
 

Abstract—Clustering has long been applied to the problem of 

image segmentation. Because of spatial connectivity constraints, 

several approaches have been proposed to incorporate local 

consistency into image segmentation by clustering. One popular 

method, the fuzzy local information c-means (FLICM) has been 

shown to produce good segmentation results. Like the fuzzy c-

means (FCM) from which it is derived, FLICM requires that 

pixels “share” memberships across clusters, that is, the 

memberships of a pixel across all clusters need to sum to one. The 

possibilistic c-means (PCM) clustering was introduced to relax 

the membership sum-to-one constraint of the FCM, and has 

found a place in the clustering universe, particularly in those 

situations where the data contains outliers, is noisy, or highly 

overlapped. This paper extends the structure of FLICM to 

possibilistic versions for image segmentation. Two approaches 

are proposed. The first, called possibilistic local information c-

means (PLICM) inserts the local information term of FLICM 

into the basic PCM model. PLICM, like PCM, can produce 

coincident cluster centers. Recently, a sequential application of 

PCM (with c = 1) has been developed to mitigate negative effects 

of the co-incident cluster formation. Three algorithms form the 

family of sequential possibilistic 1-means (SP1M). These 

algorithms are extended to account for local information in 

image segmentation (SPLI1M). After development of the 

approach, experiments are performed on images which show that 

the SPLI1M family has superior performance in image 

segmentation over FLICM, PLICM and other clustering 

algorithms that don’t combine local spatial information of the 

image. 

Index Terms—clustering, possibilistic c-means, image 

segmentation, spatial constraints 

I. INTRODUCTION 

Image segmentation is an essential topic in image 
processing and a classic difficult problem in the computer 
vision field. The objective of image segmentation is to set 
apart different components in an image so that each such 
component is consistent and separated from neighboring 
components. Many image comprehension algorithms in 
computer vision, such as object detection and feature 
extraction, depend on the quality of image segmentation. 
Although numerous image segmentation methods have been 
proposed [1, 2, 3], a universal and practical approach to 
segment images has not been found. Segmentation remains a 
choke point in computer vision [4]. 

Clustering algorithms are powerful and useful techniques 
and have been popularly used in artificial intelligence. Cluster 
analysis research has a long history and has been combined 

with several research tools, including neural networks and 
probabilistic reasoning. Cluster analysis has a prominent role 
in data mining, pattern recognition and other search-related 
techniques, which helps researchers find inner structure of 
data. It has become a vital methodology in the discovery of 
data distribution and underlying patterns. A fundamental 
aspect of any clustering algorithm is its ability to construct 
meaningful partitions that organize objects from a dataset 
based on specific criteria. A clustering algorithm can also 
explore and discover as it uses its connectivity and density 
functions. It can define multiple-level granularity structures 
and hypothesize models for each cluster, then find the best fit 
of each model as it relates to another.  

K-means clustering (here called the hard c-means) and 
mean shift clustering are viable and popular tools in image 
segmentation [5, 6]. In an effort to recognize the uncertainty in 
image segmentation, the fuzzy c-means (FCM) [7] was 
introduced for image segmentation [8], and it has robust 
characteristics for points with ambiguous characteristics. 
However, the FCM algorithm is sensitive to images with noise 
or outliers due to the membership sum-to-one constraint [9]. 
Furthermore, the FCM algorithm performs clustering in 
feature space, for example 3D color space, which sometimes 
leads to a failure in image segmentation due to the lack of 
using local spatial position information in the image. 

Many clustering techniques consider a pixel of an image as 
an isolated element in image segmentation, and so these 
methods are vulnerable in a noisy environment. Hence, spatial 
clustering is incorporated to overcome this problem, because it 
exploits the spatial relationship between the pixels [10, 11]. 
The fuzzy local information c-means (FLICM) [12] was 
constructed to utilize local spatial information in the original 
image to improve the performance of image segmentation by 
FCM. FLICM does clustering in both feature space and in the 
original image spatial domain, which is an improvement for 
clustering algorithms in image segmentation. However, 
FLICM has to be run many times with different values of the 
cluster number ‘c’ to get the best number of clusters for 
images where the number of clusters is unknown.  

The possibilistic c-means (PCM) [13] is a generalization of 
the FCM, which abandons the membership sum-to-one 
constraint in FCM. It forms a “typicality” partition of the data, 
and is more robust to outliers than either the crisp or fuzzy c-
means. Due to the formulation of the PCM, a meaningful 
result can be obtained even when 𝑐 = 1. The sequential 
possibilistic one-means (SP1M) [14, 15, 16] is a sequential 
version of PCM that iteratively hunts for one possibilistic 
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cluster at a time. There is an important parameter, eta, for each 
cluster, in both PCM and SP1M that must be specified or 
estimated. SP1M with dynamic eta [16] was proposed to pick 
eta dynamically, which has been shown to be more robust than 
the original versions [14, 15]. PCM, and hence SP1M, are 
mode-seeking algorithms in clustering. Since there are no 
constraints between cluster centers, they have the property that 
coincident clusters can form, i.e., two cluster centers migrate 
to the same place. This might be a problem (they could miss 
some less dense clusters) or can be an advantage in that they 
can naturally help determine how many clusters a dataset may 
have. In this paper, we combine the measure of local spatial 
information of the image from FLICM with PCM and SP1M 
to derive two novel clustering algorithms in image 
segmentation: the possibilistic local information c-means 
(PLICM) and sequential possibilistic local information one-
means (SPLI1M). 

The rest of the paper is organized as follows. Sections II 
briefly reviews FCM, PCM, SP1M, and FLICM. Section III 
introduces PLICM and SPLI1M respectively. Section IV 
represents our experimental study, and Section V summarizes 
our conclusions and planned future work.  

II. PRELIMINARY THEORY 

II.A. Fuzzy C-Means 

The fuzzy c-means (FCM) [7] algorithm is defined as the 
minimization of the objective function 

𝐽𝐹𝐶𝑀(𝑈, 𝑉; 𝑋) = ∑ ∑ 𝑢𝑖𝑘
𝑚||𝑣𝑖 − 𝑥𝑘||

2𝑛
𝑘=1

𝑐
𝑖=1   (1) 

with the constraint 

∑ 𝑢𝑖𝑘 = 1𝑐
𝑖=1            (2) 

for all 𝑘 =  1, … , 𝑛. Here, the fuzzifier parameter 𝑚 ∈ (1,∞). 
Optimization of the FCM model is performed by randomly 
initializing V and then alternately updating U and V using the 
necessary conditions for the extrema of 𝐽𝐹𝐶𝑀, 

𝑢𝑖𝑘 = (∑ (
||𝑣𝑖−𝑥𝑘||

2

|‖𝑣𝑗−𝑥𝑘‖
2)

1

𝑚−1𝑐
𝑗=1 )−1     (3) 

𝑣𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝑥𝑘
𝑛
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1
           (4) 

This alternating optimization algorithm is run until a 
suitable termination criterion holds, for example when 
successive estimates of V change less than a threshold ε, 

𝑚𝑎𝑥
𝑖=1,…,𝑐

||𝑣𝑖 − 𝑣𝑖
′|| < 𝜀          (5) 

In this paper, we will always consider the Euclidean 
distance || · ||, the fuzziness index 𝑚 = 2, and the 
threshold 𝜀 = 0.01. FCM can work well on many general 
datasets but does not perform well on outliers due to the 
constraint (2). Therefore, outliers can have a significant effect 
on the cluster centers found by FCM. 

II.B. Possibilistic C-Means 

In the hard c-means and even the FCM, outliers have 
relatively high membership due to the membership sum-to-one 
constraint. Actually, it is not uncommon for FCM to have a 
cluster center “stuck” at an outlier. One early attempt to 
ameliorate this problem was to include a noise cluster [17]. 
There, all points are considered to be equidistant from an 

amorphous noise cluster, and this distance is large compared 
with the distances of the “good” points to cluster prototypes. 
Therefore, noise points are attracted to the noise cluster. The 
membership values are still constrained as with FCM, and 
produce asymmetric cluster membership functions. Of course, 
there is also the question of what distance to use. The 
possibilistic c-means (PCM) [13] is more robust against 
outliers or noise because it abandons the membership sum-to-
one constraint required in FCM to generate non-trivial 
necessary conditions for minimization. Outliers or noise have 
a large distance to all the existing clusters so that they 
naturally have low typicality to all clusters. Typicality is used 
in PCM instead of membership, because it measures how 
“typical” a particular point is to each cluster, that is, how close 
the point is to each cluster prototype. In PCM, the trivial 
solution 𝑢𝑖𝑘 = 0 is avoided by adding an additional penalty 
term in the objective function: 

𝐽𝑃𝐶𝑀(𝑈, 𝑉; 𝑋) = ∑ ∑ 𝑢𝑖𝑘
𝑚||𝑣𝑖 − 𝑥𝑘||

2
+𝑛

𝑘=1
𝑐
𝑖=1

∑ 𝜂𝑖 ∑ (1 − 𝑢𝑖𝑘)
𝑚𝑛

𝑘=1
𝑐
𝑖=1    (6) 

The task is to minimize (6) subject to  

𝑢𝑖𝑘 ∈ [0, 1] for all i and k 

0 < ∑ 𝑢𝑖𝑘 < 𝑛 
𝑛
𝑘=1 for all i 

max
𝑖
𝑢𝑖𝑘 > 0 for all k 

The typicality update (necessary condition) in PCM is: 

𝑢𝑖𝑘 =
1

1+(
𝑑𝑖𝑘
2

𝜂𝑖
)
1

𝑚−1

          (7) 

The parameter 𝑑𝑖𝑘 denotes the distance between 𝑘𝑡ℎ data 

point and 𝑖𝑡ℎ cluster center. The parameter 𝜂𝑖 determines the 
distance at which the typicality degree equals 0.5. As was 
suggested in [13], 𝜂𝑖 can be determined as follows: 

𝜂𝑖 = 𝑃
∑ 𝑢𝑖𝑘

𝑚𝑑𝑖𝑘
2𝑁

𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1
         (8) 

Usually, P is set as one. The cluster center update is still 
the same as the cluster center update in (4).  

PCM performs well against outliers or noise, but it may 
yield coincident cluster centers [18, 19]. Some research has 
been done with PCM to deal with the coincident cluster center 
issue, such as AM-PCM [20] and PFCM [21]. As stated 
above, this property of PCM can be a problem at times, or can 
actually be a positive attribute in case the number of actual 
clusters in the data is less than c [22]. 

II.C. Sequential Possibilistic One-Means 

A major reason why PCM may find coincident clusters is 
due to initialization issues (see Fig. 2). While a heuristic rule 
is to always start with more clusters than you expect to find 
(and merge or identify coincident clusters), a more direct 
approach was created with the sequential possibilistic one-
means (SP1M) family of algorithms [14, 15, 16]. The PCM 
algorithm has the characteristic that it can produce a 
meaningful typicality partition when 𝑐 = 1 [23]. Hence, the 
SP1M algorithms overcome the coincident cluster drawback 
by generating one cluster at a time using P1M and stopping 
when all the “dense” regions are found.  



The pseudocode for the latest version of SP1M with 
dynamic eta is shown in TABLE I where X is the dataset, c is 
the input for cluster number, ε is the threshold, K is defined to 
be the number of points whose maximum typicality is smaller 
than 0.5. Note that the (*) details of dynamic η computation in 
TABLE I is discussed in [16].  

TABLE I: SP1M PSEUDO CODE 

Algorithm: SP1M pseudo code 

Input: X, c, ε 

Output: U: Final membership partition 
             V: Final cluster center group 

01: Initialize U, V as empty 

02: Do { 
03:     Repeat <loop to find a suitable cluster> 

04:      Pick 𝑣 ∈ 𝑋 with probabilities            (9) 

05:         Repeat <loop to execute P1M> 

06:          Compute η (i) dynamically             (*) 

07:          Compute u (v, X)                        (7) 
08:          Compute v (u, X)                    (4) 

09:      Until termination                     (5) 

10:     Until termination                          (10) 
11:     Append u to U 

12:     Append v to V 

13: } While (𝑖 + +< 𝑐 && #(𝑃1𝑀) < 𝐾) 

In SP1M, the cluster centers are not initialized purely 
randomly. They are initialized from probabilities based on the 
typicalities of the previously found clusters. The initial cluster 
centers are picked from dataset X with probabilities 

𝑝(𝑥𝑘) =

{
 
 

 
 

1

𝑛
      𝑖𝑓 𝑖 = 1      

             0      𝑖𝑓 max
𝑗=1,…,𝑖

𝑢𝑗𝑘 > 0.5

1− 𝑚𝑎𝑥
𝑗=1,…,𝑖

𝑢𝑗𝑘

𝑛−∑ 𝑚𝑎𝑥
𝑗=1,…,𝑖

𝑢𝑗𝑠
𝑛
𝑠=1

  otherwise         

        (9) 

When P1M has found a new cluster center v, v may be 
very close to one of the cluster centers in V found so far. We 
only consider v a new cluster center if it has a distance of at 
least 2η from each cluster center in V, that is, if 

min
𝑤∈𝑉

||𝑣 − 𝑤|| ≥  2𝜂         (10) 

If this condition does not hold, then v is discarded and 
P1M runs again to find a non-coincident cluster center. SP1M 
terminates when c non-coincident clusters have been found. In 
[16], a termination criterion was inserted to stop the program 
to avoid being trapped in an endless loop when no more new 
clusters can be found. Note that #(𝑃1𝑀) < 𝐾 means on the 

𝑘𝑡ℎ of P1M, if the times of abandoning coincident cluster is 
greater than K, we will stop the program, where K is the 
number of points whose maximum typicality is smaller than 
0.5. The points whose maximum typicality is larger than 0.5 
are likely to be those points strongly identified in an already 
found cluster. The value of K decreases as each P1M runs. 

II.D. Fuzzy Local Information C-Means 

In [12], Krinidis and Chatzis proposed the fuzzy local 
information c-means (FLICM) clustering algorithm that 
incorporates local spatial information of an image in a novel 
fuzzy way. FLICM can overcome the disadvantages of FCM, 
and at the same time, it enhances the clustering performance 
for image segmentation. 

In FLICM, a fuzzy local factor 𝐺𝑖𝑘 is introduced: 

𝐺𝑖𝑘 = ∑
1

𝑑𝑘𝑗+1
(1 − 𝑢𝑖𝑗)

𝑚||𝑥𝑗 − 𝑣𝑖||
2

𝑗𝜖𝑁𝑘
𝑘≠𝑗

       (11) 

where the 𝑘𝑡ℎ pixel is the center of the local window, i is the 

reference cluster and the 𝑗𝑡ℎ pixel belongs in the set of the 

neighbors falling into a window around the 𝑘𝑡ℎ pixel. 𝑑𝑘𝑗 is 

the spatial Euclidean distance between pixels k and j, 𝑢𝑖𝑗 is the 

𝑗𝑡ℎ pixel membership degree in the 𝑖𝑡ℎ cluster, m is the 
weighting exponent on each fuzzy membership, and 𝑣𝑖 is the 
cluster center of cluster i. 

By adding 𝐺𝑖𝑘, FLICM incorporates local spatial 
information into its objective function, defined as follows: 

𝐽𝑚 = ∑ ∑ [𝑢𝑖𝑘
𝑚||𝑥𝑘 − 𝑣𝑖||

2
+ 𝐺𝑖𝑘]

𝑐
𝑖=1

𝑁
𝑘=1         (12) 

The two necessary conditions for 𝐽𝑚 to be at its local 
minimal extreme, with respect to 𝑢𝑖𝑘 and 𝑣𝑖 in the FLICM 
paper are given as follows: 

𝑢𝑖𝑘 =
1

∑ (
||𝑥𝑘−𝑣𝑖||

2
+𝐺𝑖𝑘

||𝑥𝑘−𝑣𝑗||
2
+𝐺𝑖𝑗

)
1
𝑚−1⁄𝑐

𝑗=1

        (13) 

𝑣𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝑥𝑘
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1
            (14) 

However, the above two equations are not necessary 
mathematical conditions for 𝐽𝑚 to be a minimum because 𝐺𝑖𝑘 
is treated as a constant value with respect to 𝑢𝑖𝑘, while it is 
actually not [24]. However, the above two equations are used 
as update equations, and are shown to give good segmentation 
results in [12], and this is even the recommendation of [24], 
where this issue was discussed. 

III. SEQUENTIAL POSSIBILISTIC LOCAL INFORMATION ONE-

MEANS  

III.A. Possibilistic Local Information C-Means 

Like FCM, clusters in FLICM are coupled with each other, 
and the membership sum-to-one constraint may still lead to a 
failure in image segmentation if the local spatial position 
information of specific noise pixels is ambiguous. In this 
section, the membership sum-to-one constraint in FLICM is 
abandoned, and the resultant algorithm is called the 
possibilistic local information c-means (PLICM).  

In PLICM, the fuzzy factor 𝐺𝑖𝑘 is included in the objective 
function: 

𝐽𝑚 = ∑ ∑ [𝑢𝑖𝑘
𝑚||𝑥𝑘 − 𝑣𝑖||

2
+ 𝐺𝑖𝑘]

𝑐
𝑖=1

𝑁
𝑘=1 +∑ 𝜂𝑖 ∑ (1 − 𝑢𝑖𝑘)

𝑚𝑁
𝑘=1

𝑐
𝑖=1    (15) 

where the 𝑘𝑡ℎ pixel is the center of the local window, i is the 

reference cluster, 𝑢𝑖𝑘 is the degree of typicality of the 𝑘𝑡ℎ 

pixel in the 𝑖𝑡ℎcluster, m is the weighting exponent on each 
possibilistic membership, and 𝑣𝑖 is the cluster center of cluster 
i. Here, 𝜂𝑖 determines the zone of influence (or bandwidth) of 

the 𝑖𝑡ℎ cluster. 

Following the reasoning in FLICM, the typicality update 
equation is obtained as follows: 

𝑢𝑖𝑘 =
1

1+(
||𝑥𝑘−𝑣𝑖||

2
+𝐺𝑖𝑘

𝜂𝑖
)
1
𝑚−1⁄

       (16) 

The cluster center update equation is the same as equation 
(14). The PLICM pseudo code is shown in TABLE II. 



TABLE II: PLICM PSEUDO CODE 

Algorithm: PLICM pseudo code 

Input: X, c, ε 

Output: U: Final membership partition 
             V: Final cluster center group 

01: Initial the fuzzy partition matrix U with FLICM 

02: Repeat  

03:       Compute membership values 𝑣𝑖 using     (14) 

04:        Calculate the cluster center 𝑢𝑖𝑘 using     (16) 

05: Until convergence 𝑣𝑖
𝑡+1 − 𝑣𝑖

𝑡 < 𝜀 

Like PCM, PLICM still faces the coincident cluster center 
issue, which may leave out some critical information in an 
image. Thus, the initialization of PLICM is of vital 
importance. Initializing cluster centers with FLICM is a good 
choice for PLICM. This is similar to the recommendation of 
initializing PCM with FCM [13, 19].  

We note that in [25, 26], a combined possibilistic fuzzy 
local information c-means was developed that produced both 
typicalities and a membership soft partition. The local 
information component was associated with the membership 
partition and not the typicalities. Typicalities are used mainly 
to flag outliers in synthetic aperture sonar images of the sea 
floor. Here, we investigate the utility of adding local 
information directly into the possibilistic clustering criteria 
function. 

III.B. Sequential Possibilistic Local Information One-Means 

In [13], PCM is computed by running the possibilistic one-
means (P1M) c times sequentially. Similarly, PLICM can also 
be run sequentially. In both FLICM and PLICM, we update 𝑣𝑖 
by only using 𝑢𝑖𝑘, independent of 𝑢𝑗𝑘 , 𝑗 = 1, … , 𝑐, 𝑗 ≠ 𝑖. In 

FLICM we update 𝑢𝑖𝑘 using all 𝑣𝑗 , 𝑗 = 1, … , 𝑐, so the clusters 

are coupled to each other. Hence, PLICM can also be 
computed for 𝑐 = 1. Anytime 𝑐 > 1, even when 𝑐 ≥ 𝑛, 
PLICM can be executed by running c instances of PLI1M, 
independent of each other, sequentially or in parallel. 

Hence, SP1M is combined with the local spatial 
information in the image into an algorithm called the 
sequential possibilistic local information one-means 
(SPLI1M). The basic idea is to run possibilistic local 
information one-means sequentially until all locally consistent 
clusters (segments) in the image are found.  

The SPLI1M pseudocode is shown in TABLE III. This 
algorithm is developed based on the improved version SP1M 
in [16]. 

TABLE III: SPLI1M PSEUDO CODE 

Algorithm: SPLI1M pseudo code 

Input: X, c, ε 

Output: U: Final membership partition 

             V: Final cluster center group 

01: Initialize U, V as empty, 𝑖 = 1 
02: Do { 

03:     Repeat <loop to find a suitable cluster> 

04:      Pick 𝑣 ∈ 𝑋 with probabilities              (9) 

05:        Repeat <loop to execute PLI1M> 

06:          Compute η (i) dynamically             (*) 
07:          Compute u (v, X)                         (16) 

08:          Compute v (u, X)                          (14) 
09:       Until termination                          (5) 

10:     Until termination                                (10) 

11:     Append u to U 
12:     Append v to V 

13: } While (𝑖 + +< 𝑐 && #(𝑃1𝑀) < 𝐾) 

Note that the (*) details of dynamic η computation in 
TABLE III is discussed in [16]. 

IV. EXPERIMENTS 

In this section, we present four experiments to compare 
FLICM, PLICM, SPLI1M and other clustering algorithms that 
don’t combine local spatial information of the image. These 
four experiments use three images for comparison. One image 
is a medical image from the original FLICM paper [12], and 
the other two images are a balloon image and a fruit image. 
The first experiment illustrates FLICM and PLICM (using 
FLICM as initialization) as well as SPLI1M, showing them to 
be robust algorithms for image segmentation. We show that 
initialization of PLICM is of vital importance. The second 
experiment shows how SPLI1M outperforms SP1M and 
FLICM without an accurate cluster number as input. The third 
experiment demonstrates the soft partition results of SPLI1M 
and the superior performance of a possibilistic model over 
crisp and fuzzy approaches on an image with noise. The last 
experiment compares the proposed SPLI1M with two standard 
image segmentation clustering algorithms, k-means and mean 
shift. 

IV.A. Basic segmentation examples 

First, FLICM, PLICM and SPLI1M are run on a medical 
image from the original FLICM paper shown in Fig. 1(a). 
FLICM, PLICM (using FLICM as initialization) and SPLI1M 
all have a consistent good segmentation when hardened, i.e., 
with each pixel colored by the cluster with highest 
membership/typicality, as seen in Fig. 1(b).  

 
(a) 

 
(b) 

Fig. 1. (a) Original medical image and (b) Good image segmentation results 
(hardened clusters) of FLICM, PLICM (using FLICM as initialization) and 

SPLI1M. Here, for FLICM and PLICM, c was chosen as 3. 

However, if PLICM uses random initialization, the 
segmentation results may not be stable; it depends on the 
initial cluster center choices. While all clustering algorithms 
need to deal with initialization, possibilistic versions are 
particularly sensitive to this choice. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Three cases of hardened results of PLICM for Fig. 1(a). Here (a), all 

initial cluster centers were chosen in the background; (b) initial cluster centers 

picked in background and white matter; (c) initial cluster centers chosen in 

background, white and dark matter. 

The hardened segments for three PLICM initializations of 
Fig. 1(a) are shown in Fig. 2. The first case is that all initial 



cluster centers fall in the background of the medical image, 
resulting in 3 coincident clusters, missing the brain completely 
(Fig. 2(a)). The second case resulted when some initial cluster 
centers fell on the background, and others on the white matter 
(Fig. 2(b)). The third case is that the background, white matter 
and dark matter all have initial cluster centers (Fig. 2(c)). Of 
course, we all like Fig. 2(c), but randomly choosing 
initialization opens the potential for vastly different outcomes. 

Using FLICM for initialization, or sequentially running 
PLI1M (SPLI1M) are two good ways to avoid coincident 
cluster centers in image segmentation, depicted in Fig. 1(b). 
One advantage of running SPLI1M instead of FLICM is that 
SPLI1M does not need to specify the number of clusters 
(segments) in advance, producing a more robust clustering 
algorithm. 

IV.B. Comparison of SPLI1M to FLICM and SP1M 

When using FLICM in image segmentation, the number of 
cluster centers, or the number of colors in the image, must be 
specified. However, in the beginning, the number of clusters 
may not be easy to estimate for some images. In this 
experiment, a few values of cluster (color) numbers were 
specified for the balloon image in Fig. 3(a). SP1M (without 
combining local information) and SPLI1M were also tested on 
this image. The results in Fig. 3 are again the hardened 
partition values, with each pixel colored by the color of the 
cluster center with maximum membership or typicality. 

As shown in Fig. 3 (b)-(d), different cluster (color) 
numbers were tried in FLICM. If the input number of clusters 
was smaller than the actual real number of colors, then 
obviously some clusters (colors) are missing in the hardened 
segmentation. 

 
(a) Original image 

 
(b) FLICM with c = 6 

 
(c) FLICM with c = 8 

 
(d) FLICM with c = 12 

 
(e) SP1M 

 
(f) SPLI1M 

Fig. 3. (a) Original image, (b) FLICM where c = 6, (c) FLICM where c = 8, 

(d) FLICM where c = 12, (e) SP1M, automatically terminating at c = 9,        

(f) SPLI1M, automatically terminating at c = 11. 

However, SP1M and SPLI1M do not need to specify the 
number of clusters (colors); furthermore, they will stop 
searching for new clusters (colors) when all possible dense 
clusters (colors) have been found. Note that in Fig. 3(f), some 
noisy pixels in the SP1M segmentation (Fig. 3(e)) were 

removed resulting in regions being smoother, due to the 
addition of local spatial information. 

In this experiment, we also constructed the crisp partition 
matrix for the clusters found and compared it with the label 
partition matrix. The label partition matrix was generated by a 
human for the purpose of evaluation of the different clustering 
results. The actual number of clusters (colors) in the balloon 
image was chosen to be eight. We used the cluster comparison 
measure method in [27] to validate if the right cluster is 
detected. We run FLICM with different numbers of clusters 
(𝑐 = 6, 8, 12), and then SP1M and SPLI1M, hardening the 
final partitions. Then we compute the crisp Rand indices [27] 
of the final crisp partitions generated by each algorithm. If the 
Rand indices value is large, that means the partition matrix is 
more likely to match the label partition matrix. The Rand 
indices of FLICM with different number of clusters, SP1M 
and SPLI1M is shown in TABLE IV, showing that SPLI1M 
has an advantage in matching the crisp segmentation. 

TABLE IV: The Rand Indices of FLICM, SP1M and SPLI1M 

 Crisp Rand Indices 

FLICM with c = 6 87.83 

FLICM with c = 8 82.06 

FLICM with c = 12 80.36 

SP1M 87.64 

SPLI1M 89.94 

Another image (fruit image, Fig. 4(a)) was used to show 
the superior performance of SPLI1M over FLICM and SP1M. 
A few values of c were input to FLICM. The hardened 
segments are depicted in Fig. 4 (b)-(d). SP1M (without 
combining local spatial information) and SPLI1M were also 
run on the same image. 

The hardened partitions from SPLI1M in Fig. 4(f) are 
better than those created by SP1M (Fig. 4(e)) and as good as 
or better than those from FLICM, regardless of the input 
choice for c (Fig. 4 (b)-(d)).  

 
(a) Original image 

 
(b) FLICM with c = 4 

 
(c) FLICM with c = 6 

 
(d) FLICM with c = 8 

 
(e) SP1M 

 
(f) SPLI1M 

Fig. 4. (a) Original image, hardened partitions: (b) FLICM where c = 4, (c) 

FLICM where c = 6, (d) FLICM where c = 8, (e) SP1M, automatically 

terminating at c = 7, and (f) SPLI1M, automatically terminating at c = 6. 



IV.C. Superior performance of SPLI1M on the image with 

noise 

While hardened segmentation results are easy to visualize, 
one of the advantages of possibilistic and fuzzy approaches is 
that they produce soft partition matrices that can be used in 
subsequent processing. All the pixels have membership to 
each cluster (color). The soft partition results of SPLI1M on 
the fruit image used in the last experiment are shown in Fig. 5.  

This soft segmentation provides a good indication of the 
strength of the cluster that can provide information of 
segmentation feature strength, and can allow for subsequent 
computer vision algorithms to take advantage of the 
typicalities/memberships during decision processes. For 
example, the goal of the soft segmentation in [25, 26] is to 
tailor and/or blend feature extraction and mine detection 
algorithms to various unclear seafloor backgrounds. 

  

  

  

  

  

  
Fig. 5. The soft partition result of SPLI1M on the fruit image. Each image in 

the left column displays typicality of all pixels in each respective cluster, 
while the corresponding image in the second column shows the hardened 

segment. 

One advantage of the possibilistic approach over the fuzzy 
one is that the possibilistic approach can detect outliers. We 
added some noise of a constant color to the fruit image. The 
noise is 5% uniform distributed in the whole range of fruit 
image. FLICM, SP1M (which doesn’t combine local spatial 
information), and SPLI1M were run on this image with noise. 

The results of these three algorithms are shown in Fig. 6 (b)-
(d). 

 
(a) fruit image with noise 

 
(b) FLICM result 

 
(c) SP1M result 

 
(d) SPLI1M result 

Fig. 6. (a) Fruit image with noise, (b) Hardened FLICM result on part (a), c = 

6, (c) Hardened SP1M result on part (a), automatically terminating at c = 7, 

(d) Hardened SPLI1M result on part (a), automatically terminating at c = 6. 

As we see, both FLICM and SP1M produced noise 
segments in the final segmentation result. SPLI1M shows 
superior performance over FLICM and SP1M on the image 
with noise. In fact, because of the insertion of local 
information in the clustering iterations, isolated noise points, 
or small groups of noise, will be absorbed into the surrounding 
image segments.  This is why the noise has disappeared in the 
hardened segmentation of the fruit image in Fig. 6(d).  The 
maximum typicality for each noise point is in the color cluster 
of the spatially surrounding region. The reason for this 
superior performance of SPLI1M over FLICM in an image 
with noise is that, even though FLICM contains the local 
information variable, it requires the number of expected 
clusters a priori.  What happened in this example image is that 
one of the clusters got started in the noise color area and the 
sharing model of fuzzy memberships essentially kept it there, 
resulting in many small segments corresponding to that color.  
SPLI1M, on the other hand, hunts for one cluster at a time, 
allowing the noise points to be absorbed into the surrounding 
higher “volume” color regions. 

IV.D. Comparison of SPLI1M to k-means and mean shift 

The k-means and mean shift clustering algorithms are two 
effective clustering algorithms that are widely used in image 
segmentation. We now compare the proposed SPLI1M with k-
means and mean shift. In the k-means clustering algorithm, the 
number of clusters must be specified in advance. In mean shift 
there is a parameter called bandwidth that needs to be 
adjusted. A few k values (k = 6, 12) in k-means and bandwidth 
values (bandwidth = 0.2, 0.25) in mean shift are tested on the 
balloon image.  

As shown in Fig. 7 (b)-(c), the number of clusters values of 
6 and 12 were used on the balloon image. If the input number 
of clusters k was smaller than the actual real number of 
clusters, then some clusters (colors) are missing in the final 
segmentation result. On the other hand, if the value of k was 
larger than the actual real number of clusters, then some 
redundant clusters will be found in the final segmentation 
result. As shown in Fig. 7 (d)-(e), bandwidth values 0.2 and 
0.25 were used. As the bandwidth value grows, the number of 
clusters (colors) decreases. The bandwidth parameter has a 



similar influence on image segmentation as the parameter eta 
in the SPLI1M, which controls the cluster size or the color 
range for each segment. However, the k-means and mean shift 
are two crisp clustering algorithms. For example, they will 
have problems when clustering ambiguous color images.  

SPLI1M, as a sequential clustering algorithm based on 
fuzzy set theory, is more robust against ambiguous or more 
continuously changing color images. Using SPLI1M with 
dynamic eta on the balloon image, the hardened segmentation 
is shown in Fig. 7 (f). It finds 11 clusters (colors). Each eta for 
its corresponding cluster is different. The eta value range is 
between 280 and 460. Picking the correct number of clusters 
as in Fig. 7(c) or the correct bandwidth as in Fig. 7(d) gives 
results close to those of SPLI1M. Of course, k-means or mean 
shift does clustering only on the 3D color feature space. It 
leaves out local spatial information in the image, producing 
anomalies in the final segmentation results.  

 
(a) Original image 

 
(b) k-mean with k = 6 

 
(c) k-means with k = 12 

 
(d) mean shift with bandwidth = 0.2 

 
(e) mean shift with bandwidth = 

0.25 

 
(f) SPLI1M 

Fig. 7. (a) Original image, (b) k-means with k = 6, (c) k-means with k = 12, 

(d) mean shift with bandwidth = 0.2, (e) mean shift with bandwidth = 0.25, 

and (f) Hardened partition of SPLI1M, automatically terminating at c = 11. 

The crisp Rand indices [27] of k-means and mean shift 
algorithms were also computed to compare with the 
performance of SP1M and SPLI1M. The Rand indices of k-
means with different value of k, mean shift with different 
values of bandwidth, SP1M and SPLI1M are shown in 
TABLE V. This also highlights the advantage of SPLI1M, and 
shows the sensitivity of k-means to the number of clusters and 
that of mean shift to the bandwidth. 

TABLE V: The Rand Indices of k-mean, mean shift, SP1M and SPLI1M 

 Crisp Rand Indices 

k-means with k = 6 79.91 

k-means with k = 12 83.98 

mean shift with bandwidth = 0.2 89.66 

mean shift with bandwidth = 0.25 84.08 

SP1M 87.64 

SPLI1M 89.94 

V. CONCLUSIONS 

In earlier work, we showed that sequential version of the 
possibilistic one-means (SP1M) performs better at finding c 
clusters than does FCM and PCM [14]. However, clustering in 
an image dataset is different from clustering in a standard 
dataset. A clustering algorithm running on the 3D color 
feature space leaves out the local spatial position information 
of the pixel, which sometimes may lead to poor segmentation 
results. FLICM extends FCM by incorporating local spatial 
information in the image and works better than FCM in image 
segmentation.  

In this paper, PLICM extends FLICM by abandoning the 
membership sum-to-one constraint. However, initialization of 
PLICM has a significant impact on the final segmentation 
results. Using FLICM as initialization or sequentially running 
PLI1M (SPLI1M) are two good ways to avoid coincident 
cluster centers in image segmentation. One advantage of 
running SPLI1M instead of FLICM is that SPLI1M does not 
need to specify the number of clusters (colors) in advance, 
which is shown to produce a more robust segmentation, 
particularly in the presence of noise. 

One issue in using any variant of PCM is that the value of 
the cluster-specific parameter, eta, must be specified or 
computed. We introduced SP1M with dynamic eta (SP1M-
DE) [16] that determines eta dynamically at the beginning of 
each iteration of P1M. These algorithms have been extended 
to incorporate local spatial information for use in image 
segmentation. They perform very well when hardened 
partitions are used to create crisp image segments. In addition, 
the typicality partitions can be utilized to determine outliers, 
and in further computer vision tasks when image regions blend 
into each other. In the future, we will incorporate other 
methods of combining local spatial information of the image 
into our algorithms, such as clustering super-pixels of the 
image [28]. 
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