
Fuzzy Set Similarity for Feature Selection
in Classification

Valerie Cross  
Computer Science  and Software 

Engineering  
Miami University 
Oxford, OH USA 

crossv@miamioh.edu 

Michael Zmuda 
Computer Science and Software 

Engineering   
Miami University 
Oxford, OH USA 

zmudam@miamioh.edu 

Rahul Paul 
Computer Science and 

Engineering  
University of South Florida 

Tampa, FL USA 
rahulp@mail.usf.edu 

Lawrence Hall  
 Computer Science and 

Engineering  
University of South Florida 

Tampa, FL USA 
lohall@mail.usf.edu 

Abstract—A problem for machine learning research occurs 
when many possible features exist but the training data examples 
are very few.  For example, microarray data typically have a much 
larger number of features, the genes, as compared to the number 
of training data examples, the patients.  One approach is to first 
determine the best features for prediction and then to group 
features based on a measure of their relatedness.  The concordance 
correlation coefficient has been used to place somewhat correlated 
features into disjoint groups of similar features.  Multiple base 
classifiers are created by randomly picking one feature from each 
of the feature groups and then the collection of base classifiers is 
used in an ensemble classifier.  Each classifier in the ensemble 
provides a vote. The majority vote is used to produce the final class 
prediction.  This paper investigates grouping features using fuzzy 
set similarity measures as well as the concordance correlation 
coefficient as a relatedness measure.  The performance of these 
different measures is compared in terms of accuracy, sensitivity, 
specificity, and F-measure using the ensemble classifiers created 
with the different relatedness measures.  Four microarray gene 
expression data sets are used in the experiments to determine the 
usefulness of fuzzy set similarity measures and how they compare 
with the concordance correlation coefficient. Using the 
concordance correlation coefficient to guide clustering is not 
superior to fuzzy set similarity measures.  Depending on the 
particular data set and performance measure being used, different 
fuzzy set similarity measures perform better than or just as well 
as the concordance correlation coefficient. 

Keywords—feature selection, fuzzy set similarity measures, 
concordance correlation coefficient, microarray data. 

I. INTRODUCTION 

The success of machine learning algorithms is typically 
reliant on the quality of the machine readable data that they 
work on.   Quality factors include whether there is irrelevant, 
redundant, unreliable or noisy data.  Another factor for machine 
learning algorithms is the high-dimensional datasets becoming 
more and more significant in research. A challenge is to find a 
set of features, reduced as much as possible, that are able to 
accurately classify the sample data. Because of this challenge, 
feature selection has become more indispensable than ever to 
achieve dimensionality reduction [1].  

 Dimensionality reduction is very essential in biological 
applications such as DNA-microarrays and proteomics since 

these applications commonly have high dimensionality with a 
small number of examples.  Biomedical researchers need a 
small set of highly discriminatory features for which they will 
then invest substantial time and research effort.  Since feature 
selection also preserves the original features, it is particularly 
useful for applications that require the original features for 
model interpretation and knowledge extraction.  Consequently, 
selecting the best set of differentiating features for classification 
in biological applications has received attention in data mining 
and machine learning research [2][3].   

The numerous algorithms for feature selection have been 
categorized into filter, wrapper and sparsity-based approaches 
[4].   The research conducted for this paper uses a filter method 
to rank the features using their relevance as determined by 
statistical measures taken over the underlying data 
characteristics.   These top-ranked features are then used to 
build a single base classifier.  Multiple single base classifiers 
are created and then aggregated into an ensemble. Research 
suggests that an ensemble created from multiple base classifiers 
can improve both performance and confidence in the results. 
The ensemble in this research aggregates the predictions from 
the base classifiers using simple majority voting [5].    

 The base classifiers for an ensemble can be created in 
different ways, but the approach taken here is similar to the 
random subspace method (RSM) [6], which trains the same 
base classifier by random sampling of features from the feature 
space. RSM, however, assumes that the features randomly 
selected are not highly correlated.  This assumption can affect 
its performance due to feature redundancy and efficiency.   A 
modified version of RSM [7] takes into consideration that some 
features might be related as measured by the concordance 
correlation coefficient [8].  This method is referred to as the 
concordance correlation coefficient based random subspace 
method (CCC_RSM). In this approach, the features are grouped 
into feature subsets based on their CCC values and the random 
sampling then occurs within a feature subset.  For example, if 
10 feature subsets result from grouping using the CCC, then 10 
features, one randomly selected from each feature subset, are 
used to train a base classifier.  The research presented in this 
paper investigates the use of other measures of relatedness 
between the features of the classification problem, specifically, 
fuzzy set similarity measures, to group the features into feature 
subsets.  The details are described in Section III below.   

978-1-7281-6932-3/20/$31.00 ©2020 IEEE



The paper organization is as follows:  Section II reviews the 
relatedness measures used in this research including the 
concordance correlation coefficient and the fuzzy set similarity 
measures.   Section III describes the experimental design and 
its parameters as well as the data sets used to evaluate the 
different measures. Section IV compares the results from 
applying these measures with respect to the feature subsets 
formed and their performance in the classification task. Finally, 
Section V presents the conclusions and possible future work. 

II. RELATEDNESS MEASURES

In [7] the concordance correlation coefficient (CCC) was 
used as the relatedness measure between the features in order 
to group features together for the selection step. The random 
subspace method [6] does not use relatedness grouping.  With 
grouped features, a base classifier is repeatedly trained using a 
set of features where each feature is randomly selected from 
each of the groups.  If G groups are formed using a relatedness 
measure, then G features are in the feature set used to train the 
base classifier.    

To summarize, instead of randomly selecting the features 
from the original feature space, a relatedness measure is used to 
form the groups of related features.  This research investigates 
the effects of using different fuzzy set similarity measures to 
determine relatedness in creating the groups. First, a description 
of how the patient microarray data is represented as fuzzy sets 
is provided. Then the CCC and several different fuzzy set 
similarity measures are described.   

A. Creation of Fuzzy Sets Representing Features
 For purposes of the applying fuzzy set similarity measures 

to determine agreement between two different features, each 
gene feature is represented as a fuzzy set over the patients as 
provided in the sample data sets. The gene expression levels 
must be normalized to specify a degree of membership in [0, 1]. 
The patient’s membership degree in the fuzzy set specifies the 
level of gene expression for that patient’s microarray data.    

B. Concordance Correlation Coefficient
The concordance correlation coefficient (CCC) measure is 

a bivariate relationship in terms of agreement between two 
values [8]. This measure differs from the Pearson correlation 
which measures how much the relationship is linear. If a 
scatterplot of the pair of points is examined, high concordance 
correlation occurs when the scatterplot points are close to the 
45 degrees line of perfect concordance which runs diagonally 
on the scatterplot.  High Pearson correlation occurs when the 
scatter points are near any straight line.   CCC values lie in the 
interval [-1, 1] where -1 implies negative agreement and +1 
positive agreement.  A zero value indicates no agreement.   

The CCC for two variables A and B uses the means, 
variances (var) and covariance  (cov) of A and B. It is defined 
as  

CCC(A ,B)  = 2)()var()var(

),cov(*2

BABA
BA

−++
  (1) 

Other correlation coefficients may be used, but since the CCC 
has recently been used as a relatedness measure for grouping 
features for classification, it is used as one of the relatedness 
measures in this current research. 

C. Zaheh’s Sup-Min Partial Matching
In [9] a detailed and thorough review of a variety of fuzzy 

set similarity measures is provided. Zadeh’s consistency index 
also known as the sup-min or partial matching index falls into 
the set-theoretic category of fuzzy similarity measures. It 
roughly estimates the similarity between two fuzzy sets by 
finding at what domain values they intersect and determines 
their similarity by taking the highest membership degree among 
their intersection points.  Given two fuzzy sets A and B, 
similarity between the two is determined as 

       SZadeh(A, B) = sup u  ∈ U T(A(u), B(u))                       (1) 

where T can be any t-norm. Usually the minimum is used for the 
t-norm, as done in this work.  This measure only provides a
rough calculation for the similarity value between the two fuzzy
sets.

D. Jaccard
The fuzzy Jaccard similarity measure is defined as a fuzzy 

extension of the Jaccard index [10] between two crisp sets by 
replacing set cardinality with fuzzy set cardinality. This fuzzy 
set similarity measure is also in the set theoretic category but 
provides a more comprehensive view of similarity between the 
two fuzzy sets since all elements in both fuzzy sets are taken into 
account not just the intersection point as in sup-min.    Given two 
fuzzy sets A and B, similarity between the two is defined as 

SJaccard(A, B) = 
||

||

BA
BA

∪
∩   (2) 

so the similarity is measured by the proportion of the area of the 
intersection of the two fuzzy sets to the area of the union of the 
two fuzzy sets.    In this work the minimum operator is used for 
intersection and the maximum operator is used for union of two 
fuzzy sets.  

E. Aggregation of Inclusion Measures
Another way to create a fuzzy set similarity measure is to 

aggregate a fuzzy inclusion measure using a symmetric 
aggregation operator [9].   A fuzzy inclusion measure 
determines how much of one fuzzy set is included in another 
fuzzy set.  For example, the inclusion of fuzzy set A in fuzzy 
set B is specified as 

     SInc(A, B) =  
||

||

A
BA ∩     (3) 

A fuzzy similarity measure is then created as 

SIncAgg(A, B) = agg[SInc(A, B), SInc(B, A)]   (4) 

where agg is the average, minimum or maximum aggregation 
operator.        



F. Cosine Measure
The cosine similarity measure between two fuzzy sets A and B 
is represented as 

Scos (A, B) =
BA
BA .     (5) 

This measure views each feature vector as a vector in n 
dimensional space and computes the cosine of the angle 
between the two vectors.  When the two vectors are coincident, 
the cosine is 1; therefore, the similarity is 1.  When the vectors 
are perpendicular, the cosine is 0; therefore, there is no 
similarity.  The data used in this work contain non-negative 
values and so it is not possible for the two vectors to form an 
obtuse angle, therefore, Scos ≥ 0.   

TABLE I           MICROARRAY DATASETS 

III. EXPERIMENTAL DESIGN AND DATA SETS

The research objective is to compare how the different 
relatedness measures perform in grouping features to create an 
ensemble classifier.   The results are compared and analyzed to 
determine the effects of the measures on the classification 
results. To perform this analysis, a systematic series of machine 
learning experiments were conducted, with the main control 
variable being the similarity measure used to form the feature 
groups.  The data sets used in these experiments are provided in 
Table I. 

Ultimately, we adopted using leave-one-out cross validation 
[11]. Central to this procedure is the repeated application of the 
learning process on a training set and test item. As seen in Fig. 
1, the first step is to normalize the data to ensure that the values 
are in the interval [0, 1] so that it is suitable for fuzzy set 
similarity measures. The leftmost data column shows the 
original 4 hypothetical training instances and 1 test instance. As 
one goes left to right in Fig. 1 on the data, each of the training 
set’s 3 feature vectors is normalized by finding the min and max 
in each column independently. In the example, the three feature 
min/max pairs are: 0/4, 0/100, and 10/110. Normalizing these 
samples linearly using (v – min) / (max – min) results in the 
second column. Since the test sample cannot be used at any point 
in the learning process (including normalization), we store the 

min/max pairs of the training set and use them to scale the test 
sample, but also clamp any values that fall outside the range [0, 
1]. In the example, the third feature of the test sample is clamped 
back into the range [0, 1]. 

After normalization, the ReliefF procedure which is shown 
below the normalization process in Fig. 1 is used to rank order 
the most useful features [12].  In the example, the rankings, from 
best to worst, are F1, F3, and F2. A value N denotes how many 
features are to be kept.  In this case, N=2 and therefore feature 2 
is discarded since it has the lowest ranking. The last column in 
the Relief Ranking procedure in Fig. 1 shows the resulting data 
that is used during the one cycle of leave-one-out cross 
validation. 

 

 

  ReliefF Ranking with N = 2    Reduced Data 

Fig. 1. Normalization and Feature Reduction 

 The ReliefF procedure evaluates each feature in isolation 
and does not consider the combined effects of what features 
work well together. Thus, if a particularly discriminative feature 
were to be replicated several times, ReliefF would rate all of 
those copies highly, even though it is beneficial to assemble a 
cooperative set of feature vectors. Nonetheless, ReliefF does 
provide a good way to assess the merit of individual features, 
despite its inability to assess the merit of a collection of features. 
This latter deficiency can be mitigated by increasing the number 
of top features selected, N. Of course, arbitrarily increasing N 
renders ReliefF useless and using all features becomes the 
standard. The nature of the data may, however, suggest there 
may be values of N that may reduce the number of features, yet 
provide enough diversity to ensure that the resulting set of 
features are able to perform effective classification. 

The individual feature vectors (i.e., the genes’ normalized 
values for all patients) of the reduced data are then placed into 
G disjoint groups, where each group is designed to contain 
similar features. This process is done using hierarchical 
clustering [13].  Classical clustering uses the concept of 
distance between individual items. Distance is essentially the 
opposite of similarity. So, distance is defined as 1.0 – similarity, 
when doing clustering. 

Dataset 
name 

No. of 
features 

No. of 
samples 

Pos/ 
Neg 

Download

Breast 7129 44 21/22 https://www.csie. 
ntu.edu.tw/_cjlin/ 
libsvmtools/datasets/ 
binary.html# 
breast-cancer 

CNS 7129 60 39/21 http://csse.szu.edu.cn/ 
staff/zhuzx/Datasets. 
Html 

Colon 2000 62 40/22 http://microarray. 
princeton.edu/oncology/ 
affydata/index.html 

Leukemia 7129 72 47/25 http://csse.szu.edu.cn/ 
staff/zhuzx/Datasets. 
Html 

<2, 10, 10> 
<0, 100, 10> 
<4, 0, 10> 
<4, 0, 110> 
<3, 20, 50> 

Training
Set 

<3, 20, 0>

Test
Sample 

Original Data  

<0.50, 0.10, 1.00> 
<0.00, 1.00, 1.00> 
<1.00, 0.00, 0.00> 
<0.75, 0.20, 0.40> 

<0.75, 0.20, -0.1> 

Normalized Data 

<0.50, 0.10, 1.00>
<0.00, 1.00, 1.00> 
<1.00, 0.00, 0.00> 
<0.75, 0.20, 0.40> 

<0.75, 0.20, 0.00> 

Clamped Data

F1, F3, F2 F1, F3 <0.50, 1.00>
<0.00, 1.00> 
<1.00, 0.00> 
<1.00, 1.00> 
<0.75, 0.40> 

<0.75, 0.00> 



The clustering procedure starts with each feature vector 
residing in its own cluster. Then, the two closest clusters are 
merged into one new, larger, cluster and the process repeated. 
Several approaches exist for determining the distance between 
clusters containing multiple items: 1) distance between the two 
clusters' centroids 2) distance between the closest pair of 
elements in the two clusters or 3) distance between the farthest 
pair of elements in the two clusters. In this work, option 3 is 
adopted. This approach tends to merge clusters that are 
relatively compact and are closely situated. Several options 
exist to determine when the merging should stop. In this work, 
clusters are continually merged until a pre-specified number of 
clusters is obtained. 

The clustering procedure starts with the normalized, 
reduced, training data. First, the similarity value of each 
feature-pair is computed by the similarity measure being used. 
This value is then converted to a distance and stored in a 
symmetric distance matrix. This distance matrix is then 
consulted during the hierarchical clustering procedure 
previously described to obtain G groups of disjoint feature sets. 

Fig. 2. Normalization and Feature Reduction 

Creating the distance matrix requires the relatedness value of 
all pairs of the G feature vectors, where the number of pairs is 
O(G^2). Computing the relatedness of one pair of feature 
vectors is O(M), where M is the number of samples in the 
training set. Preparing the distance matrix is, therefore, 
O(MG^2) with M and G typically being small. 

Algorithm 1 in Fig. 2 describes the leave-one-out validation 
process. It uses the procedures described to form an ensemble 
consisting of E decision tree classifiers. Weka’s J48 decision 
tree classifier [14] is used with default parameters.  Line 2 cycles 
through all instances, one at a time. Lines 4-6 normalize, reduce, 
and perform clustering described in Fig. 1. Lines 7-10 form the 
ensemble of J48 classifiers. To form the training feature set 

ultimately used in J48 learning, a feature is randomly selected 
from each of the G groups. It is worth noting that this is the 
second instance where features have been down selected in the 
entire algorithm. 

The new feature selector is similar to the one constructed in 
[12] since this feature selector combines ranking-based methods
using ReliefF (Line 5), grouping-based methods with its use of
relatedness measures (Line 6), and random subspace methods
(Line 9) since it randomly selects a feature from each group of
related features. It differs in that it can vary the relatedness
measure S used to group the features and its grouping method
uses a standard clustering approach previously described. The
number of groups or clusters are varied instead of varying the
threshold value of the CCC required to be placed in the same
group as done in [7].  Both approaches determine a feature
subset that contains both discriminating features due to the use
of the ReliefF ranking and unrelated features because each
feature is selected from a separate grouping. This manner of
feature selection should minimize both feature redundancy and
the size of the feature subset used to train the base classifier.

For each fold, a J48 ensemble classifier is created from a set 
of trained base classifiers produced by repeating the random 
selection of features from each of the related groups and training 
using those selected features.  The repeated process is done E 
(Line 8) times to create each of trained base classifiers. Each 
trained base classifier in the ensemble is applied to the test data 
to produce its classification result (line 11). The ensemble 
classifier uses a majority vote to determine the final 
classification result.  This same process is done for each fold. 
The overall accuracy recorded is computed as average accuracy 
across all folds. For classification errors, the type of error is also 
recorded.  Similarly, the overall sensitivity, specificity, and F-
Measure are calculated as their average across all folds.   

Each trained base classifier is applied to the test data for the 
fold to produce its classification result. The ensemble classifier 
then aggregates these results from the trained base classifiers 
using a majority vote to determine the final classification result. 
This same process is done for each of the folds (Line 2) and the 
various overall  performance measures  are determined as the 
average over all the folds.  Although the classifiers that form the 
ensemble are created independently, each episode of learning 
draws from the same feature sets, with each set containing 
similar features. Thus, the classifiers in the ensemble are not 
fully independent, which is generally considered an asset for 
majority-vote classifiers. 

IV. EXPERIMENTAL RESULTS

  As seen in Line 1 of the algorithm, the input parameters 
are S, N, G, and E where S is the fuzzy set similarity measure; 
N is the number of top ranked features ReliefF is to produce; G 
is the number of clusters in which to group related features; and 
E is the number of classifiers used to create the ensemble 
classifier. In the experiments E was fixed at 100.  N ranged from 
10 to 100 by 10, and G ranged from 2 to 10 by 1.   

The performance of the various relatedness measures in the 
new feature selector is determined first using accuracy, a 
straightforward measure of the percentage of correct 

Algorithm 1. 

1. LOO-CV(Set<Instance> samples, int N, int G, Similarity S, int E):
2. For each (Instance testSample in samples): 
3. training = samples – { testSample } 
4. Normalize feature vectors in training and testSample 
5. Use ReliefF to select N features  from training (and 

  testSample) 
6. Cluster feature vectors IDs of training into G groups using S 
7. ensemble = { }
8. Repeat E times
9. Randomly select one feature from each cluster, 

  reducing  the training set and testSample 
to G features. Store the reduced testSample for  

     later testing 

10. ensemble = ensemble ∪ Learn J48 classifier using

reduced  training set 
11. Apply each classifier in ensemble to testSample, with only

 the proper features selected. 
Record if ensemble correctly classifies testSample or  
 the type of classification error. 



classifications.  Since in real world applications cases where 
types of classification mistakes are not equally undesirable, 
other standard measures of sensitivity, specificity, and F-
measure may be used. All of these measures use a combination 
of the number of true positives (TP), the number of true 
negatives (TN), the number of false positives (FP) and the 
number of false negatives (FN).    

Sensitivity, also referred to as recall, is the probability of 
correctly identifying positive samples from all the samples 
which are actually positive and given as  

Sens (Recall) = TP / (TP + FN). 

 Specificity is the probability of correctly identifying the 
negative samples from all the samples which are actually 
negative and given as  

Spec = TN / (TN +FP). 

Accuracy is the probability of correctly identifying both 
positive and negative samples from all samples and given as  

Acc = (TP + TN) / (TP +TN +FP + FN). 

Precision is the probability of correctly identifying positive 
samples from all the samples which the classifier returned as 
positive and given as 

Prec = TP / (TP + FP). 

The F-measure is the harmonic mean of precision and recall. 
Recall is the same as sensitivity.  The F-measure is given as  

F-meas = 2*(Prec*Recall) /  (Prec + Recall).

Figure 3 shows the performance in terms of highest overall 
accuracy for each measure for each of the four data sets.   Table 
II shows the data used to create the bar chart with the N and G 
values producing the highest accuracy.  Those shown 
underlined are the greatest values achieved for each data set. 
Note that the different performance measures may achieve their 
highest values at different N and G values for a similarity 
measure.   

Breast data set: The Breast bar chart differs from the others 
in that Cos produces the highest accuracy at 0.816. The Cos 
measure, however, has the lowest accuracy for both the 
Leukemia and Colon data sets.  IncMax follows the Cos with a 
0.796 accuracy.  Note also that IncMax has the lowest accuracy 
for the CNS data set.   All accuracies are greater than 0.730 

CNS data set:  The bar chart shows the lowest accuracies 
are produced for the CNS data set. All measures have a greater 
than or equal to accuracy than 0.650 accuracy. The highest is 
0.700 for the Jaccard measure and the InclusionMin. The lowest 
is for InclusionMax at 0.650. Three measures CCC, IncAvg and 
Zadeh produced the same accuracy of 0.683.  

Colon data set:  The bar chart follows a similar pattern to 
the Leukemia data set.  It has the next highest accuracy with 
that of 0.903 for the CCC and Jaccard measures and all other 
measures except for Cos have the same accuracy of 0.887. 

Leukemia data set: The bar chart shows the highest 
accuracies are for the Leukemia data set with all measures 

having greater than 0.900 accuracy. The highest accuracy at 
0.986 occurs for all except the Cos and Zadeh measures.    

Summary over data sets: The Leukemia data set has the 
highest accuracies for all measures followed by the Colon data 
set.   Note that five of the seven fuzzy set similarity measures 
produce the same accuracy of 0.986 for the Leukemia data set. 
The CNS data set has the lowest accuracies for all measures.  

Summary over similarity measures:   The Jaccard measure 
has the highest or tied for the highest over three of the four data 
sets, i.e., the exception being for the Breast data set where the 
Cos has the highest accuracy of 0.816.   The ties for the Jaccard 
occur with CCC for the Colon and Leukemia data sets at 0.903 
and 0.986, respectively and with IncMin for CNS data set at 
0.700.   The Jaccard also ties with all three inclusion measures 
for the Leukemia data set at 0.986.    

Fig. 3. Highest Overall accuracy by data sets 

TABLE II       OVERALL ACCURACY WITH N AND G VALUES 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Br CNS Colon Leuk

Overall Accuracy by Data Sets

 ccc cos InclusionAvg

InclusionMax InclusionMin Jaccard

Zadeh

Br N   G CNS N G Col N G Leu N G 

CCC 0.735 10 5 0.683 90 9 0.903 30   4 0.986 40 3

Cos 0.816 10 7 0.667 20 9 0.839 10 4 0.944 10 2

Inc 
Avg 0.755 10 4 0.683 90 6 0.887 30 4 0.986 80 6

Inc 
Max 0.796 10 5 0.650 30 8 0.887 50 3 0.986 30 5

Inc 
Min 0.776 10 6 0.700 100 9 0.887 50 4 0.986 100 7

Jac 0.776 10 6 0.700 60 9 0.903 50 9 0.986 100 2

Zad 0.735 10     9 0.683 30 8 0.887 30 4 0.972 10 2



Table II shows that for the Breast data set its highest overall 
accuracy for each fuzzy set similarity measure occurs 
consistently using only the 10 highest ranked features. As can 
be seen in Table I, the Breast data set is balanced on the number 
of positive and negative cases. The Colon data set has a smaller 
range of N values, 10 to 50, than either the CNS or Leukemia 
data sets.  The Leukemia data set has the greatest range of N 
values, 10 to 100 and yet the most tied accuracy values.  

Although a maximum of G = 10 was used in the 
experiments, no similarity measure required that many features 
to achieve its highest overall accuracy.  The Colon data set is 
very consistent across the similarity measures with the use of 4 
or fewer groups except for Jaccard.  The CNS data set required 
the greatest number of groups to achieve its highest overall 
accuracy for each fuzzy set similarity measure.  

The bar chart in Figure 4 shows the sensitivity performance 
of the similarity measures for each data set.   Table III provides 
the sensitivity values along with the N and G values where the 
highest sensitivity value occurred.  

 
Fig. 4. Overall Sensitivity by data sets 

TABLE III              OVERALL SENSITIVITY WITH N AND G VALUES 

From the bar chart it is easy to see that the smallest 
sensitivity values occur for all measures on the CNS data set.  
The greatest overall sensitivity values occur for all measures on 
the Leukemia data set with all measures achieving a value of 1 
except for the Cos with a sensitivity of 0.957.  Although the 
value of 1 is achieved, what varies is the N value at which it 
occurs. For CCC and Zadeh, it happens at N=10.  For all three 
inclusion measures it happens at N=30 and for the Jaccard at 
N=40.   Although Cos does not achieve a sensitivity value of 
1.000 for the Leukemia data set, it has the greatest or tied for 
greatest overall sensitivity for the other three data sets.   The 
InclusionMin has the lowest or ties for lowest for all data sets 
except for the Leukemia data set.   

The bar chart in Figure 5 shows the overall specificity 
performance of the similarity measures for each data set. Table 
IV provides the specificity values along with the N and G 
values where the specificity value occurred. From Figure 5 it is 
easy to see that the smallest specificity values occur for all 
measures on the Breast data set.  The best performing measure 
for the Breast data set is Cos with a 0.917 value.  The worst is 
the CCC with a 0.792. All the others tied with a value of  0.833.   
The other 3 data sets have comparable specificity values, all 
above 0.920.   The CNS data set, however, has 4 measures 
obtaining a specificity of 1.000, whereas the Leukemia data set 
has only one with specificity of 1.000 and Colon data set has 
none.   It is interesting that the CNS dataset has the highest 
specificity values for all similarity measures compared to the 
other data sets measures except for IncMin for Colon and 
Leukemia data sets. 

Across the fuzzy set similarity measures, again the Cos 
measure has the highest or tied for the highest specificity value 
for three of the four. Only the InclusionMin measure with a 
specificity of 1.000 is higher for the Leukemia data set.   The 
CCC measure has the lowest specificity for the Breast and the 
CNS data sets.  InclusionMax and Zadeh have the lowest for 
Colon.  For Leukemia data set, all measures have identical 
specificity of 0.960 except for InclusionMin with a specificity 
of 1.000. 

Some variation exists in the similarities’ performances based 
on the measure most important for the evaluation or diagnosis 
process.  With sensitivity true positives as well as how many 
false negatives the classifier has are considered, i.e., how often 
one is told they don’t have a disease but that person actually 
does.  With specificity true negatives as well as how many false 
positives the classifier has are considered, i.e., how often one is 
told they have a disease but that person actually does not.  For 
diagnosing cancer, false negatives, or failing to diagnose cancer, 
are more undesirable than false positives.    

The Cos similarity measure is interesting since it has the best 
performance with respect to sensitivity and specificity over all 
the data sets yet only has the highest accuracy for the Breast data 
set and the lowest accuracy for the Colon and Leukemia data 
sets. One can also see that the Leukemia data set models have 
the highest accuracies and the highest sensitivities across all 
fuzzy similarity measures.  The CNS data set has the lowest 
accuracies and lowest sensitivities across all fuzzy similarity 
measures.  For specificity values, however, the CNS has the 
highest values for six of the seven similarity measures.  
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Fig. 5. Overall Specificity by data sets 

TABLE IV       OVERALL SPECIFITY WITH N AND G VALUES 

The bar chart in Fig. 6 shows the F-measure performance of 
the similarity measures for each data set. Table V provides the 
F-measure values along with the N and G values where the
highest F-measure value occurred.   The F-measure 
incorporates recall, i.e., sensitivity as accuracy does, but instead 
of specificity, it uses precision. It ignores the true negatives. 
Comparing accuracy to F-measure values, there is little 
difference between them over all the similarity measures for the 
Breast and Leukemia data sets, less than 0.015.and 0.020, 
respectively. For the CNS data set, however, there is a much 
bigger difference with accuracy having the larger values and the 
differences ranging from around 0.2 to 0.27.  The Colon data 
set also has larger accuracy values with the differences around 
0.05.    

The larger accuracy values could be attributed to true 
negatives being used in its calculation where these are not 
included in recall and precision used in calculating the F-
measure.  This can also be seen in the high specificity values 

for the CNS data set where several values are 1.000 indicating 
that no false positives existed for those similarity measures.  

The Cos and Jaccard combination approaches are the 
winners for F-measure.  It could be argued they are all one 
needs to focus on, if this trend continues with more data sets. 
The Jaccard and Cos measure combination also has the highest 
accuracies overall the four data sets as seen in Table II. 

Fig. 6. Overall F-Measure by data sets 

TABLE V        OVERALL F-MEASURE WITH N AND G VALUES 

V. CONCLUSIONS AND FUTURE WORK

 A study on the use of fuzzy set similarity measures along 
with the CCC measure to group features for machine learning 
has been presented.  These experiments follow an approach 
similar to that in [7] which proposes the CCC_RSM algorithm. 
Two differences are the use of hierarchical clustering and a 
fixed number of clusters instead of using a similarity threshold 
based on the CCC measure as in CCC_RSM to group features.  
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The normalization process used in our research is done first 
on the training data without the use of the test sample. The test 
sample, however, is normalized based on the min and max of 
the feature values of the training data.  The normalized feature 
values of the test sample are kept in the range [0, 1] if its feature 
values are outside the training data’s min and max feature 
values.  

The results show that using CCC to guide clustering is not 
superior to fuzzy set similarity measures.  Over all the data sets 
and the performance measures, only for the colon data set does 
CCC have a higher overall accuracy than all the fuzzy set 
similarity measures except for its tie with Jaccard.  For 
sensitivity, the CCC does not have the highest value for any of 
the data sets. For the leukemia data set, CCC does tie for high 
sensitivity with five other fuzzy set similarity measures with a 
value of 1.0.  For specificity, CCC does not have the highest 
value for any of the data sets.  For F-measure, the CCC does tie 
for high value of 0.989 with five other fuzzy similarity 
measures for the leukemia dataset.  

From this analysis, fuzzy set similarity measure for the most 
part performs as well if not better than CCC.  The results, 
however, do not show any single fuzzy set similarity measure 
to be the best over all the data sets.  The Cos measure has the 
highest value over all the performance measures for the breast 
dataset.  It also has the highest, or tied for the highest, sensitivity 
and specificity for the CNS and colon datasets and has the 
highest F-measure for the CNS data set. The Cos measure, 
however, has the lowest, or tied for the lowest values, for the 
leukemia data set.   The Jaccard measure has the highest, or tied 
for the highest, accuracy for all data sets except for the breast 
data set and has the highest F-measure for the colon and 
leukemia data sets. The Inc Min measure has the highest 
specificity for the leukemia and colon data sets.  

The best fuzzy set similarity measure is dependent on the 
particular data set and the performance measure being used. 
There is, however, a distinction in performance across the 
different data sets and performance measures.  While it would 
obviously be more useful to have one measure that is best for 
all data sets and performance measures, the results show that 
the Cos measure is the most consistent high-performer over 
most of the data sets and many of the performance measures 
and that focusing exclusively on one measure such as CCC is 
not justified. The practitioner committed to obtaining 
additional levels of increased performance may find a fuzzy 
similarity measure that provides better performance than the 
CCC.  

Although the CNS, Colon and Leukemia data sets are all 
imbalanced, no methods to address imbalance such as SMOTE 
[15] were used on these data sets in these experiments.  SMOTE 
was used in [7], and their results for the CNS data set had an
accuracy of 0.8864 which is much higher than any of the results
reported here for CNS. Future work is to investigate how well

the fuzzy set similarity measures perform after addressing class 
imbalance on all the data sets. Other methods of creating groups 
of related features, such as similarity threshold clustering as in 
[7] and k-means clustering, are to be used with the fuzzy set
similarity measures to determine any differences in the
performance of the combination of the two.   More studies using
different data sets are also needed to further understand the
performance of fuzzy set similarity measures used in different
applications of machine learning.
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