n−1∑
i=1

|Fi||Fn−i|. (4)

Let us emphasize that the number of formulas of length
n− 1 is |Fn|. Any formula of length n− 1 for n > 2 is either
a negation of some formula of length n − 2 for which the
fragment |Fn−1| is responsible, or is the implication between
some pair of formulas of lengths i−1 and n−i−1, respectively.
The length of any of such implicational formulas must be
(i − 1) + (n − i − 1) + 1 which is exactly n − 1. Therefore
the total number of such formulas is

∑n−1
i=1 |Fi||Fn−i|. The

recurrence |Fn| = |Fn−1| +
∑n−2
i=1 |Fi||Fn−i| becomes the

equality
f(z) = zf(z) + f2(z) + z2

since the recursion fragment
∑n−2
i=1 |Fi||Fn−i| exactly corre-

sponds to the multiplication of power series. The term |Fn−1|
corresponds to the function zf(z). The quadratic term z2

corresponds to the first non-zero coefficient in the power series
of f(z). After solving this quadratic equation we get two
solutions:

f(z) =
1− z

2
+

√
(z + 1)(1− 3z)

2

f(z) =
1− z

2
−
√

(z + 1)(1− 3z)

2
.

With the boundary condition: f(0) = 0 we obtain (2). �
The main singularity of the function f is ρ = 1

3 . The
expansion of f around ρ is the following:

f(z) =
1

3
− 1√

3

√
1− 3z +O(1− 3z). (5)

VII. SOLVING POLYNOMIAL SYSTEMS

In our paper we deal with sequences of numbers of for-
mulas. We consider different classes of formulas (e.g. class
of tautologies) and count number of formulas with the es-
tablished length. To determine limits of such sequences we
use generating functions. An comprehensive, presentation of
this method can be found, for instance, in [3] and [19]. The
following result is known as Drmota-Lalley-Woods theorem;
see [3], Thm. 8.13, p.71. It is the key result to compute the
densities of the classes of formulas being represented by the
generating functions fj .

Theorem 5. Consider a nonlinear polynomial system, defined
by a set of equations. Unknown functions f1, . . . , fm are
mutually dependent on all other functions in the system and
the i− th dependency is named Φi .

{fi = Φi(z, f1, ..., fm)}, 1 ≤ i ≤ m

which is a-proper, a-positive and a-irreducible. Then
1) All component solutions fi for 1 ≤ i ≤ m have the

same radius of convergence ρ <∞.
2) There exist functions hj analytic at the origin such that

fj(z) =hj0 + hj1(
√

1− z/ρ) + hj2(1− z/ρ)+

hj3(
√

1− z/ρ)3 + · · · ,

where hj1 6= 0 and fj(w) = hj0 + hj1w + hj2w
2 + ...

are analytic in a neighborhood of w = 0,
3) All other dominant singularities are of the form ρω with

ω being a root of unity.
4) If the system is a-aperiodic then all fj have ρ as the

unique dominant singularity. In that case, the coefficients
admit a complete asymptotic expansion of the form (6)
below.

[zn]fj(z) =
−hj1
2
√
πτ

τ
n
2

n
3
2

(
1 +

s∑
i=1

ci
ni

+Os

(
1

ns+1

))
(6)

where τ = ρ−1.

The formula (6) is obtained from the Darboux lemma (see
[19] and [20]). It is transformed to a formula approximating
the value of the coefficients [zn]fj(z). This transformation is
known as the transfer lemma (see [4]). Let fA and fF be the



generating functions determined by a set A of formulas and
the set of all formulas, correspondingly. Suppose that they
have the same dominant singularity ρ and there are suitable
constants α1, α2, β1, β2 such that:

fA(z) =α1 − β1
√

1− z/ρ+O(1− z/ρ), (7)

fF (z) =α2 − β2
√

1− z/ρ+O(1− z/ρ). (8)

From (6) we obtain that

[zn]fA(z)

[zn]fF (z)
=

β1

2
√
πτ

τ
n
2

n
3
2

(
1 +O

(
1
n

))
β2

2
√
πτ

τ
n
2

n
3
2

(
1 +O

(
1
n

)) ∼ β1
β2

(9)

where τ = ρ−1. Then the asymptotic density of the class A
is given by:

µ(A) = lim
n→∞

[zn]fA(z)

[zn]fF (z)
=
β1
β2
. (10)

We will apply this approach in the next part of our paper.

VIII. PARTIAL RESULTS FOR QUOTIENT ALGEBRAS

For technical reasons we shall consider three quotient alge-
bras obtained from L12 by appropriate identifications given as
projections of the full 12 element poset L12 from Fig. 1. First
identification is the following:

0 ∪ V I = Z, V II ∪ V III = R

II ∪ IX = S, I ∪ V = U

IV ∪X = W, T ∪ III = J

This identification is in fact the projection of the poset L12

in Fig. 1 to the right back plane surface. In this way we
receive two dimensional six-element lattice L6, see Fig. 2.
Then we make the further identification gluing: WJ = W ∪J ,
SU = S ∪U , and ZR = Z ∪R and obtain three-element one
dimensional lattice L3 also shown in Fig. 2. By the global
identification of WSZ = W ∪ S ∪Z and JUR = J ∪U ∪R
we obtain minimal two element lattice. The lattice operations
of implication and negation {¬,→} induced on new classes in
the new posets are given by the following truth tables. In Table
VI we may recognize the truth table for classical logic with
the class JUR standing for truth and class WSZ standing
for falsity. The detailed quantitative analysis of the density of
truth may be found in [15], [11] and [21]. Similarly, Table V
is the truth table, already seen, for the Łukasiewicz logic.

TABLE IV
TRUTH TABLE FOR INDUCED 6 ELEMENT QUOTIENT ALGEBRA.

→ Z R S U W J ¬
Z J J J J J J J
R W J W J W J W
S U U J J J J U
U S U W J W J S
W R R U U J J R
J Z R S U W J Z
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Fig. 2. Three projections of the lattice L12.

TABLE V
TRUTH TABLE FOR INDUCED 3 ELEMENT QUOTIENT ALGEBRA.

→ ZR SU WJ ¬
ZR WJ WJ WJ WJ
SU SU WJ WJ SU
WJ ZR SU WJ ZR

A. Solving classical logic of implication and negation

We will solve successively the systems of functional equa-
tions. From now on we will use the following notation. Func-
tions calculated earlier and having an analytic form will be
marked with boldface letters with subscripts denoting the class
of formulas. Unknown functions in the system of equations are
marked with regular characters also with subscripts denoting
the class of formulas.

Lemma 6. Generating functions for two complementary
classes WSZ and JUR are the following:

fWSZ(z) =
−1 + f − z

2
+

√
(1− f + z)2 − 4fz

2
(11)

fJUR(z) =
1 + f + z

2
−
√

(1− f + z)2 − 4fz

2
(12)

Proof. Notice that Table VI describes the classical
implicational-negational logic. Therefore the direct translation
of recursion

|WSZ0| = 0, |WSZ1| = 0, |WSZ2| = 0, (13)
|JUR0| = 0, |JUR1| = 0, |JUR2| = 1, (14)

|WSZn| = |JURn−1|+
n−2∑
i=1

(|JURi|) · |WSZn−i|, (15)

becomes the equation fWSZ = z · fJUR + fJUR · fWSZ .
Since fJUR = f − fWSZ we get the quadratic equation
fWSZ = (f−fWSZ) ·fWSZ+z ·(f−fWSZ). Solving it with
the boundary condition fWSZ(0) = 0 we obtain an analytic

TABLE VI
TRUTH TABLE FOR INDUCED 2 ELEMENT QUOTIENT ALGEBRA.

→ WSZ JUR ¬
WSZ JUR JUR JUR
JUR WSZ JUR WSZ



formula enumerating the class WSZ. The complement of it is
the function fJUR(z) = f(z)−fWSZ(z). For more elaborated
treatment of counting formulas in classical logic see [21] and
[15]. �

B. Solving 3 element lattice

Let us introduce the symbols: WJn = WJ ∩ Fn, SUn =
SU ∩ Fn and ZRn = ZR ∩ Fn. From Table V we obtain
following recursions:

Lemma 7. The numbers |SUn| are given by the following
recursion

|SU0| =0, |SU1| = 0, |SU2| = 1, (16)

|SUn| =|SUn−1|+
n−1∑
i=1

|SUi||ZRn−i|+

+

n−1∑
i=1

|WJi||SUn−i|. (17)

Proof. This recursion is a direct translation of Table V. �

Lemma 8. The generating functions fSU for the numbers
|SUn| is the following:

fSU =
1

4

(
−1−X + z +

√
2Y
)

(18)

where X =
√

1− 2z − z2 Y =
√

1 +X − 2z −Xz + 7z2

Proof. From recursion (16), and (17) we get that the generat-
ing function fSU fulfils the equation:

fSU = zfSU + fSUfZR + fWJfSU + z2.

Then: fSU = zfSU + fSU (fZR + fWJ) + z2. Because fZR +
fWJ = f−fSU we get again a quadratic equation with respect
to unknown function fSU .

fSU = zfSU + fSU (f − fSU ) + z2.

Solving this equation with the boundary condition fSU (0) = 0
we obtain generating function (18). �

Lemma 9. The numbers |ZRn| are given by the following
recursion

|ZR0| =|ZR1| = |ZR2| = |ZR3| = |ZR4| = 0, (19)
|ZR5| =1, (20)

|ZRn| =|WJn−1|+
n−1∑
i=1

|WJi||ZRn−i|. (21)

Proof. This recursion is a direct translation of the Table V.

Lemma 10. The generating functions fZR for the sequence
of numbers |ZRn| is the following:

fZR =
1

8

(
−1−X −

√
2Y − 7z +

√
Z
)

(22)

where both X and Y are functions defined in Lemma 8 and
Z = 1+X2+2Y 2+2X(1+

√
2Y−z)−2

√
2Y (z−1)+62z+z2.

Proof. From recursion (19), (20) and (21) we get that the
generating function fZR fulfils the equation:

fZR = zfWJ + fWJfZR.

Then: fZR = fWJ(fZR + z). Because of fWJ = f − fSU −
fZR we finally get

fZR = (f − fSU − fZR)(fZR + z).

This is also a quadratic equation with respect to the unknown
function fZR. After solving this equation with the boundary
condition fZR(0) = 0 and with the already known function
fSU we get (22). �

Since we already have analytic formulas for functions fZR
in (22) and fSU in (18) and because of the global equation
fWJ + fSU + fZR = f we conclude:

Corollary 11. The function fWJ is the following:

fWJ =
1

8

(
7−X −

√
2Y + z −

√
Z.
)

(23)

where both X and Y are functions defined in Lemma 8 and
Z is function defined in Lemma 10.

Lemma 12. The generating functions fSU , fZR, fWJ have
the following expansions around z0 = 1

3 :

fSU ≈ 0, 2060− 0, 1595
√

1− 3z +O(1− 3z) (24)

fZR ≈ 0, 0342− 0, 1204
√

1− 3z +O(1− 3z) (25)

fWJ ≈ 0, 0931− 0, 2972
√

1− 3z +O(1− 3z) (26)

Proof. By the Mathematica package. �

From Lemma 12 and formulas (5) and (10) we conclude:

Corollary 13. The asymptotic densities of the classes SU ,
ZR and WJ are the following:

µ(SU) ≈ 0, 2764, µ(ZR) ≈ 0, 2087, µ(WJ) ≈ 0, 5149

C. Solving 6 element lattice

As we see the generating function for the classes ZR and
WJ are quite complicated.The whole lattice L6 is much more
complicated. Analogously as above, from Table IV we obtain
the suitable recurrences for the numbers |Zn|, |Rn|,|Sn|, |Un|,
|Wn|, |Jn|. Then they are translated into the system of the
following six functional equations:

fZ = fJfZ + zfJ , (27)
fR = fW (fR + fZ) + fJfR + zfW , (28)
fS = fUfZ + fJfS + zfU , (29)
fU = fS(fZ + fR) + fUfR + fW (fS + fU )+ (30)

+ fJfU + zfS + z2,

fW = fR(fZ + fS + fW ) + fU (fS + fW )+ (31)
+ fJfW + zfR,

fJ = fZ(fZ + fR + fS + fU + fW + fJ)+ (32)
+ fR (fR + fU + fJ) + fS(fS + fU + fW + fJ)

+ fU (fR + fJ) + fW (fW + fJ) + f2J + zfZ .



Furthermore, we have that:

f =fZ + fR + fS + fU + fW + fJ , (33)
fJUR =fJ + fU + fR, (34)
fWSZ =fW + fS + fZ , (35)
fZR =fZ + fR, (36)
fSU =fS + fU , (37)
fWJ =fW + fJ . (38)

Application of (33)-(38) into (27)-(32) gives us much sim-
pler system which may be turned after simplifications to just
one functional polynomial equation of order 4 with the only
one unknown functional variable fJ

f4J + f3J(−3− fWJ + fWSZ + z)+

+ f2J(3 + 3fWJ − 3fWSZ − z)+
+ fJ (−1− 3fWJ + 3fWSZ − zfSU − zfWJ + zfWSZ+

+z2
)

+ fWJ − fWSZ + zfSU + zfWJ − zfWSZ = 0.

Solving it with the help of the Mathematica package we
get analytic formula for fJ and therefore for all functions
fZ , fR, fS , fU and fW from the 6 element lattice. Anyway,
this also leads to extremely complex analytic functions. Even
with taking the advantage of the Mathematica package, all the
needed calculations are not feasible. We may solve also the
system numerically. Let us notice that the system of equations
(27)-(32) is a-proper, a-positive, a-irreducible and a-aperiodic.
So, it is possible to apply the Drmota-Lalley-Woods Theorem
5. Furthermore, all the considered functions have the same
dominant singularity z0 = 1

3 and there exist their expansions
around z0 in the form:

fi = ai + bi
√

1− 3z +O(1− 3z). (39)

From the system of equations (27)-(32) we are able to count
the floating point values of the considered functions at z0 =
1
3 . We can differentiate all the functions (and the appropriate
equations as well) and solve it with respect to the value of the
derivatives at z0 = 1

3 . After numerical computation (20 000
steps) we obtain the following values (rounded to four digits)
for the considered functions.

Lemma 14.

fZ(z) ≈ 0, 0285− 0, 1016
√

1− 3z +O(1− 3z),

fR(z) ≈ 0, 0057− 0, 0189
√

1− 3z +O(1− 3z),

fS(z) ≈ 0, 0581− 0, 0684
√

1− 3z +O(1− 3z)

fU (z) ≈ 0, 1479− 0, 0911
√

1− 3z +O(1− 3z),

fW (z) ≈ 0, 0143− 0, 0385
√

1− 3z +O(1− 3z),

fJ(z) ≈ 0, 0788− 0, 2587
√

1− 3z +O(1− 3z).

From the above it follows that:

Theorem 15. The asymptotic densities of the classes of
formulas from the lattice L6 are the following:

µ(Z) ≈ 0, 1760, µ(R) ≈ 0, 0327, µ(S) ≈ 0, 1185, (40)
µ(U) ≈ 0, 1579, µ(W ) ≈ 0, 0667, µ(J) ≈ 0, 4481. (41)

D. Solving the lattice for Łukasiewicz’s logic

We repeat the whole procedure for the total lattice for the
Łukasiewicz logic drawn in Fig. 1. From Table III we get
recurrences for all the numbers |0n|, |In|, |IIn|, ...,|Xn|, |Tn|.
Recurrences are transformed into equations on generating
functions in the very same way as for 6 element lattice. They
form a system of 12 equations, which is a-proper, a-positive,
a-irreducible and a-aperiodic. So, we apply the Drmota-Lalley-
Woods described in Theorem 5. Also, all the considered
functions have the same dominant singularity placed at z0 = 1

3
and there exist their expansions around z0 in the form of (39).
From the expansions we obtain:

Theorem 16. The asymptotic densities of the class of formulas
of the lattice L12 are the following:

µ(0) ≈ 0, 1458, µ(I) ≈ 0, 1215, (42)
µ(II) ≈ 0, 1027, µ(III) ≈ 0, 0634, (43)
µ(IV ) ≈ 0, 0661, µ(V ) ≈ 0, 0386, (44)
µ(V I) ≈ 0, 0292, µ(V II) ≈ 0, 0305, (45)

µ(V III) ≈ 0, 0023, µ(IX) ≈ 0, 0164, (46)
µ(X) ≈ 0, 0011, µ(T) ≈ 0, 3824. (47)

Let us emphasize two the most interesting results. The
density of tautologies: µ(T) ≈ 0, 3824 and the density of
satisfiable formulas µ(SAT ) ≈ 0, 8378 (SAT consists of
all classes except 0 and IX). So randomly chosen huge
formula of Łukasiewicz’s logic has quite good chances, almost
84% to be satisfiable. This result should be compared with
a similar result for fuzzy 3 valued Gödel-Dummett’s logic (see
[13]), in which we obtained that the density of tautologies
is about 0, 3953 while the density of satisfiable formulas is
about 0, 8364. We may also compute the relative density
of Łukasiewicz logic in the classical logic answering the
interesting question.

What is the probability that randomly chosen tau-
tology from the classical logic has the Łukasiewicz
logic proof or how big is the Łukasiewicz fragment
of the classical logic?

A class consisting of classical tautologies has a density of
approximately 0.4232. Our class T of Łukasiewicz tautologies
being a proper subset of classical is approximately 0.3824.
So, the random long formula chosen from the set of classical
tautologies has quite good chances, more than 90% to be
provable in Łukasiewicz logic.

IX. POSSIBLE USE OF RESULTS

Dealing with extremely long formulas seems to be the
everyday challenge for all practitioners of the fuzzy logic
system design. They construct systems with the fuzzy de-
scription of their behavior. Usually, fuzzy logic formulas
describing the meaning and behavior of fuzzy systems are
extremely long. So the designer of the fuzzy system may be
confronted with the computationally difficult NP-complete (or
coNP-complete) problems of finding whether the given fuzzy



formula is satisfiable or valid. This paper proposed the kind
of probabilistic solution to this problem. Our approach may
be helpful by estimating the probability that the formula is
satisfiable or also it may determine the probability of the truths
of it.

X. CONCLUSIONS AND PROBLEMS

A natural continuation of our research is to investigate
the implicational-negational fragments of both these logics
equipped with k variables. We believe that asymptotically
when the number of variables k tends to infinity, the densities
of true formulas in the Gödel-Dummett and Łukasiewicz 3
valued logics are equal. More formally, if the density of true
formulas with k variables is denoted as µ(Gk) for Gödel-
Dummett’s logic and as µ(Łk) for Łukasiewicz’s logic and if
µ(SATGk) is the density of satisfiable formulas for Gödel-
Dummett logic and µ(SATŁk) - the one for Łukasiewicz’s
logic then we believe that
Conjecture 1

lim
k→∞

µ(Gk)

µ(Łk)
= 1, lim

k→∞

µ(SATGk)

µ(SATŁk)
= 1.

Thus we believe that for large numbers k of variables
there is no substantial difference between use of Gödel-
Dummett or Łukasiewicz 3 valued logics for description
of fuzzyness. The similar phenomenon appeared when we
investigate the relationship between intuitionistic and classical
logics of implication with the limited number of variables. It
turned out that randomly chosen classically valid formula has
asymptotically 100% chances to possess intuitionistic proof.
For details consult [5] and [10].

Other natural continuation of our research is changing the
level of fuzziness of the logics under consideration. One may
consider the implicational-negational fragments of n-valued
Łukasiewicz logics, for n ≥ 2. These logics are characterized
by the truth-tables:

M(n)L = 〈{0, 1

n− 1
, ...,

n− 2

n− 1
, 1},→L,¬L, {1}〉

where p →L q = min{1, 1 − p + q} and ¬Lp = p →L 0,
for any n ≥ 2. It belongs to logical folklore that n-valued
Łukasiewicz’s logics form a distributive lattice. We denote
these logics as Ł(n). Namely we get:

Ł(k) ⊂ Ł(n) iff (n− 1) divides (k − 1).

Then we get the following sequences of inclusions:

... ⊂ Ł(9) ⊂ Ł(5) ⊂ Ł(3), ... ⊂ Ł(13) ⊂ Ł(7) ⊂ Ł(3),

... ⊂ Ł(21) ⊂ Ł(11) ⊂ Ł(3), ... .

We see that all the Łukasiewicz logics with an odd number of
logical values are sub-logics of all Ł(3). Then our main result
can be expanded also on many other Łukasiewicz logics. We
get:

µ(Ł(2n+ 1)→,¬p ) ≤ 0, 3824 for n ≥ 1 .

On the other hand, the implicational-negational fragments
with one variable of the n-valued Gödel-Dummett logics are
identical. Then we also get:

µ(Ł(2n+ 1)→,¬p ) ≤ µ(G(2n+ 1)→,¬p ) for n ≥ 1 .

We would like to generalize the above inequalities for all
many-valued Łukasiewicz logics.

Conjecture 2

µ(Ł(n)→,¬p ) ≤ 0, 3824 for n ≥ 3 .

Conjecture 3

µ(Ł(n)→,¬p ) ≤ µ(G(n)→,¬p ) for n ≥ 3 .
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[9] P. Hájek, ”What is mathematical fuzzy logic,” Fuzzy Sets and Systems,
Elseviere, Volume 157, Issue 5, pp. 597-603, 2006.

[10] A. Genitrini, J. Kozik and M. Zaionc, ”Intuitionistic vs. classical
tautologies, quantitative comparison,” TYPES 2007 Proceedings, Lecture
Notes in Computer Science 4941, pp. 100-109, 2008.

[11] Z. Kostrzycka ”On the density of implicational parts of intuitionistic
and classical logics,” Journal of Applied Non-Classical Logics, Vol. 13,
Number 3, pp. 295-325, 2003.

[12] Z. Kostrzycka, ”On the density of truth of locally finite logics,” Journal
of Logic and Computation, Vol. 19 (6), pp. 1114-1125, 2009.

[13] Z. Kostrzycka and M. Zaionc, ”On the density of truth in Dummett’s
logic,” Bulletin of the Section of Logic, Vol. 32, Number 1/2, pp. 43-55,
2003.

[14] Z. Kostrzycka and M. Zaionc , ”Statistics of intuitionistic versus classical
logics,” Studia Logica, Vol. 76, Number 3, pp. 307-328, 2004.

[15] Z. Kostrzycka and M. Zaionc, ”Asymptotic densities in logic and type
theory,” Studia Logica, Vol. 88, pp. 385-403, 2008.
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