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Abstract—User feedback is an important aspect of any social
platform. The platform needs to adapt based on user preferences,
eliminating the need for user input over time. This paper de-
scribes the experimentation with feedback received from users on
their comfort level with temperatures in their work environment.
The building energy management system will adapt itself so
that users do not need to adjust the temperatures. This study
addresses a number of issues with the user feedback modeling
including managing a data imbalance with the help of fuzzy
clustering, ability to transfer the user models between rooms
and across different buildings, as well as, predicting a degree of
discomfort. The experiments are based on user feedback collected
from two commercial buildings.

I. INTRODUCTION

Considerable effort is spent on understanding user needs
while designing a system. This is important for systems
that are software based or are physical facilities such as a
commercial building. The real test of the design comes after
the system is put into use. Ideally, all the users should be
completely comfortable with the operations of the system from
day one. However, in practice, many are irritated by certain
aspects. There should be a mechanism for users to provide
indirect feedback by manually adjusting the conditions to their
liking. The system should record these behaviors and fine-
tune itself so that the users do not need to make further
adjustments. This paper demonstrates one such attempt using
room temperatures in commercial buildings as an example.

One of the primary purposes of a building energy man-
agement system is energy conservation. However, the energy
savings is rarely the primary goal. The productivity of oc-
cupants is essential. Improvement of the productivity of the
occupants can be achieved by ensuring comfortable indoor
environmental conditions. This paper describes the results of
modeling the occupants’ response to a system that centrally
maintains comfortable temperatures in two buildings while
optimizing HVAC (heating, ventilation, and air conditioning)
related energy consumption. Individuals can provide feedback
in order to raise or lower temperatures of their rooms. The
objective of the study is to use the initial feedback to predict
the individual preferences using machine learning techniques
thereby eliminating the need for future feedback.

The study addresses different issues with user feedback
modeling. The feedback data is imbalanced (i.e., there are
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many more data points in the time series with no feedback
than the number of feedbacks). A novel fuzzy clustering based
downsampling technique is shown to outperform conventional
sampling. The paper also studies if preference modeling of one
occupant can benefit from the preferences of other occupants
in a building. Additionally, the work explores the possibility
of transferring feedback predictions from one building to a
different building. The data collection used in this study was
conducted over two years with different collection techniques.
In the first building, the occupants could only report whether
they feel comfortable, cold, or hot. While in the second build-
ing the feedback is recorded by the degree of movement of the
thermostat. These two different types of feedback mechanisms
allow comparing the ability to predict the degree of discomfort.
Finally, this report compares the ability of the system to recall
all the feedback versus the accuracy of predictions.

II. REVIEW OF LITERATURE
A. User feedback modeling

User feedback is an important aspect of system evolution.
A system should improve its actions and recommendations
by learning from user’s reaction and feedback. User feed-
back modelling has been used extensively in information
retrieval/search engines [1], recommender systems [2], on-
tology matching [3], and positioning [4]. There are various
approaches proposed to utilize user feedback in a building
energy management system including a solution based on
using continuous user feedback without any machine learning
models and sensors [5]. Another effort is focused on adjust-
ing temperature setpoints based on the needs of individual
users [6]. This study concentrates on evaluating machine
learning models that use different weather and environmental
conditions to maximize user feedback recall in a building
energy management system.

B. Sampling and Clustering

Sampling: when models are trained to solve classification
problems, it is desirable to have a balanced dataset so that
a machine learning model could provide better fitting. This
means that each of the classes in the dataset should have
approximately the same number of observations. However,
real-world cases are seldom that ideal and class imbalance



issues have to be addressed before the training process. There
are two major techniques that can be utilized to avoid class
imbalance side effects: upsampling and downsampling.

Upsampling works by adding additional data points that are
clones of the underrepresented classes until all classes have a
nearly equal number of samples [7]. Upsampling can be done
using the preProcess function from the Caret library' in
R [8]. Caret implements upsampling by randomly replicating
observations from the minority class until the number of
samples in the minority class is roughly equivalent to the num-
ber of samples in the majority class. Since upsampling may
introduce inaccuracies in a model, repeated cross-validation
can be used to provide consistency of the resulting model [9].

On the other hand, downsampling solves the class imbalance
issue by taking a subset of observations from the overrepre-
sented class instead of using all observations from that class.
The size of the subset of samples from the overrepresented
class should approximately be equal to the number of samples
in the underrepresented class [7]. Caret library in R also
provides functionality to randomly downsample a dataset using
preProcess function [8]. It is likewise necessary to perform
repeated cross-validation in order to assure correctness of the
resulting model.

Clustering: one of the most widely used clustering tech-
niques is k-means clustering [10], [11]. The algorithm dis-
tributes a set of objects among k clusters. Crisp k-means clus-
tering assigns an object to exactly one cluster. Fuzzy c-means
clustering algorithm is a fuzzy generalization of the clustering
that uses a fuzzy membership. The fuzzy membership function
describes the degree of membership of an object to a given
cluster ranging from O to 1 with the constraint that the sum
of the fuzzy memberships of an object to all the clusters must
be equal to 1 [12], [13].

Unsupervised Fuzzy Competitive Learning (UFCL) is a
modification on the fuzzy c-means algorithm based on the
unsupervised stochastic approximation that closely resembles
fuzzy c-means but is capable of providing better results in
some circumstances [14].

C. Evaluation metrics

The analysis of Receiver Operator Characteristic (ROC)
curve is one of the most appropriate metrics of a models
performance when solving classification problems [15]. The
ROC curve is built based on the computation of the following
performance measures of a particular model:

o The Recall (Sensitivity) of the model: the ratio of true
positive predictions obtained to the total number of real
positive events. This measurement is also known as the
true positive rate of predictions [15].

o The Specificity: the ratio of true negative predictions
obtained to the total number of real negative events. This
measurement is also known as the true negative rate of
predictions [15].

'a software package that provides various functions for solving classifica-
tion and regression problems

The ROC curve is created by plotting the true positive rate
of predictions versus false positive rate which is calculated
using (1 — true negative rate). Ideally, the model would
provide both high Recall and high Specificity, so the Area
Under the Curve (AUC) is maximized. When the AUC value
approaches 1, it means that the quality of the classification is
nearly perfect. If it is close to 0.5, the model generally cannot
distinguish between negative and positive classes. Values of
AUC less than 0.5 indicate that the model is likely to treat
positive classes as negative ones and vice versa [15]. Since
AUC usually calculated for two classes and the paper works
with multiclass classification, AUC results computed as the
arithmetic mean of AUC collected for each class using one-
vs.-rest approach.

III. STUDY DATA

Observations of various conditions are recorded with fifteen-
minute intervals in two buildings. In the first building, the data
was collected from eighteen rooms on three floors and there
are three types of feedback: “Comfortable”, “Too Cold”, “Too
Warm”. A total of 133 feedbacks was received: (Comfortable,
3), (Too cold, 79), (Too warm, 51), from 218,629 observations.
When users do not provide any feedback, the “Comfortable”
feedback is assumed. This means that 99.94% of the observa-
tions correspond to the “Comfortable” class. Table I shows the
distribution of feedback from each room in the first building.

TABLE I
FEEDBACK SUMMARY BY ROOM.
Room | Comfortable | Too Cold | Too Warm
118 0 6 0
119 0 5 0
120 0 1 4
206 0 2 0
207 0 2 0
226 0 3 0
228 0 0 22
232 0 0 1
234 0 3 0
235 0 11 5
300 1 11 0
301 0 0 15
306 1 11 1
320 1 2 0
326 0 1 0
328 0 0 2
332 0 20 0
334 0 1 0

In the second building, the data was collected from ten
rooms where temperature adjustments made by the users were
recorded by thermostats. In this case, feedback is a real
number ranging from -4.2 to 4.0. A total of 124 feedbacks was
received from 152,630 observations. Similarly, it is assumed
that feedback is “Comfortable” or O if the users do not make
any temperature adjustments. This means that 99.92% of the
observations correspond to the “Comfortable” class. For both
buildings the independent variables are:



o Date

o Time

o Weather variables (temperature, humidity, solar radiation,
etc.)

e Room and building characteristics (e.g., if it has a north-
facing window)

o Room state variables (e.g., if the room is occupied)

IV. SAMPLING USING CLUSTERING

While it would be beneficial to use all observations for
analysis, it may not be feasible with existing computational re-
sources. Furthermore, it can be hard to collect all observations.
In most cases, the main purpose of creating machine learning
models is to get high precision or accuracy of predictions. But
99.94% of the observations are classified as “Comfortable”,
which means that predicting everything as Comfortable will
give us the accuracy of 99.94%. Practically, it would be
desirable to cover as many feedbacks that belong to either
“Too cold” or “Too warm” class as possible. Thus, maximizing
the recall of the classes “Too cold” and “Too warm” is more
important in this case than maximizing accuracy. In order to
balance the dataset, downsampling is used to decrease the
original 218,499 observations from the “Comfortable” class
to approximately 80. Another option is to expand the number
of “Too cold” and “Too warm” observations to 218,499.
Nevertheless, downsampling may be more suitable for max-
imizing recall [16]. Downsampling with a random selection
of observations from the “Comfortable” class may not work
well with respect to covering the whole set of observations
from the class. Therefore, clustering is proposed to divide the
observation space for the “Comfortable” class. The specimen
closest to the center of each cluster will be treated as an
observation for the “Comfortable” class.

The clustering-based downsampling can be implemented
by creating clusters using a k-means clustering algorithm.
The number of clusters is defined by the desired number of
observations from the “Comfortable” class. Fuzzy c-means
clustering may potentially identify outliers slightly better than
k-means [9]. Therefore, a fuzzy c-means algorithm will be
employed to create clusters. Then, the observation with the
highest fuzzy membership for each cluster will be used as an
observation from the “Comfortable” class.

V. PREDICTING COMFORT LEVEL FEEDBACK

To evaluate the performance of machine learning models
built with the clustering based downsampling approach, var-
ious machine learning techniques were attempted [9]. The
trained models identify whether feedback for a given obser-
vation belongs to “Comfortable”, “Too Cold” or “Too Warm”
class. Random forest models showed the most favorable results
among other types of machine learning techniques used in the
experiments:

o sl: Linear Support Vector Machine
o rf: Random Forest

o nn: Neural Network

o 1p: Decision Tree

Fig. 1 illustrates how each of the models with various sampling
techniques perform in terms of AUC.
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Fig. 1. AUC Performance Comparison Across Each Analysis.

This portrays that clustering-based downsampling with c-
means and UFCL algorithms give better AUC than other
sampling techniques. The UFCL fuzzy clustering model shows
the best performance with an AUC of 95.8%. On the other
hand, upsampling demonstrated relatively poor results.
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Similarly, Fig. 2 shows the impact of employing various
sampling techniques on Recall.

Again, downsampling based on c-means and UFCL clus-
tering methods helped to train models that demonstrate the
highest recall values among all other approaches used in the
experiments. Meanwhile, the c-means fuzzy clustering model
gives a recall of 86.5%, which is slightly higher than the UFCL
model.

VI. MAXIMIZING RECALL WHILE MAINTAINING
ACCURACY OF PREDICTIONS

When solving classification problems, there are various
kinds of model performance metrics available during the train-
ing process: Accuracy, Kappa, AUC, Mean Recall calculated
for each of the classes, etc. Since the goal of the experiments
is to maximize recall, a custom metric that optimizes mean
recall for classes “Too cold” and “Too Warm” was created.
Ross et al. compared the performance of the recall maximized
models versus AUC maximized models [16]. The models were
created for separate rooms as well as for the whole building
(agglomerated models).

Table II shows the AUC and the recall for the entire building
and for individual rooms when AUC maximized models are
used.

TABLE 11
COMPARISON OF MODELS BASED ON AGGLOMERATED AND INDIVIDUAL
DATASETS - MAXIMIZING AUC.

Room Rm. AUC | Aggl. AUC | Rm. Recall | Aggl. Recall
118 0.9998 0.9395 1 1
119 0.9995 0.9633 1 1
120 1.0000 0.6648 1 0
206 1.0000 0.8648 1 1
226 1.0000 0.8472 1 1
228 0.9965 0.9074 1.00 0.9333
232 1.0000 0.8649 1 1
235 0.9946 0.7990 1.00 0.8125
300 0.9998 0.9555 1 1
301 0.9962 0.9658 1 1
306 0.9949 0.8833 1 1
328 1.0000 0.9896 1 1
332 0.9992 0.8264 1 1

building 0.9918 0.9918 0.98 0.9800

Where models trained for individual rooms perform slightly
better than the agglomerated model, the model trained for the
whole building still provides reasonably good results for most
of the rooms.

Likewise, Table III shows the AUC and the recall for the
entire building and for individual rooms when recall maxi-
mized models are employed. Similarly, the composite model
provides overall good AUC and recall and even outperforms
individual room models in some cases.

Comparison of the results in Table II and Table III show
that models built with maximizing AUC perform slightly better
than the recall maximized models. While creating models with

maximizing recall does not help to improve actual recall, it
negatively impacts on AUC in most cases.

TABLE III
COMPARISON OF MODELS BASED ON AGGLOMERATED AND INDIVIDUAL
DATASETS - MAXIMIZING RECALL.

Room Rm. AUC | Aggl. AUC | Rm. Recall | Aggl. Recall
118 0.9824 0.9335 1 1
119 0.9982 0.9592 0.75 1.0000
120 N/A 0.6745 N/A 0
206 1.0000 0.8346 1 1
226 1.0000 0.8444 1 1
228 0.9903 0.9023 1.00 0.9333
232 N/A 0.8526 N/A 1
235 N/A 0.7895 N/A 0.8125
300 0.9989 0.9564 1 1
301 0.9979 0.9645 1 1
306 0.9932 0.8820 1 1
328 N/A 0.9806 N/A 1
332 0.9990 0.8241 1 1

building 0.9905 0.9905 0.98 0.9800

Moreover, it was impracticable to get recall maximized
models for some of the rooms (N/A cells in Table III) because
there was not enough feedback to use for recall maximization.
Therefore, AUC maximized models are chosen for further
experiments.

VII. CAN USERS FROM ONE ROOM BENEFIT FROM
FEEDBACK OF OTHERS IN THE BUILDING?

In order to check if users from one room can benefit from
the feedback of others in the building, the performance of
the models trained for individual rooms was evaluated on
the whole dataset. Table IV shows how models trained for
individual rooms are performing with datasets from other
rooms.

TABLE IV
INDIVIDUAL ROOM BASED MODELS PERFORMANCE.
Model | Mean_AUC | Mean_Recall
118 0.4855 0.1346
119 0.4546 0.1231
120 0.6184 0.0769
206 0.3892 0.1026
226 0.4745 0.1282
228 0.3244 0.0769
232 0.1351 0.0769
235 0.3862 0.1340
300 0.2704 0.0865
301 0.3399 0.0974
306 0.5017 0.1282
328 0.2986 0.0769
332 0.4210 0.1026




Table IV illustrates that the majority of the models trained
for individual rooms failed to provide both acceptable AUC
and the recall mostly because there is not enough feedback
for each of the rooms. Also, most of the rooms represent only
one or two of the three feedback classes, which means that
they inherently cannot classify feedback that is not in the set
of classes they were trained with. In conclusion, users from
one room generally cannot benefit from feedback from other
individual rooms.

VIII. USING EXPERIENCE FROM ONE BUILDING FOR NEW
BUILDING ENERGY MANAGEMENT SYSTEM

The results described so far were based on the dataset
collected from a building where the occupants used a web-
based system that provided feedback as to whether they were
comfortable, hot, or cold. The study was extended to another
building where smart thermostats recorded the temperature
adjustments made by the users. This new dataset provided the
opportunity to test how well a model from one building can
be transferred to a new building. Since the feedback for the
second building was more refined in terms of the degree of
changes to the thermostat, it was reduced it to “Comfortable”,
“Too cold” and “Too Warm” to match the first building.

Although the earlier experiments showed that random forest
is preferable over other models [9], it was decided that it would
be compared with neural networks for this particular case to
check if neural networks can provide more portable models.
Fig. 3 provides a comparison of random forest and neural
network models performance for the Building 1 dataset.
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Fig. 3. Model Performance Comparison: Building 1.

Likewise, Fig. 4 provides a comparison of random forest
and neural network models performance for the Building 2
dataset.
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Fig. 4. Model Performance Comparison: Building 2.

Random forest models provided better AUC and recall then
neural networks for both Building 1 and Building 2 datasets.

The first two rows in Table V show how well the models
from Building 1 performed on Building 1, as well as on
Building 2. The second pair of rows in Table V describes the
performance of the models from Building 2 on Building 1, as
well as, on Building 2. Finally, the third two rows use models
developed for combined feedback from both the buildings on
individual buildings.

TABLE V
TESTING TRANSFERABILITY OF MODELS BETWEEN BUILDINGS.

Model Building 1 Building 2

AUC | Recall AUC | Recall
Building 1 model: rf 0.9918 | 0.9800 | 0.7738 | 0.7944
Building 1 model: nn 09117 | 0.9447 | 0.7150 | 0.4574
Building 2 model: rf 0.7880 | 0.2911 | 0.9882 | 1.0000
Building 2 model: nn 0.6756 | 0.2443 | 0.8421 | 0.8180
Combined model for two buildings: rf | 0.9949 | 0.9800 | 0.9884 | 1.0000
Combined model for two buildings: nn | 0.9148 | 0.8414 | 0.8613 | 0.7788

Random forest models demonstrated better transferability
between the two buildings. The model from Building 1 still
shows satisfactory results when applied to Building 2: 77.38%
AUC and 79.44% recall. However, the model from Building
2 performs not as good when applied to Building 1: 78.80%
AUC and 29.11% recall. The combined model outperforms
all other models, even the ones trained for the same building
in terms of AUC. The AUC of the combined model applied
to Building 1 is 99.49% whereas the AUC of the model
trained for the Building 1 is 99.18%. Similarly, the AUC of
the combined model applied to Building 2 is 98.84% while
AUC of the model trained for Building 2 is 98.82%. Overall,
using experience from one building for new building energy



management system may be a practical option in some cases.

IX. MODELING DISCRETE VERSUS CONTINUOUS USER
FEEDBACK

Predicting whether an occupant is comfortable, cold or hot
will be easier than predicting the degree of the annoyance with
the room temperature. Here, the extent of the adjustment of
the thermostat is treaded as the degree of annoyance. Since
the extent of the thermostat adjustment is represented by real
numbers, binning is employed to map real values to one of
nine resulting classes. Fig. 5 provides a comparison of random
forest and neural network model recall for the Building 2
dataset treating extent of the thermostat adjustment as one of
the nine nominal classes.
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Fig. 5. Model Recall Comparison: Building 2 - Nominal outcome.

However, the extent of the thermostat adjustment can also
be treated as an ordinal variable. In this case, the extent of the
thermostat adjustment can be expressed as an integer varying
from -4 to 4.
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Fig. 6. Model Recall Comparison: Building 2 - Ordinal outcome.

Fig. 6 provides a comparison of random forest and neural
network model recall for the Building 2 dataset treating extent
of the thermostat adjustment as an integer. Random forest
models provided better recall in both cases, so the random
forest models will be used for further comparisons in this
paper. Fig. 7 shows a comparison of model performance when
nominal versus an ordinal variable is used to express the extent
of the thermostat adjustment.
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Fig. 7. Recall Comparison

Fig. 7 portrays that better model performance with respect
to recall can be achieved when the ordinal nature of the extent
of the thermostat adjustment is taken into account.

Table VI compares the quality of predicting discrete values
such as “Comfortable”, “Too cold” and “Too Warm” versus
predicting the extent of temperature adjustment.

TABLE VI
PREDICTING DISCRETE VERSUS CONTINUOUS FEEDBACK.

Model Discrete predictions | Continuous predictions

AUC Recall AUC Recall
Discrete feedback 0.9881 1.0000 N/A N/A
Continuous feedback - nominal | 0.9585 1.0000 | 0.9980 0.9763
Continuous feedback - ordinal 0.9549 1.0000 | 0.9850 1.0000

The model built with discrete feedback (“Comfortable”,
“Too cold” and “Too Warm”) shows slightly better perfor-
mance in discrete predictions in terms of AUC compared to
the other two models (0.9881 versus 0.9585 and 0.9549).
All models provide 100% recall for the Building 2 dataset
with discrete predictions. While it is easy to map continuous
feedback to discrete feedback by treating positive thermostat
adjustments as “Too Cold”, negative thermostat adjustments as
“Too Warm” and no adjustments as “Comfortable”, it is not
possible to do it vice versa. Thus, models built with discrete
feedback cannot be utilized for continuous predictions.
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Fig. 8. Specificity Comparison.

The continuous feedback model which takes into account
the ordinal nature of the extent of the thermostat adjustment
gives better recall for continuous predictions than the model
that uses nominal classes (1.0000 versus 0.9763). Nonethe-
less, it demonstrates slightly worse performance in terms of
AUC both for discrete predictions (0.9549 versus 0.9585) and
continuous predictions (0.9850 versus 0.9980). Since AUC is
a composite metric, the model which takes into account the
ordinal nature of the extent of the thermostat adjustment gives
a little worse specificity. Fig. 8 shows that working with the
ordinal feedback gives better mean specificity, but using the
nominal feedback provides slightly higher lower and upper
quartiles for specificity.

X. CONCLUSION

This paper describes the problem of modeling user pref-
erence to provide a comfortable work environment without a
continuing need for user intervention. The study uses data col-
lected from two buildings. The first building used a web-based
system that allowed users to specify if they were comfortable,
cold, or hot. The second building used a smart thermostat that
registered the temperature adjustments made by the occupants.
One of the major issues with user feedback is that it is
limited in size, creating an imbalance between feedback points
and non-feedback points on a time continuum. The study
experimented with a number of sampling techniques and found
that a downsampling technique based on fuzzy clustering
was the best option. The report recognized the importance
of recalling all the feedback over the accuracy of predictions.
Experimentation with different supervised learning techniques
showed that random forest classifiers performed the best in
maximizing recall while providing high accuracy. This paper
reports the effect of agglomerating feedback from different
rooms to create a dataset to increase the number of feedback
points in the dataset as opposed to modeling individual rooms
with a smaller number of feedback points. Modeling individual
rooms is shown to be a better option. However, the models for
the entire building provide a reasonable performance in case

there is no feedback for a given room. This conclusion was
further tested by using user preference model for one building
on a different building in the same region. Again, a model
developed for a particular room is the best option. However,
transferring the model from one building to a new building
is shown to be a viable option when a new building energy
management system is installed. The study also concluded
that predicting whether an occupant was comfortable, cold
or hot was easier than predicting the degree of changing the
thermostat temperature. However, the accuracy of prediction of
thermostat adjustment was acceptable. Finally, the experiments
showed that models could provide better recall if the ordinal
nature of the degree of the thermostat adjustment is taken into
account.
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