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Abstract—New Technique for Order Preference by Similarity
to Ideal Solution, (TOPSIS), variant is presented, where n−ary
norm operators are used in creating ideal solutions. We show that
we are gaining different ranking results with this new proposal.
Also we address reasons for why this variant is giving different
ranking orders compared to original TOPSIS and propose a
way to try to select suitable n−ary norm operations and how to
try to select a suitable parameter in case of parametrized norm
operators. New method is examined with the patent selection
problem.

Index Terms—N−ary norms, TOPSIS, ranking order, prefer-
ence modelling, patent selection problem

I. INTRODUCTION

One of the most well known multicriteria decision mak-
ing methods is TOPSIS (Technique for Order Preference by
Similarity to Ideal Solution) [1]. There the aim is to choose
alternative that simultaneously has the closest distance from
the positive ideal solution (PIS) and the farthest distance from
the negative ideal solution (NIS).

TOPSIS has been studied by many researchers. To mention
few, Fuzzy TOPSIS was introduced by Chen [2] for triangular
fuzzy number and later extented to trapezoidal fuzzy numbers
[3]. Similarity based fuzzy TOPSIS was introduced by Luukka
[4] and later examined with different fuzzy similarities for
R&D evaluation problem by Collan and Luukka [24]. Also
aggregation over the criterians with more general aggregation
operators has been examined by Luukka and Collan [6] by
using Bonferroni mean. Method has been applied to many
real world problems by many researchers. To mention few
Doukas et al. [7] applied TOPSIS to assess the sustainability
of renewable energy options. Identification of influential nodes
in complex networks using TOPSIS were assessed by Du
et al. [8]. Feia et al. [9] applied modified TOPSIS based
on D numbers to human resources selection problem. Goh
et al. examined load shedding scheme for large pulp mill
electrical systems using combination of TOPSIS and AHP
[10]. Green supplier selection problem was under investigation
by Kannan et al. [11] with fuzzy TOPSIS. Nouri et al. [12] had
a technology selection problem where they applied fuzzy ANP
and fuzzy TOPSIS. Database system cutting with machining
features and TOPSIS was under investigation by Peng et al
[13]. Rashid et al. [14] used generalized interval-valued fuzzy
numbers with TOPSIS for robot selection. Personel selection
for knowledge-intensive enterprise was examined with fuzzy
TOPSIS by Sang et al. [15]. Wang [16] used fuzzy TOPSIS

to evaluate financial performance for Taiwan container ship-
ping companies. Consumer credit decision making was under
investigation by Zhu et al. [17] with C-TOPSIS. For more
information about TOPSIS variants and their applications see
[18] for a survey.

Eventhough TOPSIS is much studied method subject of
having preference over PIS or NIS in considering both ideal
solutions has not been much considered so far. Several re-
searchers have commented on the fact that basic TOPSIS does
not take into account preference over PIS or NIS (see i.e. [19]),
but only few provide meaningful solution to the subject [20].
Most of these address this problem from relative closeness
(or closeness coefficient) point of view as in [20]. Here we
concentrate on addressing this problem already at the point
where we create the ideal solutions by generalizing standard
intersection/union operators to a stricter/weaker form by using
n−ary norm operators.

II. N−ARY NORM OPERATORS

In this section we first fastly go through intersection (T-
norm) and union (T-conorm) operators and then go into their
n−ary extensions. Following Klir & Yuan [23], we can define
the T-norm as follows:

Definition 1: An aggregation operator T : [0, 1]2 → [0, 1] is
called a T-norm if it is commutative, associative, monotonic,
and satisfies the boundary conditions. That is, for all x, y, z ∈
[0, 1] we have that
• T (x, y) = T (y, x)(commutativity)
• T (x, T (y, z)) = T (T (x, y), z) (associativity)
• T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity)
• T (x, 1) = x (boundary condition)
These are minimum requirements for a norm operator to

be a T-norm. Besides this often one can introduce further
axioms to have even stricter norm operators. For example
subidempotency and continuity [21].

Definition 2: A T-norm is said to be an Archimedean t-norm
if it is also continuous and T (x, x) < x,∀x ∈ (0, 1).

Due to the associativity of T-norms, it is possible
to extend the operation to the n−ary case, n ≥ 2.
E.g. for n = 3 the T-norm can be computed from
T (x1, x2, x3) = T (T (x1, x2), x3). For example with algebraic
product (T (x1, x2) = x1x2) we would get T (x1, x2, x3) =
x1x2x3. Klement et al. [22] gave following definition for
n−ary case.
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Definition 3: Let T be a T-norm and (x1, x2, ..., xn) ∈
[0, 1]n be any n-ary tuple, we define T (x1, x2, ..., xn) as;

T (x1, x2, ..., xn) = T (T (x1, x2, ..., xn−1), xn) (1)

In following you can see some examples from n−ary T-
norms derived using (1)

The standard n-ary T−norm, TM can be obtained for all
(x1, x2, ..., xn) ∈ [0, 1]n by:

TM (x1, x2, x3, ..., xn) = min(x1, x2, x3, ..., xn) (2)

Probabilistic n-ary T− norm:

TP (x1, x2, x3, ..., xn) =

n∏
k=1

xk (3)

Łukasiewicz n-ary T-norm:

TŁ(x1, x2, x3, ..., xn) = max[0, (1−
n∑

k=1

(1− xk))] (4)

Drastic product n-ary T-norm:

TD(x1, x2, x3, ..., xn) =


xi, if xi+1 = 1

xi+1, if xi = 1

0, otherwise.

(5)

Similarly, for a norm operator to be a T-conorm following
axioms needs to be satisfied.

Definition 4: An aggregation operator Tco : [0, 1]2 → [0, 1]
is called a T-conorm if it is commutative, associative, mono-
tonic, and satisfies the boundary conditions. That is, for all
x, y, z ∈ [0, 1] we have that
• Tco(x, y) = Tco(y, x)(commutativity)
• Tco(x, Tco(y, z)) = Tco(Tco(x, y), z) (associativity)
• Tco(x, y) ≤ Tco(x, z) whenever y ≤ z (monotonicity)
• Tco(x, 0) = x (boundary condition)

Notice that difference between T-norm and T-conorm is in the
boundary condition. Again these axioms are minimum require-
ments for norm operator to be a T-conorm and further stricter
requirements can be imposed. For example superidempotency
and continuity.

Definition 5: A T-conorm is said to be an Archimedean T-
conorm if it is also continuous and T (x, x) > x,∀x ∈ [0, 1].

Triangular conorms can be also extended to n−ary conorms
[21], [22] due to their associativity. Klement et al. in [22]
defined n−ary T-conorms as follows.

Definition 6: Let Tco be a T-conorm and (x1, x2, ..., xn) ∈
[0, 1]n be any n-ary tuple, then Tco(x1, x2, ..., xn) is given by,

Tco(x1, x2, ..., xn) = Tco(Tco(x1, x2, ..., xn−1), xn) (6)

Some examples from n−ary T-conorms derived using (6)
are as follows

Let (x1, x2, ..., xn) ∈ [0, 1]n be an n-ary vector, then the
standard union can be calculated,

TcoM (x1, x2, ..., xn) = max(x1, x2, ..., xn) (7)

The n−ary probabilistic t-conorm:

TcoP (x1, x2, x3, ..., xn) = 1−
n∏

k=1

(1− xk) (8)

The n-ary Łukasiewicz t-conorm:

TcoŁ(x1, x2, ..., xn) = min[1,

n∑
i=1

xi] (9)

The n-ary drastic sum t-conorm:

TcoD(x1, x2, x3, ..., xn) =


xi, if xi+1 = 0

xi+1, if xi = 0

1, otherwise.

(10)

III. BASIC TOPSIS AND RELATIVE IMPORTANCE OF TWO
IDEAL SOLUTIONS

To apply TOPSIS we require a specification of the decision
matrix for a set of alternatives over a set of criteria. Given a
set of alternatives A = {ai|i = 1, 2, · · · ,m}, a set of criteria
C = {cj |j = 1, 2, · · · , n} and a set of weigths W = {wj |j =
1, 2, · · · , n}, wj > 0,

∑n
j=1 wj = 1, where wj denotes the

weight of the criteria cj , let X = {xij|i=1,2,··· ,m,j=1,2,··· ,n}
denote the decision matrix where xij is the performance
measure of the alternative ai with respect to the criteria cj .
Given the decision matrix, the TOPSIS involves six steps.

1. Normalize the decision matrix. The normalized value zij
is calculated as

zij =
xij√∑n
i=1 x

2
ij

, i = 1, 2, · · · ,m, j = 1, 2, · · · , n

(11)
2. Compute the weighted normalized decision matrix. The

weighted normalized value vij is calculated as

vij = wjzij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (12)

3. Determine the positive ideal solution (PIS) and the neg-
ative ideal solution (NIS).

PIS = {v+1 , v
+
2 , · · · , v+n }

= {max∀ivij |j ∈ J1,min∀ivij |j ∈ J2} (13)

NIS = {v−1 , v
−
2 , · · · , v−n }

= {min∀ivij |j ∈ J1,max∀ivij |j ∈ J2} (14)

Here, J1 is the set of benefit criteria, and J2 is the set of
cost criteria.

4. Calculate the separation measures using the n-
dimensional Euclidean distance. The separation measures
D+

i and D−i of an alternative ai from the PIS and NIS
are

D+
i =

√√√√ n∑
j=1

(vij − v+j )
2, i = 1, 2, · · · ,m (15)



D−i =

√√√√ n∑
j=1

(vij − v−j )
2, i = 1, 2, · · · ,m (16)

5. Calculate relative closeness (RC) of the alternative ai.

RCi =
D−i

D+
i +D−i

(17)

0 ≤ RCi ≤ 1, i = 1, 2, · · · ,m
6. Arrange the ranking indexes in a descending order to

obtain the best alternative.
As mention the ranking index of TOPSIS seems reasonable,

but as such it is also criticised by several authors from the
fact that the relative importance of the two separations is not
considered in step 5. One of the researchers pointing this out
where Opricovic and Tzeng [19] where they pointed out that
the original TOPSIS simply sums D+

i and D−i without using
any parameter that could represent the relative importance of
these two separations. They analyzed the index of the relative
closeness to the ideal solution, and pointed out that when a1
is assumed to be the alternative with D−1 = D+

1 , then all
alternatives a2 with D−2 > D+

2 > D+
1 are ranked preceding

to a1, even though a1 is closer than a2 to the PIS [19]. This as
such is true, eventhough not that surprising because a1 is also
closer than a2 to the NIS. From this seminal work question
arised that can the ranking order of alternatives a1 and a2
be decided by using the relative information of separation
measures defined in step 4? This was further examined by
Kuo [20] by examining differences D+

2 −D+
1 and D−2 −D−1

and ranking indexes. In short Kuo addressed this by examining
four cases shown in Table I.

TABLE I
FOUR CASES FOR DIFFERENCES BETWEEN DISTANCES TO POSITIVE AND

NEGATIVE IDEAL SOLUTIONS

Case 1 Case 2 Case 3 Case 4
D+

2 −D+
1 > 0 > 0 < 0 < 0

D−
2 −D−

1 > 0 < 0 > 0 < 0
Decidable? No Yes Yes No

Result ? RC2 < RC1 RC1 < RC2 ?

In case that distance to PIS is considered more important
than distance to NIS or vice versa in cases 1 and 4 decision
can be either one (RC2 ≺ RC1 or RC1 ≺ RC2) depending on
actual value of a2. From this became clear that it is reasonable
in such cases to try to introduce weights that reflect the relative
importance of the two separation measures. In Kuo 2017 [20],
solution to the problem was proposed by introducing relative
weights to the D+

i and D−i .

RCnewi = w+

(
D−i∑m
i=1 D

−
i

)
− w−

(
D+

i∑m
i=1 D

+
i

)
(18)

With (18) by introducing proper weights cases 1 and 4
can be solved so that preference follows importantness of
the particular ideal solution. For example consider following
decision matrix shown in Table II.

TABLE II
DECISION MATRIX 1

C1 C2 C3 C4 C5

A1 46 19 11 18 10
A2 29 23 9 20 10
A3 33 24 10 18 9
A4 43 26 8 10 8

If we calculate a1 (where D−1 = D+
1 ) and do comparison

with a1 and A1−A4 we find out that A1 and A3 are decidable
cases where as A2 and A4 are non decidable. This example
of course can be solved using RCnewi with proper weights.

IV. TOPSIS WITH n−ARY NORM OPERATORS

A. Motivation

In this paper we examine can we address this problem
already at earlier point in TOPSIS than in weighting relative
closeness proposed by Kuo [20]. As an alternative way of
addressing this problem we propose the use of n− ary norm
operators in creation of positive and negative ideal solutions.
Basic idea is very simple: we simply replace min and max
operators in Step 3 with their more general counterparts:
n − ary T−norms and T−conorms. In order to apply
n − ary norm operators in TOPSIS we also need to modify
normalization done in step 1. N − ary norm operators are
doing mapping [0, 1]n → [0, 1] so normalization is now done
to the unit interval.

Justification for replacing minimum and maximum in
positive and negative ideal solution is quite intuitive. The
standard fuzzy intersection (minimum) is the weakest fuzzy
intersection and hence producing largest set from among those
produced by all possible fuzzy intersections (T-norms) [23].
Similarly standard fuzzy union (maximum) is the strongest
fuzzy union and hence it produces the smallest set among
the sets produced by all possible fuzzy unions (T-conorms).
Now by changing the norm operator we can also address
relative importantess type of a problem in TOPSIS already at
the point where we are creating Positive and Negative ideal
solutions.

B. Step by step algorithm

Let T and Tco denote n−ary T−norm and T−conorm.
Given a set of alternatives A = {ai|i = 1, 2, · · · ,m}, a set
of criteria C = {cj |j = 1, 2, · · · , n} and a set of weigths
W = {wj |j = 1, 2, · · · , n}, wj > 0,

∑n
j=1 wj = 1,

where wj denotes the weight of the criteria cj , let X =
{xij|i=1,2,··· ,m,j=1,2,··· ,n} denote the decision matrix where
xij is the performance measure of the alternative ai with
respect to the criteria cj . Given the decision matrix, the n−ary
norm based TOPSIS involves following steps.

1. Normalize the decision matrix into unit interval.

zij =
xij +mini(xij)

maxi(xij)−mini(xij)
, (19)



i = 1, 2, · · · ,m, j = 1, 2, · · · , n

2. Let zij denote normalized decision matrix. Compute
the weighted normalized decision matrix. The weighted
normalized value vij is calculated as

vij = wjzij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n (20)

3. Determine the positive ideal solution (PIS) and the nega-
tive ideal solution (NIS) using chosen n−ary T-norm and
T-conorm.

PIS = {v+1 , v
+
2 , · · · , v+n }

= {T∀i(vij)|j ∈ J1, T co∀i(vij)|j ∈ J2} (21)

NIS = {v−1 , v
−
2 , · · · , v−n }

= {Tco∀i(vij)|j ∈ J1, T∀i(vij)|j ∈ J2} (22)

Here, J1 is the set of benefit criteria, and J2 is the set of
cost criteria.

4. Calculate the separation measures using the n-
dimensional Euclidean distance. The separation measures
D+

i and D−i of an alternative ai from the PIS and NIS
are

D+
i =

√√√√ n∑
j=1

(vij − v+j )
2, i = 1, 2, · · · ,m (23)

D−i =

√√√√ n∑
j=1

(vij − v−j )
2, i = 1, 2, · · · ,m (24)

5. Calculate relative closeness (RC) of the alternative ai.

RCi =
D−i

D+
i +D−i

(25)

0 ≤ RCi ≤ 1, i = 1, 2, · · · ,m
6. Arrange the ranking indexes in a descending order to

obtain the best alternative.
Now returning back to example shown in Table II if we

examining it with D+
2 −D

+
1 and D−2 −D

−
1 and ranking indexes

and select Łukasiewicz n-ary T-norm and standard n-ary T-
conorm we are able to get the result that we are in decidable
region for all four alternatives where as originally this was
not the case with A2 and A4. Ranking order gained by using
proposed norm operators is A1 ≺ A2 ≺ A3 ≺ A4 where as
with original TOPSIS ranking order is A1 ≺ A3 ≺ A2 ≺ A4.

C. Numerical example: Patent selection problem

The problem presented here deals with ranking of patents
and the selection of the best ranking patents to be included in
a patent portfolio, this problem has been previously presented
in more details by Collan et al. [24]. The initial (financial)
evaluation of the patents has been done by a group of managers
and has resulted in consensual fuzzy pay-off distributions for
each patent. These possibilistic mean, standard deviation and
skewness are reported in Table IV

TABLE III
RANKING ORDERS OF TWO ALTERNATIVES WHEN SAMPLE IS COMPARED

TO a1 (WHERE D+
1 = D−

1 ), 1=DECIDABLE, 0=NON DECIDABLE. IN
PROPOSED METHOD ŁUKASIEWICZ N-ARY T-NORM AND STANDARD

N-ARY T-CONORM WAS USED

Orig TOPSIS n−ary TOPSIS
A1 1 1
A2 0 1
A3 1 1
A4 0 1

TABLE IV
POSSIBILISTIC MOMENTS FROM THE CONSENSUS PAY-OFF DISTRIBUTIONI

FOR EACH PATENT [24]

Patent Mean Standard Skewness
1 0.3175 0.0081 0.0005
2 0.3593 0.0111 0.0011
3 0.3203 0.0044 -0.0001
4 0.3038 0.0081 -0.0004
5 0.2665 0.0010 0.0000
6 0.4546 0.0174 -0.0018
7 0.4447 0.0143 0.0014
8 0.3504 0.0092 0.0013
9 0.3301 0.0083 0.0004
10 0.3297 0.0022 0.0002
11 0.3187 0.0067 0.0012
12 0.3638 0.0037 0.0001
13 0.2900 0.0038 0.0002
14 0.3352 0.0049 0.0001
15 0.3536 0.0069 0.0008
16 0.4187 0.0127 0.0011
17 0.5409 0.0169 0.0003
18 0.3934 0.0126 0.0012
19 0.4125 0.0111 -0.0001
20 0.3042 0.0050 0.0005

The possibilistic moments of these pay-off distributions
(that are fuzzy numbers) are used as the criteria for TOPSIS
ranking of the patents. When we examine are there unde-
cidable cases present in the patents we can find three cases,
patents number 5, 10 and 12. For this problem it was decided
to use Yager’s T-norm and T-conorm [23] TY ager(x1, x2) =

1 − min(1, ((1 − x1)
p + (1 − x2)

p)
1
p ), TcoY ager(x1, x2) =

min(1, (xp
1 + xp

2)
1
p ) and their n−ary form using recursive

formulas (1), (6). Reasons for selecting Yager’s norms are
that it is well known that it holds for Yager’s T-norm that
TD ≤ TY ager ≤ Tmin meaning that by changing the parame-
ter p value we can get T-norm to approach Drastic minimum
which is most strict T-norm there can be and also toward
minimum which is most weakest T-norm. Similarly for Yager’s
T-conorm it holds that TcoM ≤ TcoY ager ≤ TcoD meaning
that by proper parameter p selection we can approach strictest
T-conorm maximum and weakest T-conorm drastic sum. In
order to select suitable parameter value p for the problem
we simply tested suitable values from range 0 < p < 100
using for loops. From the results we computed the number of
undecidable cases present for different p values and selected
the case with fewest possible amount of undecidable cases
for the problem. It turned out that fewest possible amount of
undecidable cases for doing the computations this way was
one. This time patent number six being undecidable. In the



Table V one can see the results from the experiments with
regular TOPSIS and n−ary based TOPSIS where the amount
of undecidable cases are minimized. These results where found
when parameter p was set to be p = 2 for n−ary T-norm and
p = 10 for n−ary T-conorm.

TABLE V
RELATIVE CLOSENESS (RC) VALUES FOR TOPSIS AND n−ARY TOPSIS
AND INFORMATION ABOUT DECIDABLE VERSUS NONDECIDABLE CASES.

Patent RC (TOPSIS) Decidable RC (Proposed) Decidable
1 0.6451 1 0.8072 1
2 0.8024 1 0.9760 1
3 0.4710 1 0.6379 1
4 0.4283 1 0.6522 1
5 0.4625 0 0.5655 1
6 0.3168 1 0.5779 0
7 0.9081 1 0.8850 1
8 0.7915 1 0.9140 1
9 0.6275 1 0.7990 1

10 0.5208 0 0.6325 1
11 0.7386 1 0.8297 1
12 0.5160 0 0.6617 1
13 0.5314 1 0.6553 1
14 0.5243 1 0.6804 1
15 0.6940 1 0.8236 1
16 0.8426 1 0.9394 1
17 0.7017 1 0.7747 1
18 0.8477 1 0.9466 1
19 0.5447 1 0.7559 1
20 0.6077 1 0.7254 1

To further examine the results from patent portfolio forming
problem in Table VI one can see ranking orders of the
patents from both TOPSIS and n−ary TOPSIS. As can be
seen ranking results have somewhat changed. For example
if we look at five top candidates TOPSIS gives ordering
7 ≺ 18 ≺ 16 ≺ 2 ≺ 8 where as n−ary TOPSIS gives
2 ≺ 18 ≺ 16 ≺ 8 ≺ 7. Eventhough we have same five patents
selected order of them is quite different especially between
patents no 7 and 2. In case of just selecting three patents we
would get a different selection result from these two.

TABLE VI
RANKING ORDERS FOR TOPSIS AND n−ARY TOPSIS

Ranking order TOPSIS n−ary TOPSIS
1. 7 2
2. 18 18
3. 16 16
4. 2 8
5. 8 7
6. 11 11
7. 17 15
8. 15 1
9. 1 9
10. 9 17
11. 20 19
12. 19 20
13. 13 14
14. 14 12
15. 10 13
16. 12 4
17. 3 3
18. 5 10
19. 4 6
20. 6 5

Notable also is that when we are examining undecidable
cases none of them seem to be in top 10 selected patents,
but rather close to be last ones. This however is not anyway
generalizable result.

V. CONCLUSIONS

We have presented new version of TOPSIS where n−ary
norm operators are used in creation of positive and negative
ideal solutions. We have shown that by doing this we are able
to create different ranking order. Also by doing so we can
address the problem of having different preferences towards
positive and negative ideal solutions. This can be used as
alternative method instead of setting importance weights for
D+

i and D−i in relative closeness coefficient. By choosing a
stricter/weaker norm operator we can change the preference of
an ideal solution. Besides changing the preference by imposing
stricter/weaker norm operator another way for possible suitable
norm operator selection or parameter selection in n−ary
norm operators would be to used examination of decidable
cases proposed by Kuo [20] and minimization of undecidable
alternatives.

For the future work, method introduced in this paper can be
extented so that it covers different n−ary norms for different
criterias. In doing so preference order can be altered even
more. In the case that we would want to find a regions where
there would be least amount of undecidable cases this will cre-
ate an optimization problem where suitable norms/parameter
to norms can be optimized e.g. by minimizing the set of
undecidable cases.
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