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Abstract—The explosion of algorithmic trading has been one of

the most prominent trends in the finance industry. In this paper,

two strategies for algorithmic trading such as Bollinger bands and

the simple moving average (SMA) crossover strategy are studied

in the fuzzy settings. The commonly used Bollinger bands trading

strategy assumes that the difference between an asset’s price and

its SMA is normally distributed. However, it is shown that a data-

driven t distribution is more appropriate to model the difference

between an asset’s price and its SMA. A novel data-driven

fuzzy Bollinger bands strategy is proposed for algo trading. A

good strategy should have a good algo return on investment

with low algo volatility. Therefore, forecasting algo volatility and

identifying an appropriate distribution of algo returns play a

crucial role in algo trading. Sharpe Ratio (SR) is a measure of

average algo return earned in excess of the risk-free rate per unit

of algo volatility. For a class of SMA crossover strategies with

varying window sizes, fuzzy estimates of SR are computed based

on various risk measures including the data-driven volatility

estimate (DDVE). SR fuzzy forecasts are computed using two

recently proposed volatility forecasting models such as data-

driven exponentially weighted moving average (DD-EWMA) and

data-driven neuro volatility models. The main reason of using the

fuzzy approach is to provide ↵-cuts (interval forecasts) of the SR.

An empirical application on a set of widely traded technology

stocks shows that the proposed models deliver forecasts of SR

with small errors.

Index Terms—Algorithmic trading, Data-driven fuzzy

Bollinger bands, Algo volatility, Fuzzy Sharpe ratio

I. INTRODUCTION

Algorithmic trading uses algorithms defined by sets of
instructions (or rules) to automatically monitor stock prices
and place trades. Algorithmic trading is taking over the
world of financial trades, and the days of manual trading
are coming to an end. On a typical trading day, computers
account for 50% to 60% of market trades, according to Art
Hogan, chief market strategist for B. Riley FBR (refer to
the website money.cnn.com/2018/02/06/investing/wall-street-
computers-program-trading/index.html). When the market is
extremely volatile, they can make up 90% of trades. Most
common algorithmic trading strategies follow trends in sim-
ple moving averages (SMA) and related technical indicators
based on Bollinger bands. A comprehensive introduction of

algorithmic trading can be found in [2] and [3]. Most trades are
initiated based on the occurrence of desirable trends, which are
easy and straightforward to implement through algorithms. In
this paper, the short-term and long-term SMA trend indicators
are used. A SMA is an average of the past adjusted closing
prices Pt, t = 1, 2, . . . , D. A SMA crossover strategy applies
moving average crossovers to enter buy (long) or sell (short)
positions. The trend following position indicator (1/-1) at each
trading time t is summarized as follows:

• Long position if short-term SMA � long-term SMA, and
the position is entered as 1

• Short position if short-term SMA < long-tem SMA, and
the position is entered as -1

Adjusted closing prices can be converted to simple returns
as Rt = (Pt � Pt�1)/Pt�1. Algo return At is calculated as
return Rt multiplied by the corresponding position for each t.
Assume that daily algo return At has mean µA and standard
deviation �A then the unconditional daily Sharpe ratio (SR) is
defined as

Daily.SR =
E(At � rf/N)p
V ar(At � rf/N)

=
µA � rf/N

�A
, (1)

where rf is the annual risk-free rate and N is the number
of trading periods in a year. For daily data, N = 252;
monthly data, N = 12; quarterly data, N = 4. The higher
the SR, the better the reward to risk ratio. That is, a high SR
indicates that an asset generates high returns without taking
excessive risk. If a strategy has a high algorithmic volatility
(which is usually the standard deviation of the algo return
over the period of trading), then the strategy has a high risk
factor even if the return is high at the end. A good strategy
should have a good algo return on investment with low algo
volatility. One example of the influence of high volatility is
that the “flash crash” of May 2010, which wiped billions from
U.S. stock markets in less than an hour. Therefore, estimating
and forecasting algo volatility and identifying an appropriate
distribution of algo returns play a crucial role in algorithmic
trading. In this paper, a recently proposed data-driven volatility
estimate (DDVE) and a data-driven exponentially weighted
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moving average (DD-EWMA) volatility forecast are used to
study SR estimation and forecasting.

In [10], the sign correlation of a random variable X with
mean µ is defined as

⇢X = Corr(X � µ, sign(X � µ)). (2)

In applications we use the sample sign correlation ⇢̂X to
estimate ⇢X . For any symmetric distribution with finite mean
µ and variance �2, the sign correlation ⇢X is given by

⇢X =
E|X � µ|

�
.

Therefore, E|X�µ|/⇢X is an unbiased estimator of volatility
�. If X follows a Student’s t distribution with sign correlation
⇢X and finite variance, the corresponding degrees of freedom
(d.f.) ⌫ can be computed by solving the following equation
(see [10]):

2
p
⌫ � 2 = (⌫ � 1)⇢XBeta


⌫

2
,
1

2

�
. (3)

Following [10], the data-driven algo volatility estimator in
terms of algo returns A1, · · · , An, is given as

�̂A =
1

n

nX

t=1

|At � Ā|
⇢̂A

, (4)

where ⇢̂A is the sample sign correlation of At. The asymptotic
variance of the data-driven algo volatility estimator �̂A is

✓
1� ⇢2A
⇢2A

◆
�2
A

n
, (5)

which depends only on the algo variance �2
A and the sign

correlation ⇢A. The conventional volatility estimator, sample
standard deviation sn, is the square root of the estimated
sample variance s2n, with the asymptotic variance

(+ 2)

4

�2
A

n
,

where  is the excess kurtosis. Empirical studies (see [10])
have shown that some financial data follows certain heavy-
tailed distributions such as Student’s t with d.f. less than four
and with theoretically infinite kurtosis. For example, technol-
ogy stocks are typically volatile, and may demonstrate obvious
price fluctuations. It is shown in [10] that the asymptotic
variance of the data-driven volatility estimator �̂A is smaller
than that of the sample standard deviation estimator sn. That
is �̂A is more suitable to estimate volatility of returns with
large kurtosis.

Volatility forecasting with applications is one of the most
active and successful areas of research in time-series econo-
metrics and economic forecasting. However, their application
to algorithmic trading has not yet been widely studied. [10]
proposed a novel DD-EWMA volatility forecasting model to
forecast the volatility directly and obtained value-at-risk (VaR)
forecasts. [12] was the first one to propose a novel direct data-
driven neuro predictive model for conditional volatility and to

study the fuzzy VaR forecasts. Let the conditional mean and
the conditional variance of algo return At be

E(At|Ft�1) = µt, V ar(At|Ft�1) = �2
t , t = 1, · · · , n,

where Ft�1 is the past data up to time t� 1. Following [10],
the algo volatility forecasting model can be written as

�̂t+1 = (1� ↵) �̂t + ↵
|At � Ā|

⇢̂A
, 0 < ↵ < 1. (6)

This volatility model is data-driven in the sense that the
optimal value of the smoothing constant ↵ is obtained by
minimizing the one-step ahead forecast error sum of squares
(FESS) and the sample sign correlation ⇢̂A is used to identify
the conditional distribution of At.

There has been a growing interest in combining randomness
and fuzziness to solve option pricing problems in finance
(see [7] and [9] for details). However, many proposed fuzzy
methods remain difficult to use in practice and hence, there is
a need for data-driven approachs to fit the fuzzy models for
real data. Neural network (NN) is one of the most common
methods to approximate a multivariate nonlinear function. [11]
discussed fuzzy option pricing using data-driven feed forward
NN volatility model. Superiority of the fuzzy forecasting
method over the minimum mean square forecasting had been
demonstrated for fuzzy coefficient (linear as well as nonlinear)
time series models in [8]. [12] applied their neuro volatility
model to forecast VaR with actual financial data. In this paper,
a data-driven fuzzy Bollinger bands strategy is proposed for
algo trading using DDVEs in (4). The estimate in (4) is also
used to calculate fuzzy estimates of SR for a class of SMA
crossover strategies with varying window sizes. Data-driven
volatility forecasting model (6) is used to study the DD-
EWMA rolling fuzzy forecasts of SR. Moreover, the data-
driven neuro volatility model is used to study the rolling neuro
fuzzy forecasts of SR. The main reason of using the fuzzy
approach is to provide ↵-cuts for SR forecasts.

The remainder of the article is organized as follows. Section
II discusses data-driven fuzzy Bollinger bands using algo
volatility estimates in equation (4). Section III discusses the
fuzzy estimates of SR using various risk measures including
algo volatility estimates in (4). SMA crossover strategies usu-
ally use ad hoc procedures to choose the window sizes. Win-
dow size selection for SR estimates using real data is discussed
in section III. Moreover, SR forecasts are calculated based on
DD-EWMA forecasting and neuro volatility forecasting mod-
els. Algorithms are provided to illustrate our models and meth-
ods. Section IV presents the empirical results, and section V
provides conclusions. R Markdown file can be download from
the Github repository: github.com/datasciencecodeshare/Data-
Driven-Fuzzy-Volatility-Forecasting-Algorithmic-Trading.

II. DATA-DRIVEN FUZZY BOLLINGER BANDS

Bollinger bands, introduced by John Bollinger in the early
1980s, are well known in the trading community. Bollinger
bands include three different lines: upper, middle, and lower
band. The purpose of these bands is to give a relative definition



of high and low. In theory, prices are high at the upper band
and they are low at the lower band. The middle line is a D-
period SMA at each t:

Middlet,D = SMAt,D =

Pt
i=t�D+1 Pi

D
.

In general, a trading strategy can be constructed such that
traders open a position when the middle SMA line is nearing
the lower band and close a position when the middle SMA
line reaches the upper one. The standard Bollinger bands
formula sets the lower and upper bands as two sample standard
deviations below and above the middle SMA. Assuming
normality, standard Bollinger bands are defined as

(Lowert,D, Uppert,D) = SMAt,D ± 2st,D,

where

st,D =

sPt
i=t�D+1(Pi � SMAt,D)2

D � 1
.

In the following Algorithm 1, we will illustrate how to
use the sign correlation of the difference Pt � SMAt,D to
determine an appropriate distribution and construct the data-
driven fuzzy Bollinger bands. The ↵-cuts of the data-driven
Bollinger bands formula using t fuzzy numbers is given by

Pt(↵) = (Lowert,D, Uppert,D) = SMAt,D ± t↵/2,df.est�̂t,D

where

�̂t,D =
tX

i=t�D+1

|Pi � SMAt,D|
⇢̂res

and ⇢̂res is the sample sign correlation of the difference Pt�
SMAt,D. The estimated d.f., df.est, is obtained by solving (3)
for ⌫. Algorithm 1 is used to calculate fuzzy Bollinger bands.

Algorithm 1 Data-driven fuzzy Bollinger bands
Require: Adjusted closing stock prices Pt, t = 1, . . . , n,

moving average window size D, ↵-level (for fuzzy ↵-cuts)
1: DSMAt  SMA(Pt, D) {Calculate D-period SMA}
2: rest  Pt �DSMAt {Calculate residuals}
3: ⇢̂res  Corr(rest � ¯res, sign(rest � ¯res)) {Calculate

sample sign correlation of residuals}
4: df.est  Solve 2 ⇤

p
⌫ � 2 = (⌫ � 1) ⇤ ⇢̂res ⇤

Beta
⇥
⌫
2 ,

1
2

⇤
for ⌫ {Estimate the d.f. of the conditional

t-distribution of Pt}
5: vol.cal  function(y) mean(abs(y �mean(y)))/⇢̂res

{Define a function for rolling volatility estimates}
6: vol.smat  rollapply(Pt, width = D,FUN =

vol.cal, by.column = TRUE, fill = NA, align =
“right”) {Calculate D-day rolling volatility estimates}

7: lower.bound DSMAt� qstd(1�↵/2, nu = df.est)⇤
vol.smat {Calculate the lower band}

8: upper.bound DSMAt+qstd(1�↵/2, nu = df.est)⇤
vol.smat {Calculate the upper band}

Consider adjusted closing prices of a set of stocks: Advance
Auto Parts, Inc. (AAP), Apple Inc. (AAPL), International

Business Machines Corporation (IBM), Microsoft Corpora-
tion (MSFT), Alphabet Inc. (GOOG) and Amazon.com, Inc.
(AMZN). The full dataset runs from 2010-01-02 to 2019-
12-13. It follows from Table I that t-distribution instead of
normal distribution (⇢̂res = 0.79) is appropriate to model rest.
Especially, t-distributions with d.f. less than four are more
appropriate for rest for the volatile stocks such as AAPL,
MSFT and AMZN.

TABLE I
SUMMARY STATISTICS OF RESIDUALS FOR ALL ASSETS: 2010-01-04 -

2019-12-13

Assets Mean SD  Lag 1 sample acf ⇢̂res df.est
rest |rest| res2t

AAP 0.444 5.238 3.158 0.915 0.862 0.854 0.710 4.074
AAPL 0.923 4.666 3.780 0.926 0.881 0.862 0.689 3.622
MSFT 0.488 1.658 4.411 0.866 0.815 0.723 0.690 3.638
GOOG 4.002 22.747 3.367 0.895 0.831 0.760 0.717 4.282
IBM 0.152 3.850 1.803 0.915 0.834 0.856 0.761 7.267
AMZN 6.251 35.305 8.379 0.905 0.878 0.780 0.612 2.824
SD: standard deviation; : excess kurtosis; rest: residuals;
res2t : daily squared residuals; |rest|: absolute residuals; acf: autocorrelation;
⇢̂res: sample sign correlation; df.est: estimated d.f. from ⇢̂res

Therefore, the normality assumption for standard Bollinger
bands is not valid and the values of the bands are under-
estimated for all the stocks, especially for AAPL, MSFT
and AMZN. The following Figure 1 visualizes the fuzzy
Bollinger bands trading strategy for AMZN using the window
size D = 20 for the whole trading period in the upper
plot. If we drag the time slide bar to certain periods for
further information shown in the lower plot, the certain trading
period with detailed information for each stock is visualized
and then summarized in Table II. The visualization of the
fuzzy Bollinger bands trading strategy for other stocks will
be found in the R Markdown file. It is shown in Figure 1 and
Table II that the data-driven 0.01-cut Bollinger bands (purple)
and 0.05-cut Bollinger bands (green) are wider than standard
Bollinger bands (blue). Standard Bollinger bands constructed
with the normality assumption underestimate the values of
upper and lower bands and affects the trading signals. Data-
driven fuzzy Bollinger bands are more realistic, and can be
used as trading strategies especially for stock prices with
heavy-tailed distributions such as AAPL, MSFT and AMZN.
It is a collection of ↵-cuts, including standard Bollinger bands
as a special case when ↵ = 0.05 and ⇢̂res = 0.79.

TABLE II
FUZZY BOLLINGER BANDS (↵-CUTS)

Asset Date Price SMA Standard BB 0.05-cut of BB 0.01-cut of BB
AAP 18-12-31 169 153 (124, 182) (115, 191) (91, 215)

AAPL 18-11-27 172 192 (162, 222) (157, 228) (132, 253)
MSFT 19-06-24 137 129 (119, 139.8) (117, 142) (108, 151)

GOOG 18-04-06 1007 1072 (951, 1194) (922, 1221) (829, 1315)
IBM 18-10-26 118 132 (113, 151) (110, 153) (100, 163)

AMZN 18-12-31 1502 1566 (1334, 1798) (1276, 1857) (1018, 2114)
BB:Bollinger bands



Fig. 1. Data-driven Bollinger bands: closing price (black), SMA20 (red),
standard Bollinger bands (blue), 0.05-cut Bollinger bands (green), 0.01-cut
Bollinger bands (purple)

III. DATA-DRIVEN SHARPE RATIO ESTIMATES AND
FORECASTS

A. Moving Average Strategies

Moving average crossover strategies apply two separate
moving averages with varying lengths for indications of one of
the averages crosses over or under the other. Bullish signals
occur when the shorter moving average crossing above the
longer moving average, and bearish signals are sent by the
shorter moving average crossing below the longer moving
average. The SMA crossover trading strategy is described in
Algorithm 2. The algorithm buys a unit of share of an asset
if the shorter SMA crosses above the longer SMA and sells a
unit of share vice versa.

Consider adjusted closing prices of the set of stocks: AAP,
AAPL, IBM. MSFT, GOOG and AMZN from 2015-01-02
to 2019-12-13. The SMA crossover strategy with short-term
window size 9 and long-term window size 24 is applied to
all stocks. The following Figure 2 visualizes this strategy for
AMZN. If we drag the time slide bar to the recent period for
buying versus selling, the green shaded area from 2019-02-
07 to 2019-03-01 indicates selling while the pink shaded area
from 2019-03-01 to 2019-05-15 indicates buying/holding. The
visualization of SMA trading strategy for other stocks will be
discussed in the R Markdown file.

Algorithm 2 SMA crossover trading strategy
Require: Adjusted closing stock price Pt, t = 0, . . . , n, short-

term moving average window size S, long-term moving
average window size L

1: Rt  (Pt�Pt�1)/Pt�1, t = 1, · · · , n {Calculate returns}
2: SSMAt  SMA(Pt, S) {Calculate short-term SMA}
3: LSMAt  SMA(Pt, L) {Calculate long-term SMA}
4: if SSMAt � LSMAt then

5: Positiont  1
6: else

7: Positiont  �1
8: end if

9: AlgoReturn Rt⇤Positiont for each t {Calculate algo
returns}

10: return AlgoReturn

Fig. 2. SMA crossover strategy with shaded regions for buying versus selling

B. Data-Driven Sharpe Ratio Estimates

Using a SMA crossover strategy, we study the data-driven
SR estimates as well as various SR estimates based on the
algo returns. The daily SR is calculated using (1). In practice,
the annualized SR is more convenient for comparison. The
annualized SR is computed by dividing the annualized mean
excess return by the annualized volatility of excess return. The
simple interest formula is used to calculate annualized SR from
the daily one. Let N be the number of trading days in a year,
then the annualized SR is calculated as

Annualized.SR =
N(µA � rf/N)p

N�A

=
p
NDaily.SR, (7)

where µA and standard deviation �A are the mean and standard
deviation of daily algo returns, respectively. Equation (7) is
used to compute the annualized SR estimates from daily
volatility estimates obtained by using the DDVE �̂A given in
(4) for �A. Moreover, the ↵-cuts of the estimate of �A using
the asymptotic variance given in equation (5) can be written
as

�A(↵) = (LL�A , UL�A) = �̂A ± cv↵

s
(1� ⇢̂2A)�̂

2
A

n⇢̂2A
, (8)



where cv↵ is the critical value of level ↵. Then, the ↵-cuts of
annualized SR can be written as

 p
252(Āt � rf/252)

UL�A
,

p
252(Āt � rf/252)

LL�A

!
(9)

Algorithm 3 implements the above method.

Algorithm 3 SR fuzzy estimates using DDVE
Require: Algo return At, t = 1, · · · , n from Algorithm 2,

annual risk-free interest rate rf
1: ⇢̂A  Corr(At�Ā, sign(At�Ā)) {Calculate sample sign

correlation}
2: �̂A  mean(|At � Ā|/⇢̂A) {Compute DDVE of algo

returns}
3: ↵-cuts of �A  (LL�A , UL�A) = �̂A ± cv↵ ⇤p

(1� ⇢̂2A) ⇤ �̂2
n/(⇢̂

2
A ⇤ n) = (LL�A , UL�A) {Compute

↵-cuts of algo volatility �A based on �̂A}
4: Daily.SR (Āt � rf/252)/�̂A {Compute daily SR}
5: Annualized.SR  

p
252 ⇤ Daily.SR {Compute annu-

alized SR}
6: ↵-cuts of Annualized.SR  

p
252 ⇤ (Āt �

rf/252)/UL�A ,
p
252 ⇤ (Āt � rf/252)/LL�A {Compute

↵-cuts of annualized SR}
7: return �̂A, ↵-cuts of �A, Annualized.SR, ↵-cuts of

Annualized.SR

C. Data-Driven Window Size Selection
We compute and interpret the effect of short-term and long-

term SMA window sizes on SR estimates. Annualized SR
estimates are computed using DDVEs for long-term window
sizes: 20, 40, 60 and 200. For each long-term window size,
the short-term window size ranges from 1 to the long-term
window size. It is shown in Figure 3 for AMZN with long-
term window size 20, SR stays stable (mean reverting) after
the short-term window size 10. That is, if we use the long-term
window as 20 then the corresponding data-driven short-term
window size can be selected as 10.

D. Dynamic Data-Driven Rolling Sharpe Ratio Forecasts
Significant sample autocorrelation of the absolute algo re-

turns shown in Table III suggests that time varying volatility
models are more appropriate for algo returns. The following
Algorithm 4 is used to compute the daily data-driven EWMA
volatility forecasts. Algorithm 5 is used to compute the daily
data-driven neuro volatility forecasts. Equation (7) is used to
compute the annualized SR forecasts using these two daily
rolling volatility forecasts in Algorithm 6.

In Algorithm 4, based on past observations of algo returns,
we compute the sample sign correlation ⇢̂A and observed
algo volatility Zt = |At � Ā|/⇢̂A. The optimal smoothing
constant ↵ is determined by minimizing the one-step ahead
FESS. Using the optimal ↵, we calculate the smoothed value
St recursively, and calculate the last optimal smoothed value as
the one-day-ahead volatility forecast. The first l observations
is used to calculate the initial smoothed value S0, and root
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Fig. 3. Annualized SR estimates vs. short-term window sizes

mean square error (RMSE) of volatility forecasts is calculated
as

kX

t=l+1

(Zt � St�1)
2/(k � l).

In Algorithm 5, observed algo volatilities are also computed
based on the sample sign correlation of algo returns. Then,
the R function nnetar from the R package forecast is used to
calculate neuro volatility forecasts. A rolling window approach
in Algorithm 6 is used to calculate two different daily and
annualized SR forecasts based on DD-EWMA algo volatility
forecasts or neuro algo volatility forecasts. For each one of
the rolling windows, the algo volatility forecast and daily
SR forecast are calculated by DD-EWMA (Algorithm 4)
and neuro volatility (Algorithm 5). The ↵-cuts of daily SR
forecasts can be calculated by daily SR forecasts from all
rolling windows as

Daily.SR(↵) = (LLDaily.SR, ULDaily.SR)

= mean(Daily.SRi)± cv↵sd(Daily.SRi).

The ↵-cuts of annualized SR forecasts can be calculated by
daily SR forecasts as

Annualized.SR(↵) = (
p
NLLDaily.SR,

p
NULDaily.SR).

IV. EMPIRICAL STUDY

Consider closing stock prices of the set of stocks: AAP,
AAPL, IBM. MSFT, GOOG and AMZN. The full dataset
runs from 2015-01-02 to 2019-12-13. Algorithm 2 calculates
daily algo returns At using the SMA crossover strategy with
short-term window size 9 and long-term window size 24. The
summary statistics of At for all six assets are listed in Table
III. For all stocks, the sample sign correlation ⇢̂A of algo
returns is less than 0.79. We model the distribution of At as
a t distribution with mean µA and volatility �A. The d.f. of
the t distribution is determined by the sample sign correlation



Algorithm 4 Dynamic DD-EWMA algo volatility forecasts
Require: Algo return At, t = 1, · · · , k from Algorithm 2

1: ⇢̂A  Corr(At � Ā, sign(At � Ā))
2: Zt  |At � Ā|/⇢̂A {Compute observed algo volatility}
3: S0  Z̄l {Initial volatility forecast using first l observa-

tions}
4: ↵ (0.01, 0.3) by 0.01{Set a range for ↵}
5: St  ↵ ⇤ Zt + (1� ↵) ⇤ St�1, t = 1, . . . , k
6: ↵opt  min↵

Pk
t=l+1(Zt � St�1)2 {Determine optimal

↵ by minimizing FESS}
7: St  ↵opt ⇤ Zt + (1� ↵opt) ⇤ St�1, t = 1, . . . , k
8: �̂A,DD  Sk {Calculate one-step-ahead DD EWMA algo

volatility forecast based on k observations}
9: RMSE  

Pk
t=l+1(Zt � St�1)2/(k � l) {Compute

minimum RMSE}
10: return ↵opt, �̂A,DD, RMSE

Algorithm 5 Dynamic data-driven algo neuro volatility fore-
casts
Require: Algo return At, t = 1, · · · , k from Algorithm 2

1: ⇢̂A  Corr(At � Ā, sign(At � Ā))
2: V olt  |At� Ā|/⇢̂A {Compute observed algo volatility}
3: V ol.nnet  nnetar(V ol) {Compute data-driven neuro

algo volatility using R function nnetar}
4: �̂A,NN  forecast(V ol.nnet, h = 1)$mean {Compute

one-step-ahead neuro volatility forecast using R function
forecast}

5: return �̂A,NN

⇢̂A from data. It shows that all the algo returns have a t-
distribution with d.f less than 4. Moreover, the absolute algo
returns |At| are significantly autocorrelated, which indicates
the volatility clustering.

TABLE III
SUMMARY STATISTICS OF DAILY ALGO RETURN FOR ALL ASSETS:

2015-01-02-2019-12-13

Assets Mean SD  Lag 1 sample acf ⇢̂A df.est
At |At| A2

t
AAP 0.0005 0.020 19.975 -0.030 0.094 0.032 0.635 2.99
AAPL 0.0008 0.016 3.778 -0.001 0.157 0.098 0.706 3.97
MSFT 0.0003 0.015 6.612 -0.097 0.184 0.114 0.683 3.52
GOOG -0.0005 0.015 14.495 -0.007 0.114 0.042 0.673 3.38
IBM 0.0007 0.013 6.938 -0.028 0.125 0.045 0.686 3.58
AMZN 0.0014 0.018 8.713 -0.012 0.175 0.099 0.670 3.34
SD: standard deviation; : excess kurtosis; At: daily algo return;
A2

t : daily squared algo return; |At|: daily absolute algo return; acf: autocorrelation;
⇢̂A: sample sign correlation; df.est: estimated d.f. from ⇢̂A

A. Data-Driven Sharpe Ratio Estimates

We use Algorithm 3 to produce Table IV for calculating
annualized SR estimates. We first compute the sample sign
correlation of At, and the DDVE using (4). Moreover, using
the asymptotic variance of the data-driven volatility estimator,
fuzzy ↵-cuts of the estimates of the daily algo volatility and
annualized SR estimates are provided in Table IV. AMZN has

Algorithm 6 Dynamic rolling SR fuzzy forecasts
Require: Algo return At, t = 1, · · · , n from Algorithm 2, risk

free rate rf , rolling window size k
1: for i = 1, . . . , n� k + 1 do

2: �̂i  �̂A,DD
i , RMSEi {Compute DD-EWMA algo

volatility forecasts and the corresponding RMSEs based
on k observations Ai, . . . , Ai+k�1 using Algorithm 4}

3: �̂i  �̂A,NN
i {Instead of 2, Compute neuro algo volatil-

ity forecasts based on k observations Ai, . . . , Ai+k�1

using Algorithm 5}
4: Daily.SRi  (mean(Ai) � rf/252)/�̂i {Compute

daily SR forecast for each rolling window of size k
using data-driven volatility forecasts}

5: end for

6: Daily.SR  mean(Daily.SRi) {Compute average
daily SR forecast from n� k+1 rolling windows of size
k}

7: RMSE  mean(RMSEi) {Compute average RMSE
from n� k + 1 rolling windows of size k (only for DD-
EWMA algo volatility forecasts)}

8: ↵-cuts of Daily.SR  (LLDaily.SR, ULDaily.SR) =
mean(Daily.SRi)± cv↵ ⇤ sd(Daily.SRi) {Compute ↵-
cuts of daily SR forecast}

9: Annualized.SR  
p
252 ⇤ Daily.SR {Compute annu-

alized SR forecast}
10: ↵-cuts of Annualized.SR  (

p
252⇤LLDaily.SR,

p
252⇤

ULDaily.SR) {Compute ↵-cuts of annualized SR fore-
cast}

11: return Daily.SR, ↵-cuts of Daily.SR, RMSE, Annual-
ized.SR, ↵-cuts of Annualized.SR

the highest annualized SR estimate and GOOG has the lowest
one.

TABLE IV
↵-CUTS OF ANNUALIZED SR ESTIMATES USING RISK AS DDVE

Assets DDVE 0.05-cut of DDVE ASR 0.05-cut of ASR
AAP 0.0200 (0.0186, 0.0214) 0.3085 (0.2888, 0.3310)

AAPL 0.0155 (0.0147, 0.0164) 0.7636 (0.7229, 0.8091)
MSFT 0.0145 (0.0136, 0.0154) 0.2300 (0.2170, 0.2446)

GOOG 0.0151 (0.0142, 0.0161) -0.6390 (-0.6019, -0.6809)
IBM 0.0129 (0.0121, 0.0137) 0.7984 (0.7537, 0.8489)

AMZN 0.0181 (0.0169, 0.0192) 1.1273 (1.0615, 1.2019)
DDVE: data-driven volatility estimate; ASR: Annualized Sharpe ratio

Similar to Algorithm 3, sample standard deviation (sn),
mean absolute deviation (MAD) (⇢̂Asn), and VaR (VaR0.05)
based on t distribution of At are used to estimate the daily
volatility and annualized SR. Results are summarized in Ta-
ble V, VI and VII, respectively. It can be seen that, for
all stocks with t d.f. less than 4, fuzzy ↵-cut estimates of
annualized SR using DDVE is narrower than that using sample
standard deviation.



TABLE V
↵-CUTS OF ANNUALIZED SR ESTIMATES USING RISK AS SD

Assets SD 0.05-cut CI of SD ASR 0.05-cut of ASR
AAP 0.0200 (0.0174, 0.0227) 0.3083 (0.2725, 0.3549)

AAPL 0.0155 (0.0145, 0.0166) 0.7631 (0.7150, 0.8182)
MSFT 0.0145 (0.0133, 0.0157) 0.2298 (0.2123, 0.2504)

GOOG 0.0151 (0.0134, 0.0169) -0.6386 (-0.5734, -0.7206)
IBM 0.0129 (0.0118, 0.0140) 0.7973 (0.7357, 0.8702)

AMZN 0.0181 (0.0164, 0.0197) 1.1266 (1.0320, 1.2403)
SD: standard deviation; ASR: Annualized Sharpe ratio

TABLE VI
↵-CUTS OF ANNUALIZED SR ESTIMATES USING RISK AS MAD

Assets MAD 0.05-cut of MAD ASR 0.05-cut of ASR
AAP 0.0127 (0.0110, 0.0144) 0.4854 (0.4291, 0.5588)

AAPL 0.0110 (0.0102, 0.0117) 1.0812 (1.0130, 1.1593)
MSFT 0.0099 (0.0091, 0.0107) 0.3365 (0.3109, 0.3666)

GOOG 0.0102 (0.0090, 0.0113) -0.9489 (-0.8520, -1.0707)
IBM 0.0089 (0.0081, 0.0096) 1.1620 (1.0722, 1.2682)

AMZN 0.0121 (0.0110, 0.0132) 1.6810 (1.5399, 1.8507)
MAD: mean absolute deviation; ASR: Annualized Sharpe ratio

B. Dynamic Data-Driven Rolling Sharpe Ratio Forecasts
A rolling window approach is applied to forecast the daily

and annualized SR using Algorithm 6. The selected data
covers 1200 days, with 201 overlapping rolling windows. Each
window of size 1000 is used to calculate a one-day-ahead
algo volatility forecast and the corresponding RMSE using
Algorithm 4. For each stock, the daily SR forecast is calculated
by the average of the 201 daily SR forecasts from each of the
201 rolling windows. The annualized SR forecast is calculated
using (7). Results are summarized in Table VIII. For each
of the stocks, based on 201 RMSEs of the one-day-ahead
volatility forecasts, the average RMSE is also reported in the
second column of Table VIII. User time in seconds of each
stock is reported in Table VIII using R function proc.time.
The code is running in R version 3.6.1 with macOS Mojave,
Version 10.14.5 (18F132). Usually point forecasts of SR (red
line in Figure 4) are reported in the literature. In this paper,
more realistic fuzzy ↵-cuts of the forecasts (interval forecasts)
are reported in Table VIII, and plotted in Figure 4 for AMZN
(blue lines and purple lines) are given. The reason is that
there is strong evidence that the volatility of rolling daily SR
forecasts is time varying (shown by black line in Figure 4).

TABLE VII
↵-CUTS OF ANNUALIZED SR ESTIMATES USING RISK AS VAR0.05

Assets VaR0.05 0.05-cut of VaR0.05 ASR 0.05-cut of ASR
AAP 0.0267 (0.0248, 0.0285) 0.2316 (0.2165, 0.2488)

AAPL 0.0226 (0.0212, 0.0239) 0.5260 (0.4970, 0.5586)
MSFT 0.0208 (0.0196, 0.0221) 0.1599 (0.1508, 0.1703)

GOOG 0.0223 (0.0209, 0.0236) -0.4341 (-0.4094, -0.4619)
IBM 0.0182 (0.0170, 0.0193) 0.5669 (0.5339, 0.6043)

AMZN 0.0245 (0.0229, 0.0261) 0.8316 (0.7804, 0.8899)
VaR0.05: Value at Risk at ↵ = 0.05; ASR: Annualized Sharpe ratio

TABLE VIII
ROLLING SR FUZZY FORECASTS USING DD-EWMA VOLATILITY MODELS

Assets RMSE DSR ASR Time 0.05-cut of ASR 0.01-cut of ASR
AAP 0.020 0.021 0.338 0.910 (0.221, 0.456) (0.184, 0.493)

AAPL 0.019 0.055 0.869 0.873 (0.366, 1.371) (0.208, 1.529)
MSFT 0.016 0.009 0.138 0.850 (-0.213, 0.488) (-0.323, 0.599)

GOOG 0.018 -0.049 -0.777 1.076 (-1.193, -0.362) (-1.323, -0.232)
IBM 0.016 0.059 0.940 0.839 (0.455, 1.424) (0.303, 1.576)

AMZN 0.021 0.098 1.558 0.823 (0.819, 2.297) (0.586, 2.530)
RMSE: average root mean square error for one-step-ahead volatility forecast;
DSR: average daily SR with one-step-ahead volatility forecast;
ASR: average annualized SR with one-step-ahead volatility forecast; Time: user time in sec

0 50 100 150 200
0.

05
0.

10
0.

15
0.

20

Rolling EWMA Daily SR: AMZN

Index

D
ai

ly
 E

W
M

A 
SR

Rolling SR
Average SR
0.05−cut SR
0.01−cut SR

Fig. 4. Rolling daily SR forecasts and average SR forecast using DD-EWMA
volatility forecasts

We also apply a rolling window approach to calculate
the daily and annualized SR forecasts using neural network.
The selected data covers 1200 days, and we compose 201
overlapping rolling windows, each of window size 1000
to calculate a one-day-ahead algo volatility forecast using
Algorithm 5. Using Algorithm 6, the daily SR forecast is
calculated by the average of the 201 rolling daily neuro SR
forecasts. The annualized SR is computed using (7). Results
are summarized in Table IX. Rolling daily neuro SR forecasts
and its average of AMZN is plotted in Figure 5. The user
time of computing the daily SR forecast and the annualized
SR forecast for each stock index is listed in Table IX. It follows
from Table VIII and Table IX, for each stock, the user time
using DD-EWMA volatility forecasts is faster than that using
data-driven neuro volatility forecasts. Fuzzy ↵-cuts (interval
forecasts) are provided in Table IX, and plotted in Figure 5 for
AMZN (blue lines and purple lines). There is strong evidence
from Figure 5 that the volatility of rolling neuro daily SR
forecasts (black line) is time varying.

V. SUMMARY AND DISCUSSION

A good trading strategy should have a good algo return
on investment with low algo volatility. In this paper, two
strategies for algorithmic trading, Bollinger bands and SMA
crossover strategy, are studied based on smoothed estimates



TABLE IX
ROLLING SR FUZZY FORECASTS USING DATA-DRIVEN NEURO

VOLATILITY MODELS

Assets DSR ASR Time 0.05-cut of ASR 0.01-cut of ASR
AAP 0.021 0.330 28.705 (0.230, 0.430) (0.199, 0.461)

AAPL 0.057 0.908 222.648 (0.333, 1.482) (0.152, 1.663)
MSFT 0.008 0.128 148.617 (-0.189, 0.444) (-0.289, 0.544)

GOOG -0.052 -0.820 201.050 (-1.278, -0.361) (-1.422, -0.217)
IBM 0.061 0.974 216.805 (0.301, 1.648) (0.089, 1.860)

AMZN 0.089 1.411 106.815 (0.801, 2.021) (0.609, 2.213)
DSR: average daily SR with one-step-ahead volatility forecast;
ASR: average annualized SR with one-step-ahead volatility forecast;
Time: user time in sec
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Fig. 5. Rolling daily SR forecasts and average SR forecasts using neuro
volatility forecasts

and forecasts. The goal is to introduce novel data-driven
volatility models to study fuzzy Bollinger bands, fuzzy SR
estimates, and fuzzy SR forecasts. The main reason for using
the fuzzy approach is to provide ↵-cuts (interval estimates
or forecasts) for the volatility, Bollinger bands, and SR. For
the SMA crossover strategy, fuzzy estimates of the annualized
SR are computed based on various risk measures, including
recently proposed DDVEs. Moreover, this study makes a
strong effort to forecast SR using rolling DD-EWMA fuzzy
volatility and rolling neuro fuzzy volatility models. Their
performances using real financial data demonstrate that fuzzy
SR forecasting models are realistic for practical purposes.
Especially, the computation time using DD-EWMA volatility
forecasts is faster than that using data-driven neuro volatility
forecasts. For the future research, we will use dynamic models
as in [13] and extend pairs trading using Kalman filtering
algorithms in [6].
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