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Abstract—This paper presents the MinUnc method to construct
m-/belief functions in the framework of the Dempster-Shafer
theory to represent the uncertainty in a given body of evidence.
Using the principle of minimum uncertainty and the concepts
of entropy and non-specificity, the MinUnc method specifies
a partition of a finite interval on the real line and assigns
belief masses to the uniform subintervals. The proposed MinUnc
method is illustrated using a simple example and applied to
uncertainty representation of air flight arrival delay data set.

Index Terms—Dempster-Shafer theory, Basic belief assign-
ments, Principle of minimum uncertainty, Entropy, Non-
Specificity, Predictive belief function

I. INTRODUCTION

Uncertainty quantification has been intensively applied to
various real-world applications to study the uncertainty in
the underlying physical system, and consequently provide
more accurate and reliable behavior predictions [1], [2]. The
mathematical theories for uncertainty quantification include
probability theory [3], interval analysis [4], Dempster-Shafer
(DS) theory [5] and etc. If the uncertainty is due to the inherent
randomness in the system, traditional probability theory ap-
proach is most suitable and random variables with probability
density functions (base on sufficient amount of information)
can be used to represent the uncertainty [6]. If the system is
not stochastic, it is quite possible to describe the uncertainty
in systems using uncertain variables with upper and lower
bounds based on the limited available information, and the
concepts of interval analysis can be applied. If the information
associated with the uncertain variable is insufficient for the
construction of a complete probabilistic framework, but richer
than an interval can characterize, the m-/belief function in the
DS theory can be utilized for uncertainty quantification.

The m-functions are normally constructed from experts’
opinions or statistical data [7]. For example, Yaghlane et
al. have solved optimization problem to construct the least
informative belief functions from elicited expert opinions ex-
pressed in terms of qualitative preference relations [8]. Aguirre
et al. have applied statistical inference methods to construct
belief functions of reliability parameters of components from
statistical data about reliability [9]. However, the research
on the development of a general and rigorous algorithm to
construct belief function for a quantity of interest Y based on

a set of finite data points (i.e., the collection of all possible
values of Y ) is limited. Denœux has proposed to construct
predictive belief function for a random variable based on
its finite number of samples [25] [26]. However, the focal
elements of the belief function need to be specified in advance.
In this work, we propose a general algorithm to construct a
belief function for an uncertain variable Y based on a finite set
of data. The proposed algorithm does not assume randomness
of Y , and will provide both focal elements and their belief
masses. It is especially applicable to uncertainty quantification
in simulation output given observed data.

We recall here the basic notions of DS theory. Let the
universal set or the frame of discernment be a collection
of possible values X = {x1, x2, ..., xn} for the quantity of
interest X . Let any subset A ⊆ X represent the proposition “X
belongs to A.” In DS theory, there are two important measures:
belief (Bel) and plausibility (Pl). Different interpretations of
these measures are available in the literature [10]–[16]. In this
work, we adopt the interpretation due to Shafer [5]: the belief
function Bel(A) measures the strength of evidence support-
ing the proposition A while the plausibility function Pl(A)
quantifies the maximum possible support from the evidence
to the proposition A. Belief and plausibility function can be
derived from each other using Pl(A) = 1−Bel(A) (where A
is the complement of A). In addition, belief and plausibility
functions can also be derived from basic belief assignment
(BBA) or called m-function, which satisfies m(∅) = 0 and∑

A⊆Xm(A) = 1. Subset A is called a focal element if
m(A) 6= 0. In this work, we assume the number of focal
elements is finite.

Quantifying the uncertainty in a body of evidence (e.g., a
finite data set in the current work) in the framework of DS
theory amounts to constructing m-/belief functions assigning
belief masses to any proposition A. To this end, we introduce
important concepts related to the current work in section II
and propose the MinUnc method and its algorithm in details
in section III. In section IV, the proposed MinUnc method
is illustrated using a simple example and the obtained belief
function is compared to Denœux’s predictive belief function.
The MinUnc method is applied for uncertainty representation
of air flight arrival time delay data set in section V.
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II. BACKGROUND

In this section, we introduce a few important concepts in
the framework of DS theory.

A. Concave m-Function

When the quantity of interest takes real-number values,
the m-function is constructed on the real line. In this work,
we assume the m-function has finite number of intervals as
the focal elements. For the purpose of decision making, it is
natural and convenient to further assume that the m-function
representing one body of evidence has one and only one
maximum. We call this type of m-function a concave m-
function and define it as follows.

Definition 1: Let P = {A1, A2, ..., Al} be a uniform
partition of a finite interval Y, i.e., Y = ∪iAi, Ai ∩ Aj = ∅
for 1 ≤ i 6= j ≤ l, and the subintervals Ai (1 < i < l)
have the same length ∆. Then an m-function defined over the
universal set Y is a concave m-function if:

1) Pl({y}) = m(Ai)+m(Y) for all 1 ≤ i ≤ l and y ∈ Ai.
2) ∃ y′ ∈ Y such that Pl({y}) ≥ Pl({y + δ}) for y ≥ y′

and Pl({y}) ≥ Pl({y − δ}) for y ≤ y′, where δ > 0.
The requirement (a) states that the consecutive disjoint inter-
vals Ais (1 ≤ i ≤ l) and the universal set Y are possible focal
elements; and (b) states that the plausibility function Pl(y)
is a concave (or concave down) function. Figure 1(a) shows
one example of a concave m-function with intervals Ais and
real numbers m(Ai)s as focal elements and the corresponding
belief masses, respectively. The focal elements have the same
length and A2 is assigned with the most degree of belief
mass. For the purpose of simplification, we visualize the m-
function as in Fig. 1(b) where each stair (interval) represents
a focal element and its height represents the corresponding
belief mass.

A concave m-function has the following characteristics: i)
the subinterval length ∆, which indicates how specific is the
support of evidence for a given proposition, the smaller the
length is, the more specific the evidence is; ii) the total range
of the m-function, i.e., the core of the m-function (the union of
all the focal elements of the m-function), the smaller the total
range is, the more focused is the contribution of the uncertainty
source; iii) the maximum mass mmax, which indicates the
degree of belief that favors a certain subinterval over all others,
a larger mmax(A) shows more confidence in the proposition
that the true value of Y is in A; and iv) the focal element Amax

with the maximum mass, which is the interval the evidence
(or data) favors most.

B. Cumulative Belief Function and Cumulative Plausibility
Function

The cumulative belief function (CBF) and cumulative plau-
sibility function (CPF) has been defined by Oberkampf et al.
as follows [17]:

CBF (y) = Bel(Y ≤ y), CPF (y) = Pl(Y ≤ y).

Note: Independently, Yager [18] proposed identical concepts
called “belief cumulative distribution functions.”

(a)

(a)

(b)

Fig. 1. Concave m-function: (a) focal elements and belief masses; and (b)
simplified visualization.

C. Entropy and Specificity

Different formulations have been proposed to measure the
uncertainty in a data set [7], [19], [20]. They are mainly clas-
sified into three categories: measures of imprecision (or non-
specificity), measures of conflict (or dissonance, or entropy-
like measures), and measures of total uncertainty. In the
current work, we adopt the formulas from Klir and Wierman’s
book for non-specificity ( [20] p55, Eq. (3.51), [21]) and
entropy-like measure ( [20] p81, Eq. (3.187), [19]).

Definition 2: If Bel is a belief function over the power
set 2Y with the corresponding basic belief assignment, m,
and plausibility function, Pl, then the entropy-like measure
(denoted as Em) and non-specificity (denoted as Nm) of Bel
are defined as :

Em = −
∑
A⊂Y

m(A)log2(Pl(A)), (1)

Nm =
∑

A⊂Y,A 6=∅

m(A)log2LA, (2)

where LA is the number of elements in the set A, i.e., LA =
|A|. If A is a finite interval, LA is the interval length.
The entropy-like measures (we use entropy directly hereafter
for simplicity) indicate the dissonance in the evidence. The



Bayesian structure, which is of a highly dissonant type, has
a high entropy value. Specificity relates to the degree to
which the evidence is pointing to a specific element. That the
plausibility structure is closer to the belief structure indicates
that the evidence is more specific. The Bayesian structure is
most specific (with minimal non-specificity).

III. CONSTRUCTING BELIEF FUNCTIONS USING THE
PRINCIPLE OF MINIMUM UNCERTAINTY

In this section, we propose a novel method (called MinUnc
method) specifically designed for constructing m-functions on
the real line from a finite data set. The constructed m-function,
which serves as a mathematical representation of a data set,
can be further used for different application purposes, such
as uncertainty propagation through a simulation model, and
prediction of occurrence of future events. Before describing
the MinUnc method, we discuss the principles of uncertainty,
which must be appropriately satisfied while partial knowledge
is encoded in an m-function.

A. Principles of Uncertainty

The principle of maximum uncertainty ensures “using all
information available but making sure that no additional
information is unwittingly added” [22]. Essentially, it is the
same idea as the principle of maximum entropy in information
science [22] or the least commitment principle. The principle
of maximum uncertainty suggests that in order to set up
a probability distribution that honestly represents a state of
incomplete knowledge, one has to maximize the uncertainty
subject to all the information one has. It is applicable when
PDFs are constructed to represent the partial knowledge. The
principle of maximum uncertainty guarantees recognition of
the ignorance and the PDF that satisfies this principle is max-
imally noncommittal with regard to the assumed information,
which is not contained in the partial knowledge. On the other
hand, the principle of minimum uncertainty is used when
“some of the initial information is inevitably reduced in the
solutions to various degrees” [22]. It can be expressed as
“using as much information we have as possible, i.e., making
the reduction of information in solutions as small as possible.”
When a belief function is constructed on the real line to
represent the partial knowledge (a finite data set), no additional
information is added, but some information may inevitably be
lost. The principle of minimum uncertainty requires that this
loss is minimized; thus we should obtain the belief function
with the minimum increase of uncertainty (i.e., with minimum
uncertainty subject to the available information).

Lower entropy and lower non-specificity indicate less un-
certainty with which the evidence supports a unique outcome
[19]. Following the principle of minimum uncertainty, we
propose the MinUnc method, which minimizes both non-
specificity (equivalent to maximizing the specificity) and en-
tropy, to construct an m-function for a given finite data set.
The objective function is

J(m) = βEm(m) +Nm(m), β > 0, (3)

where Em and Nm are the defined entropy and non-
specificity, respectively, and the positive parameter β controls
the trade off between entropy and specificity.

B. Constraints on the m-Function

For a finite set with N elements S = {y1, y2, ..., yN}, a sin-
gle interval Y = [min{S},max{S}] = [mini{yi},maxi{yi}]
on the real line can be always specified to include all the
possible values of Y currently available. One can always
construct an m-function with the interval Y as the only focal
element, where m(Y) = 1. This leads to a vacuous belief
function (see Fig. 2) Bel(A) = 0 for all A ⊂ Y, A 6= Y and
Bel(Y) = 1, which is the least informative.
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Fig. 2. Vacuous belief function

On the other hand, the evidence may favor a specific subset
of Y. Therefore it is reasonable to construct a belief function
carried by a partition P of the interval Y, i.e., belief masses
are assigned to the disjoint subintervals A1, A2, ..., Al where
∪li=1Ai = Y. Here, for practical purposes, Y is divided into
uniform subintervals with interval length ∆ and with Y = 0
being a boundary of one of the subintervals. The left-most
and right-most subintervals may have lengths different from
∆. Each yj will support one of the subintervals A1, A2, ..., Al.

The m-function is defined as m(Ai) = ni/N (1 ≤ i ≤ l),
where ni is the number of data points falling inside the
subinterval Ai and N is the cardinality of the data set S
(i.e., |S|). If N is small, or if ∆ is small, the distribution
of data points may be scattered: unsupported subintervals
may alternate with supported ones producing more than one
local maximum. A scattered distribution yields little, if any,
useful information. In the current work, we construct concave
m-functions, i.e., with one subinterval with the maximum
evidence support and with the evidence to support subintervals
on both sides of this subinterval monotonically decreasing.

Due to experimental or measurement errors, there may
exist outliers in a data set that can cause serious problems
in statistical analyses. Therefore we identify and exclude the
outliers from the considered data set before constructing m-
function. Various ways are available in the literature to detect
the outliers [23], [24]. We adopt the commonly used Tukey’s



rule in the current work. Let Q1 and Q3 be the lower and upper
quartiles of the data set, John Tukey proposed to consider any
data point outside the range

[Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)] (4)

as an outlier. It is worth mentioning that the partial belief
supporting the outliers will be reassigned to the universal set,
therefore the consideration of part of the data set as outliers
does not deleteriously influence the results but just adds to the
uncertainty.

C. The MinUnc Method

Since the basic belief assignment, m, is a function of ∆,
the objective function Eq. (3) becomes

J(m(∆)) = βEm(m(∆)) +Nm(m(∆)), (5)

and the MinUnc method minimizes this objective function with
respect to ∆

∆opt = arg min
0<∆=k∆ini≤∆max

{βEm(∆) +Nm(∆)}, (6)

where ∆ini ∈ {1, 0.1, 0.01, 0.001, 0.0001, ...} is the minimum
desirable length of the subintervals (which can be considered
as the tolerance for the accuracy of the prediction results) to
be specified in advance. Smaller ∆ini indicates less tolerance
for the accuracy, and it requires more computational time
to solve the optimization problem. Since ∆ini is considered
as the desired precision and smaller scale is not necessary,
we constraint the search space of the optimization to be
multiples of ∆ini (i.e., ∆ = k∆ini) for the simplicity of
the optimization. The parameter β > 0 is introduced to
control the trade-off between the smaller entropy and larger
specificity (smaller non-specificity). The smaller the value of β
is, the constructed m-function intend to be more dissonant but
more specific as well. Without any further requirement for the
emphasis on entropy or specificity from specific application
problems, we consider both are equally important and chose
β = min{0.1, N∆ini} so that the magnitudes of entropy
and non-specificity are at similar level. The parameter ∆max

is chosen so that the concave m-function with the smallest
subinterval length is obtained as the optimal solution.

The procedure of the MinUnc method is defined as follows:
1) Specify the initial values of the parameters ∆ini.
2) Remove the outliers from the data set.

Specifically, calculate the quantiles Q1 and Q3 of the
data set S, let Ŝ be the set containing the data points in
the interval [Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)],
and let Y = [min{Ŝ},max{Ŝ}] and set j = 1.

3) Solve the optimization for subinterval length.
Specifically, set ∆max = j × ∆ini and solve the
optimization problem (6) for ∆opt. (Note: The values
of the objective function (5) are calculated for all
∆ini ≤ ∆ ≤ ∆max and the chosen ∆opt corresponds to
the minimum value.)

4) Obtain the focal elements and their belief masses.
With the optimal subinterval length ∆opt and Y = 0

being a boundary of one of the subintervals, one can
obtain a unique partition P of Y, i.e., the consecutive
disjoint subintervals Ai (1 < i < lj) with length
∆opt (with A1 = [min{Ŝ},min{A2}] and Alj =

[max{Alj−1},max{Ŝ}]). The belief masses of the m-
function are calculated as

m(Ai) = ni/N, m(Y) = (N − |Ŝ|)/N. (7)

5) Stop if a concave m-function is obtained; otherwise j =
j + 1, go to Step 3.

The flowchart of the procedure to construct m-function
using MinUnc method is provided in Fig. 3.

Fig. 3. Flowchart for the MinUnc method.

IV. ILLUSTRATION OF THE MINUNC METHOD ON A
SIMPLE EXAMPLE

We consider an example data set S = {yj}Nj=1 (with size
N = 1000) constituting samples from a Gaussian distribution
N (0, 1) as the available information about the uncertain vari-
able Y . We construct an m-function on the data set using the
MinUnc method, and analyze its characteristics as a function
of the parameter ∆ini.

A. Construction of the m-Functions

The m-function with ∆ini = 0.00001 is constructed for the
data set with N = 1000 (Fig. 4(a)). It shows that the quantity
of interest Y falls inside the interval Amax = [−0.34837, 0]
with the maximum degree of belief Bel(Amax) = m(Amax) =
0.123. To consider the possibility of Y less than a fixed value,
for example Y < 0.5, the CBF and CPF are constructed (Fig.
4(b)). It shows that the possibility of the proposition Y ∈
(∞, 0.5) being true is bounded by CBF (0.5) = 0.63 and
CPF (0.5) = 0.752.
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Fig. 4. Data set S with N = 1000, ∆ini = 0.00001: (a) BBA, (b) CBF
and CPF.

B. The Characteristics of the m-Functions with respect to
Initial Subinterval Length

The characteristics, entropy and non-specificity of the m-
functions constructed from the example data set S (|S| =
1000) are shown in Table I in detail. From the results, one can
observe that as ∆ini decreases (i.e., −log10∆ini increases), the
optimal subinterval size ∆ and the non-specificity are decreas-
ing. The obtained m-function is more accurate and precise,
which matches our intuition since smaller ∆ini represents finer
scale and higher precision.

TABLE I
THE CHARACTERISTICS OF THE m-FUNCTIONS WITH DIFFERENT ∆ini

∆ini ∆ Amax mmax Em Nm
0.1 0.4 [0, 0.4] 0.144 3.3217 -1.3154
0.01 0.36 [−0.36, 0] 0.126 3.4648 -1.4697

0.001 0.349 [−0.349, 0] 0.123 3.5046 -1.5121
0.0001 0.3484 [−0.3484, 0] 0.123 3.5056 -1.5144

0.00001 0.34837 [−0.34837, 0] 0.123 3.5056 -1.5145

C. Comparison of the MinUnc Method and Denœux’s Method

In this section, the belief function obtained from the Mi-
nUnc method is compared to the predictive belief function
proposed by Denœux [25] [26], which is suitable for a special

case where the uncertain quantity of interest Y is a random
variable with unknown probability PY , and a finite collection
of samples of Y (i.e., YN = {yj}Nj=1) is available as the data
set.

The Predictive Belief Function. Suppose F is the collection
of the focal elements: Ak(1 ≤ k ≤ l) and the unions of Ak’s,
where Ak’s are ordered consecutive intervals, and “ordered”
means that the elements in Ak1 are no larger than the elements
in Ak2 if k1 < k2. Let nk be the number of samples falling
inside Ak and

P−k =
a+ 2nk −

√
Dk

2(N + a)
, P+

k =
a+ 2nk +

√
Dk

2(N + a)
,

where a is the quantile of order 1 − α of the chi-square
distribution with one degree of freedom (for the degree of
freedom l > 2, we take a as the quantile of order 1−α/l of the
chi-square distribution with one degree of freedom suggested
by Goodman [25]) and

Dk = a(a+
4nk(N − nk)

N
). (8)

Let Ak,j denote the union Ak ∪Ak+1∪ ...∪Aj , then we have
the predictive belief function Bel(Ak,j) = P−(Ak,j) and

m(Ak,j) = P−k , if k = j,

m(Ak,j) = P−(Ak,j)− P−(Ak+1,j)− P−(Ak,j−1),

if j = k + 1,

m(Ak,j) = P−(Ak,j)− P−(Ak+1,j)− P−(Ak,j−1)

+P−(Ak+1,j−1), if j > k + 1.

The predictive belief function satisfies:

1) ∀A ∈ F , Bel[YN ](A)
P→ PY (A), i.e., for any ε > 0,

P (|Bel[YN ](A)− PY (A)| < ε)→ 1 as N →∞.
Remark: The belief function constructed with the Mi-
nUnc method also satisfies the property: Bel(A) →
PY (A) as n → ∞ since Bel(Ak) = nk/N approaches
PY (Ak) as N goes to infinity.

2) P (Bel[YN ](A) ≤ PY (A),∀A ∈ F) = 1− α.
Remark: Denœux mentioned “since we have less infor-
mation than in the asymptotic case (i.e., N → ∞), it
seems natural to impose that Bel[Yn](A) be less com-
mitted than PY (A) as a consequence of the Least Com-
mitment Principle (LCP),” i.e., Bel[YN ](A) ≤ PY (A).
(Note: According to Smets [27], the LCP formalizes
the idea “one should never give more support than
justified to any subset of the universal set.”) In the
situation that the extra information in the asymptotic
case is conflicting with the data set S, this requirement 2
will enlarge the belief mass assigned to unions of focal
elements and consequently increase the uncertainty. The
proposed MinUnc method does not require the existence
of PY (A) and consequently the condition 2 .

Results of the Example. The MinUnc method specifies the
partition of the universal set, i.e., the disjoint subintervals
as the focal elements. Denœux’s predictive belief function
(with α = 0.025) is derived with the same subintervals



and the unions of these subintervals as the focal elements.
Since Denœux’s method assigns partial belief to both disjoint
subintervals and the unions of the subintervals, it is difficult
to compare belief functions directly (Fig. 5(a) shows only
the belief masses of the disjoint intervals). The cumulative
belief and plausibility functions from both the MinMax and
Denœux’s methods are constructed and compared.
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Fig. 5. The comparison of the MinMax method and Denœux’s method for
the data set S with N = 1000: (a) the BBAs, (b) CDF, CBFs and CPFs.

Figure 5(b) shows CBF/CPF from the MinMax method,
CBF/CPF from the predictive belief function and the true
cumulative distribution function (CDF). One can observe that
the predictive belief function introduces more uncertainty (less
specific due to the condition 2).

V. MATHEMATICAL REPRESENTATION OF AIR FLIGHT
ARRIVAL DELAY DATA

In this section, we implement the proposed approach to
construct m-function for uncertainty representation in air flight
arrival delay data set. Specifically, we focus on the flight
NK1704 from an American ultra-low-cost carrier Spirit Air-
lines. The flight NK1704 is scheduled to departure from CLT
(Charlotte, NC) at 11:30AM and arrive at BWI (Baltimore,
MD) at 12:50PM. The data set contains the departure delay
time and arrival delay time from 9/1/2019 to 9/30/2019, which
is obtained from the public database of the United States
Department of Transportation website. Since the departure
and arrival delay time in the data set is recorded as integers,
and also there is no need to consider the time delay in a
more precise scale (such as 0.1, 0.01 minutes) in daily life,
therefore, it is natural to set ∆ini = 1 for this specific

TABLE II
DEPARTURE AND ARRIVAL TIME DELAY (IN MINUTES) FOR NK1704

FROM 9/1/2019 TO 9/30/2019

Date 9/1 9/2 9/3 9/4 9/5 9/6 9/7 9/8 9/9 9/10
Dep 19 20 4 0 0 0 0 0 0 0
Arr 32 25 30 0 12 0 11 0 19 9

Date 11 12 13 14 15 16 17 18 19 20
Dep 0 0 7 17 0 0 0 0 0 1
Arr 0 6 12 38 0 8 0 1 22 13

Date 21 22 23 24 25 26 27 28 29 30
Dep 0 0 0 0 0 0 0 0 0 12
Arr 9 0 1 15 7 15 4 12 5 51

problem. Using the proposed approach with β = 0.1, m-
function is constructed to represent the uncertainty in the
arrival time delay data set. From Fig. 6, one can conclude
that the arrival time delay for NK1704 in September of 2019
is less than 7 minutes with the highest degree of belief 0.4 (i.e.,
Bel([0, 7]) = m([0, 7]) = 0.4). We also analyze the departure
time delay data set to check the causality between departure
time delay and arrival time delay. Excluding the outliers
with Turkey’s rule, the departure time delay for NK1704 in
September of 2019 is zero with degree of belief 1. Therefore,
the conclusion that the arrival delay for NK1704 in September
of 2019 is not caused by the departure delay can be drawn and
other factors (after departure) needs to be explored.
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Fig. 6. m-function of arrival time delay for NK1704 in September of 2019.

VI. SUMMARY AND CONCLUSION

A novel algorithm called MinUnc method is proposed to
construct the m-/belief function for uncertainty representa-
tion/modeling in a finite data set. Before the construction, the
outliers is first detected and excluded from the data set using
Tukey’s rule. Then with the principle of minimum uncertainty
and the concepts of entropy and non-specificity, the MinUnc
method specifies a partition of a finite interval on the real line
and assigns belief masses to the uniform subintervals.

The proposed MinUnc method is suitable for uncertainty
representation in any systems/problems involving an uncertain
quantity Y associated with a finite data set. The obtained belief
function can help to make conclusions about the uncertain
quantity of our interest Y . Moreover, it can help to numerically
study the uncertainty in function outputs propagated from the



uncertainty in input Y , which is of critical importance to
simulations.

Although MinUnc method has significant practical advan-
tage, there are limitations as well. For example, if the data
favors two or more non-adjacent subintervals mostly with sim-
ilar degrees of belief, the constructed belief function intends
to have large subinterval size and consequently becomes less
informative. In addition, enforcing zero to be boundary of
one focal element (subinterval) may not match the reality and
consequently may also enlarge the subinterval size.

In future, we would like to relax the constraint of zero being
boundary of one focal element and let the optimization process
to choose the optimal boundaries (instead of the optimal length
in our current algorithm) of the focal elements. With more
degrees of freedom in the optimization process, the constructed
belief function will represent the data better.
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