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Abstract— The design of logistic trains fleet oriented 
distributed and scalability-robust control policies that ensure 
deadlock-free operations is of crucial importance for efficient 
material handling systems. This study considers a multi-item 
assembly system where in-plant transport operations are 
organized in milk-run loops. A solution to a milk-run routing and 
scheduling problem subject to fuzzy pickup and delivery time 
constraints is developed. This type of problem can be treated in 
terms of a fuzzy constraint satisfaction problem, therefore, the 
main objective is to provide a reference model analytical formulas 
of which enable one to obtain solutions that do not require time-
consuming computer simulations. Two versions of the model were 
parameterized assuming independent implementation of convex 
and ordered fuzzy numbers. The accuracy of both models was 
experimentally verified according to the results of multiple 
simulations. Results from this study provide an approach to avoid 
time consuming computer simulation-based calculations of logistic 
trains fleet schedules avoiding congestions while concurrently 
maintaining throughput at maximal achievable level. 

Keywords— Routing, cyclic scheduling, logistic trains, fuzzy 
constraint satisfaction problem, ordered fuzzy number (OFN) 

I. INTRODUCTION

The milk-run driven delivery concept [2], [11], [17] boiling 
down to NP-hard problems of logistic trains routing and 
scheduling problems  attempts to design plans to inform whom 
to serve, how much to deliver, and what regularly repeated 
routes to travel on by what fleet of vehicles. This can be viewed 
as belonging to the class of Vehicle Routing Problem [4], [18], 
[20]. Given this context, the objective of the present study is to 
develop a method, derived from the reference model, in support 
of using decision-support-system-like software. We employ the 
declarative modeling framework because of its fast prototyping 
capability. Importantly, declarative models focus primarily on 
developing the solution [2], [30]. The present study is a 
continuation of previous work that explored methods of fast 
prototyping of solutions associated with problems related to 
routing, batching and scheduling of tasks typically performed in 

batch flow production systems, as well as problems related to 
the planning and control of production flow in departments of 
automotive companies [2], [3]. This paper has three main 
contributions. First, representing a departure from the 
commonly accepted assumption of the deterministic nature of 
transport processes, this study incorporates human uncertainties 
(i.e., the logistic trains are driven by operators). Taking into 
account the related distribution of delivery moments enables the 
construction of more realistic and accurate models for assessing 
the effectiveness of prototyped route variants. Second, the 
declarative model-driven approach to assess alternative milk-
run routing and scheduling variants is formulated in detail. The 
obtained ordered fuzzy number-driven model enables searching 
for logistic trains congestion-free routes in terms of fuzzy 
constraint satisfaction problem. Third, the proposed approach 
allows the replacement of computer simulation methods of 
routes prototyping with an analytical method based on an 
ordered fuzzy number formalism. In that context it can be 
recognized as an outperforming solution approach for in-plant 
Milk-run driven delivery problems. This paper is organized as 
follows. Section 2 presents a review of selected literature. This 
section also provides basic information about Ordered Fuzzy 
Numbers (OFNs). A motivating example to highlight the 
problem under consideration is discussed in Section 3. Section 
4 details a declarative model dedicated to the prototyping of 
milk-run traffic systems. Consequently, the Fuzzy Constraint 
Satisfaction Problem aimed at logistic trains fleet delivery 
mission planning is formulated in Section 5. Next, Section 6 
depicts how the model can be used in supply cycles prototyping 
tasks, and section 7 provides reports key conclusions and makes 
suggestions for future research. 

II. LITERATURE REVIEW

A. Milk-run routing and time scheduling

In a milk-run system, routes, time schedules, type and
number of parts to be transported are assigned to different 
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logistics trains so that they can collect orders from different 
suppliers [11]. In other words, the trains perform several pick-
ups/deliveries in a round trip to meet customer demands. The 
benefits of using a system of this type include improved 
efficiency of the overall logistics system and substantial 
potential savings in environmental and human resources, as well 
as remarkable cost advantages related to inventory and 
transportation costs [8], [19], [29]. The Milk-run Vehicle 
Routing Problem [18] is viewed as a special case of the Vehicle 
Routing Problem (VRP) [4], [20], which in turn is a 
generalization of the Traveling Salesman Problem seeking to 
find the optimal set of routes for a fleet of vehicles delivering 
goods or services to various locations. For this reason, there is a 
large body of (OR) literature on vehicle scheduling, routing, and 
dispatching that address relevant aspects of transportation of 
goods. However, there are only a few papers devoted 
specifically to in-plant milk-run traffic problems. In this respect, 
the most relevant are areas subject to critical and often 
unpredictable traffic congestions. This typically occurs when 
logistic operators allocate too many collecting tasks to available 
vehicles, thus generating unperformed activities due to assumed 
just-in-time constraints and violating contractual obligations 
assumed with their clients [21]. Most of the research in the field 
of distribution logistics is devoted to the analysis of the methods 
of organizing transport processes in ways that minimize the size 
of the fleet, the distance traveled (energy consumed), or the 
space occupied by a distribution system. By focusing on the 
search for optimal solutions, these studies implicitly assume that 
there exist admissible solutions; in other words, solutions that 
ensure collision-free and/or deadlock-free (congestion-free) 
flow of concurrent transport processes. In practice, this requires 
either on-line updating (revision) of the routing policies used, or 
prior (offline) planning of congestion-free vehicle routes and 
schedules. Studies on generating dynamic routing policies are 
conducted sporadically [4]; even less frequent are investigations 
of robust routing and scheduling of milk-run traffic, which are, 
by and large, limited to AGV systems. The congestion 
avoidance problem, which conditions the existence of 
admissible solutions, is considered an NP-hard problem [13], 
[32]. Because the necessary and sufficient conditions for 
deadlock-free execution of concurrent processes are not known, 
system analysis (i.e. analysis of the states potentially leading to 
system deadlocks) is most frequently performed using laborious 
and time-consuming computer simulations [4], [10]. In practical 
applications, congestion avoidance methods implement the 
sufficient conditions for collision-free execution of processes. 
This implies that the time-consuming method of analyzing 
distribution networks that detect deadlocks between concurrent 
transport flows can be replaced by searching for a 
synchronization mechanism that would guarantee cyclic 
execution of these flows. Methods that are most commonly used 
for such purposes include the formalism of max-plus algebra 
[22], [28],  graph theory [31], simulations [9] and constraint 
programming [2], [30]. It should be noted that the possibility of 
fast implementation of the process-synchronization mechanism 
comes at the expense of omitting some of the potentially 
possible scenarios for deadlock-free execution of the processes.  

The shortcomings of the above-described methods to 
generate admissible solutions can restrict their implementation 
in DSS systems, in particular those supporting planning in milk-

run traffic systems. To address this challenge, our contribution 
assesses the use of declarative modeling methods (e.g. [3]) in 
solutions that provide interactive decision support for 
prototyping in-plant milk-run traffic systems. 

B. Ordered fuzzy numbers

In the proposed declarative modeling method, the imprecise 
variables adopt values in the form of OFNs. The concept of 
OFNs, defined by Kosiński, Prokopowicz and Ślęzak [14], was 
proposed as a response to problems related to the application of 
fuzzy numbers [5], [15]. The OFN are defined as follows [15]:  
Definition 1. An OFN is defined as a pair of continuous real 
functions specified on an interval  [0, 1], i.e.: 

𝐴 =  (𝑓 , 𝑔 ), where: 𝑓 , 𝑔 : [0, 1]  → ℝ. (1) 
 

The functions  𝑓  and 𝑔  are called the up and down part of 
ordered fuzzy number 𝐴, respectively. They are also called as 
branches of fuzzy number 𝐴. The values of these continuous 
functions are limited ranges, which can be defined as the 
following bounded intervals: 𝑈𝑃  = (𝑙 , 𝑙 ) and 𝐷𝑂𝑊𝑁  =
(𝑝 , 𝑝 ) . Assuming that: 𝑓  is increasing and 𝑔  is 
decreasing as well as that 𝑓  ≤ 𝑔 , the membership function 𝜇  
of the ordered fuzzy number 𝐴 can be seen in Fig 1a and 1b:  

μA(𝑥) =

𝑓 (𝑥)

𝑔 (𝑥)

1
0

𝑤ℎ𝑒𝑛 𝑥 ∈ 𝑈𝑃  
𝑤ℎ𝑒𝑛 𝑥 ∈ 𝐷𝑂𝑊𝑁        

𝑤ℎ𝑒𝑛 𝑥 ∈ [𝑙 , 𝑝 ]       
in the remaining cases

  .  (2) 

Fig. 1. a) OFN 𝐴 in terms of convex fuzzy numbers, b) functions 𝑓 , 𝑔  
determining 𝐴 (positive orientation), c) discrete representation of 𝐴 
(𝑑𝑥 = 0.25) (based on: [15]) 

A large class of OFNs represents the whole class of convex 
fuzzy numbers with continuous membership functions. An 
additional property called orientation (direction) is defined for 
OFN. There are two types of orientation: positive when 𝐴  =
(𝑓 , 𝑔 ) (direction  𝐴  matches the direction of the OX axis) and 
negative when 𝐴  =  (𝑔 , 𝑓 ) (direction  𝐴  matches the 
direction opposite to the OX axis). Assuming that the values of 
all fuzzy variables have different orientations, this  allows us to 
define algebraic operations that meet the listed conditions of the 
Ring. Due to the fact that the OFN is defined as the pair of 
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functions 𝑓 , 𝑔  the all algebraic operations performed on 
OFNs are also defined as relevant mathematical operations 
executed on these functions. The adopted definitions of 
relations and algebraic operations used in the developed model 
are as follows: 

Definition 2. Let 𝐴  =  (𝑓 , 𝑔 ) and 𝐵  =  (𝑓 , 𝑔 ) be ordered 
fuzzy numbers. 𝐴 is equal to 𝐵 (𝐴 = 𝐵), 𝐴 is greater or equal 
or greater 𝐵 (𝐴 > 𝐵; 𝐴 ≥ 𝐵), 𝐴 is less or equal or less 𝐵  (𝐴 <

𝐵 , 𝐴 ≤ 𝐵) if:  ∈[ , ]    𝑓 (𝑥) ∗ 𝑓 (𝑥)  ∧   𝑔 (𝑥) ∗ 𝑔 (𝑥), 
where: the symbol ∗ replaces suitably: =, >, ≥,  <, ≤.  

Definition 3. [15]. Let 𝐴  =  (𝑓 , 𝑔 ), 𝐵  =  (𝑓 , 𝑔 ) and 𝐶  =
 (𝑓 , 𝑔 ) be ordered fuzzy numbers. The operations of adding 
𝐶  =  𝐴 + 𝐵 , subtraction  𝐶  =  𝐴 − 𝐵 , multiplication  𝐶  =
 𝐴 × 𝐵  and division 𝐶  =  𝐴/𝐵  are defined as follows: 
 ∈[ , ]   𝑓 (𝑥) =  𝑓 (𝑥) ∗ 𝑓 (𝑥)  ∧ 𝑔 (𝑥) =  𝑔 (𝑥) ∗ 𝑔 (𝑥) 
where: the symbol ∗ replaces suitably: +,−, ×, ÷; The division 
operation is defined for 𝐵  such that |𝑓 |  >  0  and |𝑔 |  >  0 
for each x ∈ [0, 1].  

In recent years, the concept of OFNs has been constantly 
evolving and applied to various practical applications. Many 
publications are devoted to the analysis of the OFN model and 
its confrontation with convex fuzzy sets [5], [7], [23]. After 
performing algebraic calculations on convex fuzzy numbers, the 
numbers’ support usually becomes extremely broad, so the 
information represented by this number has limited practicality. 
The OFNs do not have this drawback.  

The OFN model has additional advantages beyond algebraic 
operations. The orientation of OFNs gives additional options in 
applications to represent imprecise values. The idea of a 
property of processing data called sensitivity to the direction was 
proposed by Prokopowicz [24]. Zarzycki et al. [33] presents an 
efficient use of the OFN model in the description of processes 
undergoing dynamic changes. The trend of imprecise value as 
an OFN was also used in a critical path analysis [5]. In [7] a 
practical application of OFN arithmetics in a crisis control center 
monitoring was presented. The trend modeling in the evaluation 
of medical data was presented in [18]. Lastly, Marszałek and 
Burczyński [16] proposed a Ordered fuzzy GARCH model for 
volatility forecasting.  

Another branch of OFN applications development involves 
the use of multi-criteria decision making (MCDM) methods, as 
a development of popular approaches [26]. In MCDM methods, 
the OFN orientation differentiates the type of the criterion (cost 
and profit). According to our review of the literature and to the 
best of our knowledge, the approach proposed in this paper 
represents the first attempt to use OFNs for milk-run routing and 
scheduling. 

III. ILLUSTRATIVE EXAMPLE

Here we consider a multi-item batch flow production system 
in which the in-plant transport operations of a set parts supply 
are organized in a milk-run loop passing through 14  work 
stations 𝑆𝑁 = {𝑆𝑁 , … , 𝑆𝑁 }  while servicing two assembly 
lines shown in Fig. 2. Consequently, two types of products 𝑊 , 
𝑊  are manufactured in the system, where batches of each kind 

of product are moved between the neighboring assembly 
stations by dedicated gantry robots. In subsequent steps, i.e., at 
different work stations, 𝑆𝑁  (𝑖 = 1, … ,14), particular products 
are assembled from the parts delivered in containers to the work 
station buffers 𝐵 –𝐵 . Some buffers are shared by several 
stations e.g., buffer 𝐵  is shared by stations 𝑆𝑁  and 𝑆𝑁 . The 
six types of parts packed in containers 𝐶𝑇 -𝐶𝑇  are delivered to 
the buffers by the two logistic train 𝐿𝑇  and 𝐿𝑇  following the 
routes marked with a green and orange lines (see Fig. 2). 
Assembly stations and the buffers associated with them must be 
supplied with containers due to the schedule presented in Fig. 3. 
On the presented schedule, the moments of collecting containers 
from buffers are marked with points with colors that correspond 
to the containers 𝐶𝑇 -𝐶𝑇 . The grey ranges specify the periods 
in which the buffer stocks should be replenished, i.e., equal to 
𝜏 =900s. Exceeding the deadlines 𝑑𝑥  (see Fig. 3) may result 
in the lack of the required deliveries, which may further lead to 
production suspension. The schedule demonstrates that 
deliveries must be made within cyclically repeated time 
windows (with size:  𝑇 = 2970s).  The logistic trains (𝐿𝑇  and 
𝐿𝑇 ) traveling along the fixed routes are used as in-plant means 
of transport to deliver the required quantity of parts to buffers 
within the given time windows. In general, the objective of this 
study is to find a method that allows for the congestion-free 
travel of the logistic trains in order to guarantee the timely 
delivery of the ordered part sets. In other words, the answer to 
the following question is researched: Does there exist, in the 
given system, a set of routes of logistic trains and the associated 
delivery schedules that guarantee timely delivery of the 
materials necessary for the production process to be completed? 
Many approaches reported in the literature enable answering this 
question for systems of scale encountered in practice  (number 
of serviced points ≤15, logistic fleet  size ≤5) [2], [3]. An 
example of a route that guarantees timely delivery and the 
resulting schedule is presented in Figs. 2 and 3. The routes 
received (s sequences visited sequentially by 𝐿𝑇  and 𝐿𝑇  
buffers) are in the form: 𝜋 = (𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 ), 𝜋 =
(𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 ). 

These routes guarantee a collision-free and deadlock-free 
delivery. It is worth emphasizing, however, that the techniques 
used to determine them (Constraints Programming CP and 
Mixed Integer Programming MIP) require precisely defined 
values of system parameters, and the exact value of transport 
times between buffers is required, as well as loading / unloading 
times. Transport operations in milk-run systems are usually 
carried out by people - the logistic train is run by an employee. 
This means that planned times assumed for loading/unloading 
operations, as well as transportation operations, can be quite 
uncertain. Uncertainty of the duration of the operation results in 
uncertain moments of occupation and release of stops. As a 
result, the actual implementation of the schedule may differ 
significantly from the planned one. Therefore, even minor 
deviations from the plan can result in serious consequences such 
as blocking. 

Figure 4 illustrates the situation where the 90s delay (relative 
to the deadline resulting from the planned schedule in Fig. 3) of 
train 𝐿𝑇  coupled the simultaneous acceleration of train 𝐿𝑇  by 
60s results in a blockade in the sector − (the moment of 
blockage  1230s).



Fig. 2. Layout of considered Milk-Run System 

Fig. 3. Gantt chart of delivery schedule
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Fig. 4. Blockade resulting from deviations in the implementation of 
the planned schedule 

Therefore, there is a need to synthesize such routes, when 
assuming a certain range of data uncertainty, will guarantee a 
collision-free and deadlock-free cyclical implementation of 
operations. As previously mentioned, available approaches 
[2],[3] to determine such routes (implementing declarative 
programing techniques) are limited only to those situations with 
precise data. Accounting for data uncertainty through 
adaptations in these fuzzy variable models is difficult because of 
imperfections of classical fuzzy numbers algebraic [1]. 
Relations describing the relationships between fuzzy variables 
(variables assuming fuzzy values) on algebraic operations (in 
particular, addition and multiplication) do not meet the 
conditions of the Ring (among others if the condition  ∈ℱ  𝐴 +
0 = 𝐴  is met then condition  ∈ℱ  ! ∈ℱ 𝐴 + 𝐵 = 0  is not 
achieved). In addition, algebraic operations based on standard 
fuzzy numbers follow Zadeh’s extension principle. In practice, 
this means that no matter what algebraic operations we deploy, 
the support of the fuzzy number expands (the imprecision of 
information increases). Consequently, it is impossible to solve 
algebraic equations on fuzzy variables. In particular, it means 
that for any fuzzy numbers 𝑎, 𝑏, 𝑐  the following implication 
(𝑎 +  𝑏 =  𝑐) ⇒  [(𝑐 −  𝑏 =  𝑎) ∧ (𝑐 −  𝑎 =  𝑏)]  does not 
hold. This makes it impossible to solve a simple equation 𝐴 +
𝑋 =  𝐶. This fact dramatically hinders the use of approaches 
based on declarative models, in which most of the relationships 
between decision variables are described in the form of 
linear/nonlinear equations and/or algebraic inequalities. There 
are various approaches in the literature that circumvent the 
abovementioned drawbacks [1], [12], [27], but they are quite 
complex to implement. 

In this paper we propose a declarative model of milk-run 
system implementing formalism of OFN algebra, which 
assumes the existence of a neutral element (zero) for operations 
such as addition and multiplication to ensure it can be solved 
using algebraic equations.  

IV. REFERENCE MODEL OF MILK-RUN DESIGN

The developed model uses decision variables that adopt values 
in the form of OFNs defined as Definition 1. For the needs of 
the developed model, an ordered fuzzy number 𝐴  is specified 

by sequences 𝑓 ′ and 𝑔 ′ containing values of functions  𝑓  and 
𝑔  obtained as a result of interval [0, 1] discretization, i.e. 

𝑓 ′ = (𝑓 (0), 𝑓 (𝑑𝑥), . . . , 𝑓 ((𝑀 −  1) 𝑑𝑥), 𝑓 (1)),  (3) 
𝑔 = (𝑔 (1), 𝑔 ((𝑀 − 1)𝑑𝑥), . . . , 𝑔 (1𝑑𝑥), 𝑔 (0)), 𝑑𝑥 =  ,(4) 

where (𝑀 + 1) is the number of  discrete  points (Fig. 1c). 
An example of discretization of OFN is displayed in Fig. 1c. In 
the case of positive orientation the support of 𝐴  is 𝑠𝑢𝑝   =
(𝑓 (0), 𝑔 (0))  in the negative orientation 𝑠𝑢𝑝   =
(𝑔 (0), 𝑓 (0)). In the considered model, the input data has a 
positive orientation and the decision variables are positive / 
negative. Adopting such an OFN representation allows the 
implementation of the above defined operations, see Def. 2-3. 

Declarative model 

Previously introduced terminology and designations 
concerning OFN as well as the following notation are used in 
the course of the Milk-Run model development: 

Symbols: 
𝐵 :  𝜆-th buffer. 
𝐿𝑇 : 𝑣-th logistic train. 
𝑜 :  operation of delivery/loading/unloading of materials 

to/at buffer 𝐵 . 
Parameters:  

Crisp parameters: 
𝜔: a number of buffers in the milk-run system considered. 
𝑙𝑛: a number of logistic trains. 
𝒦 :  a binary variable used to indicate the crossed paths: 

𝒦 =
1
0

if the path  𝐵 − 𝐵  crosses the path 𝐵 − 𝐵

in the remaining cases 
 

Imprecise parameters: (defined as positive oriented OFN and 
marked by the symbol "    “):  

𝑑 , :  execution time of a transport operation (the same for 
each logistic train) between buffers 𝐵  and  𝐵 . 

𝑡 :   time of operation 𝑜 . 
𝑑𝑥 : delivery deadline of containers to buffer 𝐵  (see 

example in Fig. 3). 
𝜏  :  delivery margin, specifying the time period within 

which the delivery should be made (see Fig. 3). 
𝑇 :  a window width understood as a periodically repeated 

period of time in which deliveries must be made to all 
buffers (see Fig. 3). 

Variables:  
Crisp variables: 

𝑟𝑏 :    an index of the operation that precedes 𝑜  
(operations 𝑜  and 𝑜  are executed by the same
logistic train), 𝑟𝑏 = 0  means that 𝑜  is the first 
operation on the route. 

𝑟𝑓 : an index of the operation that follows 𝑜 , (the 
delivery operations 𝑜  and 𝑜  are carried out by the
same logistic train). 

Imprecise variables (positive/negative oriented OFN): 
𝑥 : moment of commencement of the delivery operation 

𝑜  on the buffer  𝐵 . 
𝑦 : moment of completion of the operation 𝑜  on the 

buffer 𝐵 . 
𝑥𝑠 : moment of buffer 𝐵  releasing by the operation 𝑜  
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Sets and sequences: 
𝐿𝑇: set of logistic trains 𝐿𝑇 , 
ℬ: set of buffers 𝐵 ,  
𝒪: set of delivery operations 𝑜 , 
𝑅𝐵: sequence of predecessor indices of delivery 

operations, 𝑅𝐵 = 𝑟𝑏 , … , 𝑟𝑏 , … , 𝑟𝑏 ( )) , 
𝑟𝑏 ∈ {0, … , 𝜔}, 

𝑅𝐹: sequence of successor indices of delivery operations, 
𝑅𝐹 = 𝑟𝑓 , … , 𝑟𝑓 , … , 𝑟𝑓 ( ) , 𝑟𝑓 ∈

{1, … , 𝜔}. For instance, sequences 𝑅𝐵 and 𝑅𝐹  that 
determine routes 𝜋  and 𝜋  are shown in Fig. 2, and 
take the following form: 

𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  𝐵 ′ 𝐵 ′ 

𝑅𝐵 = ( 0, 1’, 9, 6, 11, 7, 1, 4, 10, 2, 8, 0, 3) 
𝑅𝐹 = ( 7, 10, 5’, 8, 1, 4, 6, 11, 3, 9, 5, 2, 1’) 
Values marked with the symbol ‘ refer to buffers associated with 
the supermarket and warehouse visited by the train 𝐿𝑇  

𝜋 :  route of train 𝐿𝑇 , sequence of docking stations 
serviced by train 𝐿𝑇 , 

𝜋 = 𝐵 , … , 𝐵 , 𝐵 , … , 𝐵 , where: 𝑣 =

𝑟𝑓  for 𝑖 =  1. . 𝜇 − 1 and 𝑣 = 𝑟𝑓 ,
𝛱: set of routes 𝜋 , 
𝑋 : sequence of moments 𝑥 : 𝑋 = (𝑥 , … , 𝑥 , … , 𝑥 ), 
𝑌′: sequence of moments 𝑦 : 𝑌 = (𝑦 , … , 𝑦 , … , 𝑦 ), 
𝑋𝑠 : sequence of moments 𝑥𝑠 : 𝑋𝑠 =

(𝑥𝑠 , … , 𝑥𝑠 , … , 𝑥𝑠 ), 
𝑋: a fuzzy cyclic schedule of the operations executed in 

milk-run cycles: 𝑋 = 𝑋 , 𝑌′, 𝑋𝑠 . 
Constraints:  

 constraints describing the orders of operations depending
on the logistic train routes (specified by 𝑅𝐵 and 𝑅𝐹):

𝑦 = 𝑥 + 𝑡 , 𝜆 = 1,2, … , 𝜔, (5) 
𝑟𝑏 = 0,∀𝜆 ∈ 𝐵𝑆 ⊆ 𝐵𝐼 = {1, … , 𝜔},|𝐵𝑆| = 𝑙𝑛, (6) 

𝑏 ≠ 𝑟𝑏 ,  ∀𝜆, 𝛽 ∈ 𝐵𝐼\𝐵𝑆,  𝜆 ≠ 𝛽,  (7) 
 𝑟𝑓 ≠ 𝑟𝑓  ,    ∀𝜆, 𝛽 ∈ 𝐵𝐼,  𝜆 ≠ 𝛽 ,  (8) 

 (𝑟𝑏 = 𝛽) ⇒ 𝑟𝑓 = 𝜆 , ∀𝑏 ≠ 0 ,      (9) 
𝑥𝑠 ≥ 𝑦 , 𝜆 = 1,2, … , 𝜔 ,            (10) 

 (𝑓 = 𝛽) ∧ (𝑏 = 0) ⇒ 𝑥𝑠 = 𝑥 + 𝑇 − 𝑑 , , (11) 
 (𝑓 = 𝛽) ∧ (𝑏 ≠ 0) ⇒ 𝑥𝑠 = 𝑥 − 𝑑 , ,     (12) 

 𝜆, 𝛽 = 1,2, … , 𝜔, 

 if the path connecting buffers 𝐵 , 𝐵   crosses the path
that connects the buffers 𝐵 , 𝐵  (𝒦 = 1) then:

𝒦 = 1 ⇒ 𝑥 ≤ 𝑥𝑠 ∨ 𝑥 ≤ 𝑥𝑠 ,     (13) 
𝜀, 𝜆, 𝛽, 𝛾 = 1,2, … , 𝜔 

 the delivery operation 𝑜  should be completed before the
given delivery deadline 𝑑𝑥  (with a margin 𝜏 ) resulting
from production flows of an individual product:

𝑦 + 𝑐 × 𝑇  ≤  𝑑𝑥 ,  𝜆 = 1,2, … , 𝜔 , (14)
𝑦 + 𝑐 × 𝑇  ≥  𝑑𝑥 + 𝜏 ,  𝜆 = 1,2, … , 𝜔; 𝑐 ∈ ℕ . (15)

V.  PROBLEM FORMULATION

In the context of the above proposed model, the problem 
under consideration may be defined as follows:  
Assuming that: 

 there is a known collection of ℬ  buffers in which a
supermarket stop and warehouse buffers are distinguished,

 given the set of delivery operations 𝒪,
 given the fleet size of logistic trains 𝐿𝑇,

 given are fuzzy values of transport operations 𝑑 ,  (they are
assumed to be the same for each train),

 given are fuzzy values of delivery/loading/unloading
operation times  𝑡

 given are fuzzy values of containers delivery deadline 𝑑𝑥
and delivery margin  𝜏 ,

 given a fuzzy value of time period 𝑇, in which deliveries to
all buffers are to be made the following question can be
considered:
Does there exist a set of routes 𝛱 operated by the given fleet

𝐿𝑇, which ensures that a fuzzy cyclic schedule 𝑋 that guarantee 
timely delivery (with given deadlines 𝑑𝑥  and delivery margin 
𝜏 ) of the materials necessary for the production process to be 
completed? The above problem can be viewed as a Fuzzy 
Constraint Satisfaction Problem (FCSP) defined by (16): 

 𝐹𝐶𝑆  = 𝒱, 𝒟 , 𝒞 , (16) 

where: 𝒱 = 𝑋, 𝛱  – a set of decision variables including: 𝑋 – a 

fuzzy cyclic schedule: 𝑋 = 𝑋 , 𝑌′, 𝑋𝑠 . 𝛱 – the set of routes 
determined by sequences 𝑅𝐵, 𝐹𝑅.  𝒟 – a finite set of decision 
variable domains: 𝑥 , 𝑦 , 𝑥𝑠 ∈ ℱ  (ℱ  is a set of OFNs (1)), 
𝑟𝑏 ∈ {0, … 𝜔} , 𝑟𝑓 ∈ {1, … 𝜔},  𝒞  – a set of constraints 
specifying the relationships between the operations 
implemented in milk-run cycles (5)-(15). 

To solve 𝐹𝐶𝑆 (16), the values of the decision variables from 
the adopted set of domains for which the given constraints are 
satisfied must be determined. Implementation of 𝐹𝐶𝑆  in a 
constraint programming environment such as OzMozart, 
enables the answer to be determined. The implementation of the 
presented problem assumes that OFNs are described by linear 
functions 𝑓 , 𝑔  represented in discrete form as 𝑓 ′ and 𝑔 ′.  

VI. COMPUTATIONAL EXPERIMENTS

Consider the milk-run system layout from Fig. 2. The goal is 
to find congestion-free routes of a given fleet of logistic trains 
(i.e. the set Π).  It requires a cyclic supply of containers 𝐶𝑇 -𝐶𝑇  
to buffers 𝐵 -𝐵  in time windows with a width of 𝑇 = 2970 
[s] (in considered case 𝑇 is defined as a singleton – the OFN
with strict neutral direction). The amount of delivered containers
is collected in tab. 1, and the expected delivery deadlines (fuzzy
values of 𝑑𝑥  and 𝜏 ) reported in Fig. 5a.  

Table. 1. Number of containers 𝑛𝑐 delivered to buffers 𝐵 -𝐵  
𝐵 * 𝐵  𝐵  𝐵  𝐵 * 𝐵  𝐵  𝐵  𝐵  𝐵  𝐵  

𝑛𝑐 - 17 11 7 - 10 12 7 6 17 11 
* – it is assumed that buffers identical to supermarket 𝐵  and warehouse 𝐵  are not

described by the appropriate number of containers 

In the considered version of the system, it is assumed that the 
available vehicle fleet consists of two logistic trains 𝐿𝑇  and 
𝐿𝑇 . It is also assumed that the fuzzy times of delivery operation 
(𝑡 ) follow those presented in Fig. 5b and the admissible fuzzy 
travel times (𝑑 , ) presented in Fig 5c.     



a) 

b) 

c) 

… … … … … … … … … … …

Fig. 5. Input data specifying: delivery time windows a), loading times b), periods of train moving between a pair of buffers c). 

Fig. 6  Routes guaranteeing timely delivery

In this case, the answer to the following question is sought: 
Does there exist a set of routes 𝛱  operated by the given two 
logistic trains 𝐿𝑇  and 𝐿𝑇 , which ensures that a fuzzy cyclic 
schedule 𝑋 that guarantee timely delivery (according to Fig. 5) 

of the materials necessary for the production process to be 
completed in the system shown in Fig.2? To search for the 
answer to the above question, the problem  𝐹𝐶𝑆  (16) was 
formulated, and then implemented in the constraint 
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programming environment OzMozart (Windows 10, Intel Core 
Duo2 3.00 GHz, 4 GB RAM). Its solution was obtained after 2 
[s] of computation. The results are shown in graphical form in
Figs. 6 and 7. The obtained values of sequences 𝑅𝐵, 𝑅𝐹  lead to
the following routes (Fig. 6): 𝜋 = (𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 ) , 𝜋 =
(𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵 ). According to Tab. 1, the capacity
of logistic trains equals: 30 and 68 containers, respectively.  The
obtained a fuzzy value of decision variables 𝑋  and determined
by them the cyclic schedule to guarantee the timely delivery of
the containers (see Fig. 7). In the presented schedule, the
execution of each operation is illustrated in the form of ribbon-
like arterial road which increasing width determines time period
of train movement resulting in the growing uncertainty of the
moments of attachment and release of buffers. For example, the
moment when buffer 𝐵  can be occupied is determined by a
fuzzy variable 𝑥  (Fig. 7a), whose support is an interval 
[1473s, 1750s] (i.e., the interval width equals to 277s), in turn 
the buffer release moment following 𝑦  has the support [1573s, 
1880s] (i.e., with the interval width 307s). It is noteworth that 
the width of the ribbon-like arterial roads increases until the next 
time window begins. The uncertainty of decision variables is, 
however, reduced at the end of each time window as a result of 
the operation of waiting trains on buffers 𝐵 , 𝐵 . Consequently, 
increasing uncertainty is not transferred to subsequent cycles of 
the system. Uncertainty reduction is obtained as a result of 
implementation of OFNs formalism. Fuzzy variables describing 
the waiting time of trains on buffers 𝐵 ,  𝐵  have a negative 
orientation (see Fig. 8 – laytimes 𝑤  and  𝑤 ), which makes that 
the results of algebraic operations (𝑥𝑠 = 𝑦 + 𝑤  and 𝑥𝑠 =
𝑦 + 𝑤 ) those using these variables will have less uncertainty. 
In practice, this means that the train operator shortens the buffer 
time in the event of long delays and extends it in case of earlier 
arrival. Achieving a similar phenomenon of reducing 
uncertainty is not possible in case of standard fuzzy numbers 
usage. According to the Zadeh’s extension principle, uncertainty 
of variables should increase with subsequent cycles of system 
operation until the information about their value ceases to be 
useful. An example illustrating this situation is shown in Fig. 9 
where the level of uncertainty increases with successive delivery 
time windows. Of course, it is apparent that the supply of 
containers to each of the buffers operates within a given period 
of time (see the time windows depicted in grey in Fig. 7b). It is 
worth noting that the adoption of such a schedule guarantees 
congestion-free movement of the logistic trains in context to 
uncertainty of parameters specified in Fig. 5. In order to verify 
the results obtained, a simulation of delivery performance was 
carried out in the system shown on Fig. 2. Two logistic trains 
operate along routes 𝜋  and 𝜋  (see Fig. 6). Travel times of 
trains between distinguished buffers (𝑑 , ) and delivery times 
(𝑡 ) are assumed to be random variables given by triangular 
distributions of probability density whose parameters 
correspond to the variation ranges from Fig. 5.  

The results of the simulation are reported in Fig. 8. For each 
of the buffers 𝐵 - 𝐵 , OFN of the starting moments (𝑥 ), 
termination ( 𝑦 ) of the delivery operation ( 𝑜 ), and the 
corresponding histograms are determined. The frames used to 
distinguish operations carried out on buffers 𝐵 ,  𝐵 ,  𝐵  are 
shown in Fig. 7a. The green color charts are marked 
corresponding to the route operations 𝜋 , and orange depicts 

route 𝜋 . The charts were connected by arches illustrating 
algebraic relationships between individual variables. For 
instance, considering the train  𝐿𝑇  route ( 𝜋 ), the relations 
between variables describing operations performed on 
buffers 𝐵 , 𝐵 , 𝐵 , 𝐵 , 𝐵  are as follows: 

𝑥 = 𝑦 + 𝑑 ,  (seizure of 𝐵  is possible after releasing 𝐵 ), 
𝑥 = 𝑦 + 𝑑 ,  (seizure of 𝐵  is possible after releasing 𝐵 ), 
𝑥 = 𝑦 + 𝑑 ,  (seizure of 𝐵 is possible after releasing 𝐵 ), 
𝑥 = 𝑦 + 𝑑 ,  (seizure of 𝐵  is possible after releasing 𝐵 ), 
𝑥 = 𝑥𝑠 + 𝑑 , − 𝑇 (seizure of 𝐵  is possible after releasing 𝐵 ).  

The presented relations above were used during the 
simulation and determined the histograms reflecting the 
distributions of random variables. All of the received histograms 
are included within calculated OFN values (see Fig. 8). In some 
cases, e.g. 𝑥 , the obtained OFN value exceeds those reported in 
the histogram, implying that the results of the calculations 
carried out (being the solution of 𝐹𝐶𝑆 (16) problem) should be 
regarded as the upper limit of the values obtained. It should also 
be noted that none of the simulated variants (over 1 000 000 
instances highlighted by bar charts on Fig. 8) included instances 
of no collision/blockage between trains and deliveries were 
carried out in given time windows. 

VII. CONCLUDING REMARKS

This study  demonstrated that the proposed reference model 
enabling FCSP formulation is a useful tool to state and resolve 
both routing and scheduling problems subject to constraints 
assumed by a given speed distribution of logistic trains. 
Adopting the travel times of logistic trains described by fuzzy 
numbers with known membership functions allows one to 
deliver a more realistic model of the movement of human-driven 
vehicles in milk-run systems. In summary, the proposed 
approach can replace the typical computer simulation methods 
of route prototyping with an analytical one employing an OFN 
formalism. As a consequence, it can be recognized as an 
outperforming solution approach for in-plant milk-run driven 
delivery problems. Looking to the future, we recognize two 
possible improvements. First, models could be extended to 
enable the design of proactive logistic trains fleet schedule that 
are robust to vehicle damages and/or production orders change. 
Second, there should be the development of sufficient conditions 
that would allow planners to reschedule milk-run flows while 
guaranteeing the smooth transition between two successive 
cyclic steady states corresponding to the current and rescheduled 
logistic train fleet flows. 

REFERENCES 

[1] Bocewicz G., Nielsen I., Banaszak Z. Production flows scheduling 
subject to fuzzy processing time constraints, International Journal of
Computer Integrated Manufacturing, vol. 29(10), 2016, 1105-1127 

[2] Bocewicz G., Nielsen P., Banaszak Z. Declarative Modeling of Milk-run 
Vehicle Routing Problem for Split and Merge Supply Streams
Scheduling. Advances in Intelligent Systems and Computing (AISC). 
Springer, vol. 853, 2019, 157-172 

[3] Bocewicz G., Bożejko W., Wójcik R., Banaszak Z.  Milk-run routing and 
scheduling subject to a trade-off between vehicle fleet size and storage 
capacity, Management and Production Engineering Review, vol. 10(3), 
2019, 41–53 DOI: 10.24425/mper.2019.12959 



Fig. 7. Graphic illustrations of sample fuzzy variables a), Gantt’s chart like of obtained cyclic fuzzy schedule b) 

Fig. 8. Illustration of graphic summary of simulation results 

4911 

4464 

4306 

4479 

4511 

4470 

5163 

4310

5264 2294 

1941 

1494 

1336 

1509 

1541 

1500 

2193 

1340 

moment of starting the delivery on 𝐵  

moment the delivery ends on 𝐵  

𝑥  𝑦  𝑥  𝑦𝑥  𝑦

𝑎)

𝑇 = 2970 𝑏)

Legend: 
- ribbon-like arterial road which

width determines time period of 
train 𝐿𝑇  movement

- ribbon-like arterial road which 
width determines time period of
train 𝐿𝑇   movement 

𝑑𝑥

- time period for deliveries (see Fig. 5a)
𝜏  

OFN variables 𝑥 , 𝑥 , 𝑥 ,  𝑦 , 𝑦 , 𝑦  placed 
in frames below are distinguished in Fig. 8  

time period for delivery 
operations on buffer  𝐵  

playtime operation 

Su
pe

rm
ar

ke
t 

W
ar

eh
ou

se
 

time [s] 

+𝑑 ,

+𝑑 , − 𝑇

+𝑑 , − 𝑇

Legend: 

calculated OFN 

Bar chart of 
simulation results 

𝑥 = 𝑦 + 𝑑 ,  

𝑦𝑥 𝑥 𝑦 𝑥 𝑦

+𝑑 ,

𝑥 𝑦  

+𝑑 ,

𝑥 𝑦

+𝑑 ,

𝑥  𝑦  𝑥  𝑦  

+𝑑 , +𝑑 ,

𝑥𝑠  𝑦𝑥

𝐵 𝐵 (see Fig.7) 𝐵  𝐵  𝐵  𝐵  

𝑦𝑥 𝑦𝑥 𝑦𝑥 𝑦𝑥

+𝑑 , +𝑑 ,

+𝑑 ,

+𝑑 ,

𝐵  𝐵  𝐵  

𝑥𝑠  

+ 𝑤  (𝑙𝑎𝑦𝑡𝑖𝑚𝑒) 

𝑦𝑥

+𝑑 ,

… … … 

moment of starting the 
delivery on 𝐵  

 

moment the  
delivery ends on 𝐵  

  

𝐵 (see Fig.7) 

𝐵  
(see Fig.7)

+ 𝑤  (𝑙𝑎𝑦𝑡𝑖𝑚𝑒)

Su
pe

rm
ar

ke
t 

W
ar

eh
ou

se
 



 Fig. 9. An example illustrating growing uncertainty following successive delivery time windows, i.e. the results obtained from model 
employing standard fuzzy numbers for the data from Fig. 5.

[4] Carić T., Galić A., Fosin J., Gold H., Reinholz A.  A Modelling and
Optimization Framework for Real-World Vehicle Routing Problems
Vehicle Routing Problem, In-The Croatia, 2008, 15-34 

[5] Chwastyk A., Kosiński W. Fuzzy calculus with applications,
Mathematica Applicanda, vol. 41 (1), 2013, 47-96

[6] Chwastyk A., Pisz I. Critical path analysis with imprecise activities
times, Proceedings of the 32nd International Business Information
Management Association Conference, 2018, 2004-2013 

[7] Czerniak J.M., Dobrosielski W.T., Apiecionek Ł., Ewald D., Paprzycki
M. Practical application of OFN arithmetics in a crisis control center 
monitoring, Studies in Computational Intelligence, 655, 2016, 51-64 

[8] De Moura D.A., Botter R.C. Delivery and pick-up problem 
transportation – milk run or conventional systems. Independent Journal 
of Management & Productionm vol. 7 (3), 2016, 746-770 

[9] Fedorko G., Vasil M., Bartosova M. Use of simulation model for
measurement of MilkRun system performance, Open Eng. vol. 9, 2019,
600-605, https://doi.org/10.1515/eng-2019-0067

[10] Güner A.R., Chinnam R.B. (2017) Dynamic routing for milk-run tours 
with time windows in stochastic time-dependent networks. 
Transportation Research Part E: Logistics and Transportation Review, 
vol. 97 (C), 2019, 251-267 

[11] Kilic H.S., Durmusoglu M.B., Baskak M.  Classification and modeling
for in-plant milk-run distribution systems. Int. Journal of Advanced 
Manufacturing Technology. vol. 62(9-12), 2012, 1135–1146 

[12] Klir G. J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and 
Systems 91, 1997, 165–175, 

[13] Kok A.L., Hans E.W., Schutten J.M.J. Optimizing departure times in
vehicle routes, European Journal of Operational Research,vol. 210(3),
2011, 579-587 

[14] Kosiński W., Prokopowicz P., Ślęzak D., Fuzzy numbers with algebrai
coperations: algorithmic approach. Proc. IIS’2002, Sopot, June 3-6,
PhysicaVerlag, 2002, 311-320 

[15] Kosinski W., Prokopowicz P., Slezak D. On algebraic operations on
fuzzy numbers. Proc. Int. Symp. IIS: IIPWM’03, Zakopane, Poland,
Heidelberg: Physica Verlag, 2003, 353-362 

[16] Marszałek A., Burczyński T. Ordered fuzzy GARCH model for
volatility forecasting, Advances in Intelligent Systems and Computing,
vol. 642, 2018,480-492 

[17] Mácsay V., Bányai T. Toyota production system in milk-run based in-
plant supply. Journal of Production Engineering. vol. 20, no 1, 2017, 
141-146, http://doi.org/10.24867/JPE-2017-01-141 

[18] Mei H., Jingshuai Y., Teng M., Xiuli L., Ting W. The Modeling of
Milk-run Vehicle Routing Problem Based on Improved C-W
Algorithm that Joined Time Window. Transportation Research 
Procedia. Elsevier, vol. 25, 2017,716–728 

[19] Meyer A. , Milk Run Design (Definitions, Concepts and Solution
Approaches), PhD thesis, Institute of Technology. Fakultät für
Maschinenbau, KIT Scientific Publishing, Karlsruhe, 2015 

[20] Nguyen P.K, Crainic T.G., Toulouse M., Multi-trip pickup and delivery 
problem with time windows and synchronization, Annals of Operations 
Research, Springer, vol. 253(2), 2017,899-934 

[21] Novaes A.G.N, Bez E.T., Burin P.J., Aragão D.P. Dynamic milk-run 
OEM operations in over-congested traffic conditions Computers & 
Industrial Engineering, vol. 88, 2015,326-340 

[22] Polak M., Majdzik P., Banaszak Z., Wójcik R. The performance
evaluation tool for automated prototyping of concurrent cyclic
processes. Fundamenta Informaticae. vol. 60, (1-4), 2004, 269-289 

[23] Prokopowicz P., Ślȩzak D. Ordered fuzzy numbers: Sources and 
intuitions, Studies in Fuzziness and Soft Computing, 356, 2017, 47-56 

[24] Prokopowicz P. Processing the Direction with Ordered Fuzzy 
Numbers. Theory and Applications of Ordered Fuzzy Numbers, 
Studies in Fuzziness and Soft Computing, vol. 356, 2017, 81-98 

[25] Prokopowicz P., Mikołajewski D., Mikołajewska E., Tyburek K.
Modeling trends in the hierarchical fuzzy system for multi-criteria
evaluation of medical data. Advances in Intelligent Systems and 
Computing, vol. 643, 2018,207-219 

[26] Rudnik K., Kacprzak D. Fuzzy TOPSIS method with ordered fuzzy 
numbers for flow control in a manufacturing system, Applied Soft
Computing Journal, vol. 52, 2017, 1020-1041 

[27] Sanchez E.: Solutions of fuzzy equations with extended operations.
Fuzzy Sets and Systems 12, 1984, 237–248, 

[28] Seybold L., Witczak M., Majdzik  P., Stetter, R. Towards robust 
predictive fault–tolerant control for a battery assembly system.
International, J. of App. Math. and Comp. Sci., vol. 25(4), 2015, 849-
862 

[29] Schmidt T., Meinhardt I., Schulze F. New Design Guidelines for in-
plant Milk-run Systems, 14th IMHRC Proceedings, Karlsruhe, 
Germany, 25, 2016, 

[30] Sitek P., Wikarek J. Capacitated Vehicle Routing Problem with Pick-
up and Alternative Delivery (CVRPPAD) – model and implementation
using hybrid approach, Annals of Operations Research, 2017, DOI: 
https://doi.org/10.1007/s10479-017-2722-x

[31] Smutnicki C. Minimizing cycle time in manufacturing systems with
additional technological constraints. Proc. of 22nd International 
Conference on Methods and Models in Automation & Robotics  463-
470, 2017,https://doi.org/10.1109/MMAR.2017.8046872 

[32] Toth P., Vigo D. The Vehicle Routing Problem. Siam, Philadelphia.
2002, http://dx.doi.org/10.1137/1.9780898718515 

[33] Zarzycki H., Czerniak J.M. Dobrosielski, W.T. Detecting nasdaq 
composite index trends with OFNs, Studies in Fuzziness and Soft
Computing, vol. 356, 2017, 195-205 

7280 

7881 
7434 

7276

7449 
7481

7440 
8133 

8234

4911 
4464 

4306 
4479 
4511 

4470 
5163 

4310

5264 2294 
1941 

1494 
1336 

1509 
1541 

1500 
2193 

1340 

𝑇 = 2970

Legend: 
- ribbon-like arterial road which width determines time period of trains 𝐿𝑇 , 𝐿𝑇   movement 
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