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Abstract—The paper deals with a production planning prob-
lem, that is a version of the capacitated single-item lot sizing
problem with backordering, under uncertain cumulative de-
mands, modeled by fuzzy intervals centered around the cumu-
lative demand nominal values. Their membership functions are
regarded as possibility distributions for the values of the unknown
cumulative demands. Furthermore, the budgeted uncertainty
model is assumed, in which at most a specified number of
cumulative demands can deviate from their nominal values at
the same time. In order to choose a robust production plan that
optimizes against plausible cumulative demand scenarios, under
the model assumed, possibilistic criteria are adopted. Polynomial
linear programming based methods for finding such robust
production plans are proposed, showing in this way that the
problem under consideration is not much computationally harder
than its deterministic counterpart. Some results of computational
tests are presented.

Index Terms—production planning, demand uncertainty, fuzzy
interval, possibility theory

I. INTRODUCTION

Nowadays most companies use the manufacturing resource

planning method (MRP II) to plan their production, which

is composed of three levels [1]: the strategic level (Sales

and Operation Plan-S&OP), the tactical level (Master Produc-

tion Scheduling (MPS) and Material Requirement Planning

(MRP)) and the operational level (detailed scheduling and

shop floor control). We will be concerned with the tactical

level under uncertainty. Ill-known data in this context, for

instance: demand, lead time capacities, etc., induce risks for

the manufacturer such as backordering and obsolete inventory.

Therefore, taking into account the uncertainty in the planning

process is a very important issue, since it allows the decision

maker to reduce these risks. Several extensions of MRP II have

been proposed in the literature in order to cope with ill-known

data, among others, those where uncertain demands in periods

(MPS and MRP) [2]–[4], uncertain demands in periods and

orders (MRP) [5] and the imprecision in order quantities and

dates with uncertain order (MRP) [6] are considered (see [7]

for a comprehensive review).
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In this paper we wish to investigate a version of the capaci-

tated single-item lot sizing problem (CLSP) with backordering

under uncertainty in the demand, assuming that its determin-

istic counterpart is polynomially solvable (see, e.g. [8]). Typi-

cally, the uncertainty in parameters is modeled by specifying a

set, denoted by U , of all possible realizations of the parameters

(demands), called scenarios. When there is no probability

distribution in scenario set U , the commonly used methods of

defining U are the discrete and interval representations (see,

e.g., [9]). In this case, in order choose a robust production

plan, the minmax criterion is usually applied. Unfortunately,

for the discrete representation of demands the CLSP problem

with the minmax criterion turned out to be NP-hard even for

two demand scenarios [9]. A situation is computationally much

better for the interval representation of demands [10], [11].

We focus on a generalization of the interval representa-

tion which additionally collects plausible demand scenarios.

Namely, we model uncertain cumulative demands by fuzzy

intervals, centered around their nominal values, regarded as

possibility distributions for the demand. Using possibility

theory [12] one can compute a possibility distribution in the

cumulative demand scenario set U induced by these fuzzy

intervals. It is worth pointing out that we consider uncertainty

in the cumulative demands instead of the per-period demands,

because such uncertainty representation is more realistic than

the one in the demands in periods, which can lead to huge

uncertainty over the planning horizon. Following [13], [14],

we additionally assume the budgeted uncertainty model, in

which at most a specified number of the cumulative demands,

denoted by Γ, can deviate from their nominal values at the

same time. In this case, a reliable production plan seems to be

a robust one that optimizes against plausible scenarios in U ,

in which at most Γ cumulative demands take values different

from their nominal ones. Since the worst case cost of such

robust plan can be significantly higher than the cost of an

optimal plan under the nominal scenario, we wish to choose

among the above robust production plans, similarly as in [15],

[16], the one whose costs in plausible scenarios are not too

far from the nominal cost. To find such plans for our CLSP

problem under uncertain cumulative demands we use in this

paper necessity measure based criteria [17]. We call these

plans best necessarily (soft) feasible production plans. For a
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deeper discussion of possibility theory in optimization we refer

the reader to [18].

We provide polynomial methods, that are an extension to

the fuzzy case an interval one given in [19], for computing best

necessarily (soft) feasible production plans. We show in this

way that introducing uncertainty in the cumulative demands

in the possibilistic setting does not make our problem much

computationally harder than its deterministic counterpart. Fur-

thermore, the computational experiments performed suggest

that taking additional information about possibility distribu-

tions of the cumulative demands given by fuzzy intervals into

account may lead to production plans with a better quality

over a set of plausible scenarios.

II. PRODUCTION PLANNING PROBLEM

In this section we formulate a production planning problem

that we examine in the paper. It is a version of the well-known

capacitated single-item lot sizing problem with backordering

(see, e.g., [8]). We first state the problem with precise param-

eters. Then we assume that demands are subject to uncertainty

- the rest of the parameters are precisely known.

A. Deterministic Problem

We are given T periods, a demand dt in each period t,
t ∈ [T ] ([T ] denotes the set {1, . . . , T }), production, inventory

and backordering costs and a selling price, denoted by cP , cI ,

cB and bP , respectively, which do not depend on period t.
We assume zero initial inventory and initial backorder. The

problem is to find a feasible production amount xt in each

period t, called production plan, subject to the condition of

satisfying each demand, which minimizes the total storage and

backordering costs minus the benefit from selling the product.

Let us denote by X the set of production plans. We assume

that X is specified by some linear constraints, for example

X = {xxx = (xt)t∈[T ] ∈ RT
+ :xt ≥ 0, lt ≤ xt ≤ ut,

Lt ≤
∑

i∈[t]

xi ≤ Ut, t ∈ [T ]},

where lt, ut and Lt, Ut are given capacity and cumulative

capacity limits, respectively.

Our problem can be modeled by the following linear pro-

gram:

min
∑

t∈[T ]

(cIIt + cBBt + cPxt − bP st) (1)

s.t. Bt − It = Dt −Xt t ∈ [T ], (2)
∑

i∈[t]

si = Dt −Bt t ∈ [T ], (3)

Bt, It, st ≥ 0 t ∈ [T ], (4)

xxx ∈ X ⊆ RT
+, (5)

where Dt =
∑

i∈[t] di and Xt =
∑

i∈[t] xi, Dt and Xt stand

for the cumulative demand up to period t and the cumulative

production up to period t, respectively.

An easy computation shows that (1)-(5) can be rewritten

in the following equivalent compact form, which is more

convenient to analyze:

min
xxx∈X

C(xxx,DDD) = min
xxx∈X

∑

t∈[T ]

max{cI(Xt −Dt), c
B(Dt −Xt)}

+ cPXT − bP min{XT , DT }, (6)

where DDD = (Dt)t∈[T ] is a T -vector of cumulative demands.

B. Problem Under Uncertainty

We now admit that demands are subject to uncertainty.

In practice, knowledge about uncertainty in a demand is

expressed as ±∆, where ∆ is a possible deviation from its

nominal value, which means that the actual demand will take

some value within the interval (the support) given, but it is

not possible at present to predict which one. In consequence,

it induces a natural interval uncertainty representation (see,

e.g., [9]). A demand has a twofold interpretation, namely, a

demand in a period, dt, or a cumulative demand, Dt, t ∈ [T ].
The former interpretation is often assumed. However, in this

case and under the interval uncertainty ∆ cumulates in the sub-

sequent periods due to the interval addition, D̃t =
∑̃

t∈[T ]d̃t,
which is not realistic. Accordingly, we assume that the un-

certainty of demand d̃t will lie in the cumulative demand D̃t

modeled by an interval or a fuzzy interval prescribed, i.e. an

interval with information about a set of plausible cumulative

demand values (see, e.g., [12]).

From now on we will be concerned with a version of (6)

with uncertain cumulative demands D̃DD = (D̃t)t∈[T ]:

m̃in
xxx∈X

C(xxx,D̃DD) = m̃in
xxx∈X

∑

t∈[T ]

max{cI(Xt − D̃t), c
B(D̃t −Xt)}

+ cPXT − bP min{XT , D̃T }. (7)

The precise models of the cumulative demand uncertainty, D̃DD,

introduced here, will be given in Sec. III and IV-A.

III. ROBUST PRODUCTION PLANS UNDER INTERVAL

UNCERTAINTY

In this section we proceed with the study of the problem (7)

and modeling uncertain cumulative demands in the setting

of the interval budgeted uncertainty representation proposed

in [13], [14]. Namely, we assume that D̃t, t ∈ [T ], is a

random variable, symmetrically distributed around its nominal

(expected) value D̂t. Thus the value of D̃t is only known to

belong to the support [D̂t−∆t, D̂t+∆t] of D̃t, where ∆t is its

the maximum deviation from its nominal value. Furthermore

an integer parameter in [0, T ], denoted by Γ and called a

robustness level or a budget, that specifies the maximal number

of cumulative demands, whose values can be different from

their nominal ones is prescribed. Let

D = {DDD = (Dt)t∈[T ] ∈ RT : |{t : Dt 6= D̂t}| ≤ Γ}. (8)

We define U to be the Cartesian product of the supports, i.e.

U = [D̂1−∆1, D̂1+∆1]× · · ·× [D̂T −∆T , D̂T +∆T ]. (9)



Throughout the paper, we assume that the supports are non-

overlapping, i.e. D̂t + ∆t ≤ D̂t+1 − ∆t+1, t ∈ [T − 1].
This assumption is realistic, in particular at the tactical level

of planning, for instace Master Production Schedule (MPS)

problems (see, e.g. [1]), where the lengths of periods are big

enough (for example, they are equal to one month). Hence

for each cumulative demand scenario DDD, the inequalities

Dt ≤ Dt+1, t ∈ [T − 1], hold. Thus the set of feasible

cumulative demand scenarios, according to the model in [13],

[14], is the intersection of the scenario sets (8) and (9),

respectively (D∩U). In order to compute a robust production

plan, similarly to [13], [14], a minmax approach is adopted

(see, e.g., [9]). This leads to the following problem:

min
xxx∈X

max
DDD∈D∩U

C(xxx,DDD) (10)

An optimal production plan xxx∗ to (10), called robust, is the one

whose the maximum cost C(xxx∗,DDD) is minimum over scenario

set D∩U . Indeed, such solution computed is a robust choice,

because we are sure that it optimizes against all scenarios,

in which at most Γ cumulative demands take values different

from their nominal ones. Moreover, by changing the value

of Γ, from 0 to T , one can flexibly control the level of

robustness of a resulting plan, namely, if Γ = 0, then all the

cumulative demands take their nominal values D̂t, t ∈ [T ],
and we arrive to the deterministic problem (6), so we have

one scenario and the uncertainty is ignored. On the other hand,

when Γ = T , all the cumulative demands are uncertain and

thus a production plan found is strictly robust and can be

highly conservative, because we need to consider all possible

cumulative demand scenarios in U .

Fortunately, finding a robust production plan xxx∗, i.e. solving

the problem (10), can be reduced to the following linear pro-

gramming problem (see [19] for details), so it is polynomially

solvable:

min
∑

t∈[T ]

πt + cPXT + Γα+
∑

t∈[T ]

γt (11)

s.t. πt ≥ cI(Xt − D̂t), t ∈ [T − 1], (12)

πt ≥ cB(D̂t −Xt), t ∈ [T − 1], (13)

πT ≥ cI(XT − D̂T )− bP D̂T , (14)

πT ≥ cB(D̂T −XT )− bPXT , (15)

α+ γt ≥ cI(Xt − (D̂t −∆t))− πt, t ∈ [T − 1], (16)

α+ γt ≥ cB(D̂t +∆t −Xt)− πt, t ∈ [T − 1], (17)

α+ γT ≥ cI(XT − (D̂T −∆T ))

− bP (D̂T −∆T )− πT , (18)

α+ γT ≥ cB(D̂T +∆T −XT )

− bPXT − πT , (19)

α, γt ≥ 0, πt unrestricted t ∈ [T ], (20)

xxx ∈ X, (21)

where the value of the objective function (11) equals

maxDDD∈D∩U C(xxx∗,DDD). It is worth pointing out that the ap-

proach here considered, based on the interval budgeted un-

certainty representation [13], [14] and the minmax criterion,

exploits only information contained in the supports of the

uncertain cumulative demands. It does not take any additional

information about the cumulative demand distributions into

account. In the next section we apply a more elaborate

approach (see, e.g., [17]) for dealing with cumulative demand

uncertainty that consists in collecting both supports and plau-

sible demand values and extends the results presented in this

section.

IV. ROBUST PRODUCTION PLANS UNDER POSSIBILISTIC

UNCERTAINTY

In this section we apply more elaborate approach to model

uncertain cumulative demands D̃t, t ∈ [T ], in which they

are modeled by fuzzy intervals whose membership functions

are regarded as possibility distributions, representing the sets

of plausible values of uncertain cumulative demands. In con-

sequence, we give a possibilistic counterpart of problem (7)

and, as a byproduct, we extend the model based on the interval

budgeted uncertainty representation presented in Sec. III to the

fuzzy case. In order to find robust production plans under the

possibilistic uncertainty, that takes into account an information

about cumulative demand distributions while a plan is com-

puted, we adopt the concept of best necessarily (soft) feasible

solutions proposed in [17] for linear programming problems.

A. Possibilistic Model of Uncertainty

Consider uncertain cumulative demands D̃t, t ∈ [T ]. In the

interval model uncertainty (see Sec. III), we only know the

support [D̂t−∆t, D̂t+∆t]. This means that D̃t will take some

value within the support but it is not possible at present to

predict which one. However, in practice the information about

plausibility of values of D̃t can be exploited in computing

production plans with a better quality. In the model assumed in

this section D̃t is a fuzzy interval, whose membership function

is continuous, symmetrically distributed around the nominal

value D̂t and the support equal to [D̂t − ∆t, D̂t + ∆t] (see

for instance Fig. 1a). The membership function µD̃t
of fuzzy

interval D̃t is regarded as a possibility distribution for D̃t,

denoted by πD̃t
, which describes the set of more or less

plausible values of D̃t. The value of µD̃t
(Dt) represents the

possibility degree of the assignment D̃t = Dt, i.e.

Π(D̃t = Dt) = πD̃t
(Dt) = µD̃t

(Dt).

where Π(D̃t = Dt) is the possibility of the event that D̃t will

take the value of Dt. A possibility degree can be viewed as an

upper bound on a probability degree (see [12], [20] for more

details).

We recall that the set µλ
D̃t

= {Dt ∈ R : µD̃t
(Dt) ≥ λ},

λ ∈ (0, 1], is called a λ-cut of D̃t, and D̃0
t is the support of D̃t.

Similarly as in Sec. III, we assume that the supports are non-

overlapping. The λ-cuts of D̃t , λ ∈ [0, 1], are nested closed

intervals centered around the nominal value D̂t. Thus D̃t

can be equivalently represented as a family of λ-cuts, i.e.



D̂t D̂t +∆tD̂t −∆t

1

Dt

µ
D̃t

(Dt)
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zt > 1

λ
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v
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Ĉ + ρ Ĉ + ρ+ σ

zc > 1

zc < 1

λ

a) b)

Fig. 1. a) Symmetric fuzzy interval, where D̃λ
t
= [D̂t−αt(λ), D̂t+αt(λ)],

αt(λ) = ∆t ·(1−λzt), zt ≥ 0. b) Fuzzy set C̃ with µ−1

C̃
(λ) = Ĉ+ρ+ξ(λ),

ξ(λ) = σ · (1−λzc), zc ≥ 0, representing the right hand side of the flexible
cost constraint.

D̃λ
t = [D̂t − αt(λ), D̂t + αt(λ)], λ ∈ [0, 1], where αt(λ)

is a continuous, nonincreasing function in [0, 1], such that

αt(0) = ∆t. These cuts can be seen as the nested confidence

intervals of all possible values of D̃t (see [12] for methods for

constructing possibility distributions of uncertain quantities).

Notice also that the above representation contains a symmetric

triangular fuzzy interval if αt(λ) = ∆t · (1 − λ) as a special

case. We can also use more general representation, namely

αt(λ) = ∆t · (1 − λzt), zt > 0. Indeed, the smaller the

value of zt, the less uncertainty is associated with D̃t and

for large zt, D̃t tends to a closed interval.

Let DDD = (Dt)t∈[T ] ∈ RT be a scenario describing a

realization (a state of the world) of uncertain cumulative

demands D̃DD = (D̃t)t∈[T ] in the objective function of (7).

Thus the event “D̃DD = DDD” holds. The degree of possibility

that scenario DDD will occur is provided by the following joint

possibility distribution π
D̃DD

on the set of all possible scenarios,

induced by possibility distributions πD̃t
, (see, e.g., [21]):

π
D̃DD
(DDD) = Π(∧t∈[T ](D̃t = Dt)) = min

t∈[T ]
Π(D̃t = Dt)

= min
t∈[T ]

µD̃t
(Dt). (22)

Obviously, Π(D̃DD =DDD) = π
D̃DD
(DDD). We can now determine the

set of all scenarios whose possibility of occurrence is at least

λ ∈ (0, 1] as follows:

Uλ = {DDD ∈ RT : πD̃DD(DDD) ≥ λ} = D̃λ
q × D̃λ

2 ×· · ·× D̃λ
T (23)

and U0 = D̃0
1 × · · · × D̃0

T .

B. Best necessarily (soft) feasible Production Plans

We now apply the possibilistic model given in Sec. IV-A to

handle the uncertainty of cumulative demands D̃DD = (D̃t)t∈[T ]

in the objective function of (7). Likewise (see [13], [14] and

Sec. III), we introduce a robustness level Γ, an integer in [0, T ].
Following approach proposed [17], we will take into account,

while constructing a robust production plan, the information

about a possibility distribution of cumulative demand scenarios

(see (22)). This allows us to find a robust plan, i.e. the one

that optimizes against plausible scenarios, in which at most Γ
cumulative demands take values different from their nominal

ones. Furthermore, since the worst case cost of such robust

plan found can be significantly higher than the cost of an

optimal plan under the nominal scenario D̂DD, we wish to choose

among these robust production plans the one whose costs

in plausible scenarios are not too far from the cost of an

optimal plan in the nominal scenario denoted by Ĉ. Thus our

production plan is a compromise one. This is an extension of

the idea that comes from [15], [16]. Therefore, we are given a

tolerance ρ ∈ R+, which reflects an acceptable increase in the

cost of a plan above the nominal cost Ĉ . We say that a given

production plan xxx ∈ X is Γ-feasible in scenario DDD ∈ D if a

cost constraint of the type C(xxx,DDD) ≤ Ĉ+ρ is satisfied, where

D is defined as (8). We can now compute the possibility of

the event that plan xxx is Γ-feasible:

Π(xxx is Γ-FEAS) = sup
{DDD∈D:C(xxx,DDD)≤Ĉ+ρ}

π
D̃DD
(DDD). (24)

Applying the duality between the possibility and necessity

measures (see, e.g., [21]) gives the degree of necessity of the

event that plan xxx is Γ-feasible:

N(xxx is Γ-FEAS) = 1−Π(xxx is not Γ-FEAS)

= 1− sup
{DDD∈D: C(xxx,DDD)>Ĉ+ρ}

π
D̃DD
(DDD). (25)

Π(xxx is Γ-FEAS) ≥ λ, λ ∈ (0, 1], means the existence of at

least one scenario DDD ∈ D such that π
D̃DD
(DDD) ≥ λ and the

inequality C(xxx,DDD) ≤ Ĉ + ρ holds (xxx is Γ-feasible). While

N(xxx is Γ-FEAS) ≥ 1− λ, λ ∈ (0, 1], stands for that for every

scenario DDD ∈ D such that π
D̃DD
(DDD) ≥ λ the cost constraint

C(xxx,DDD) ≤ Ĉ + ρ is satisfied. Clearly this constraint is Γ-

protected, i.e. it is protected against all the scenarios above

described. Furthermore, if N(xxx is Γ-FEAS) ≥ 1 − λ, then

xxx is Γ-feasible with a probability at least 1 − λ due to the

probability-possibility consistency (see, e.g., [20], [22]).

Accordingly, within the possibilistic setting, a best produc-

tion plan seems to be the one with the maximal degree of

necessary Γ-feasibility (25), i.e. the most robust plan among

these for which the cost constraint is Γ-protected. Such plan

is optimal to the following problem:

max
xxx∈X

N(xxx is Γ-FEAS) (26)

This solution is called a best necessarily feasible plan. The

problem (26) is a generalization to the fuzzy (possibilistic)

case of the problem (10) with some ideas from [15], [16]. Its

equivalent form is as follows:

max (1 − λ) (27)

s.t. N(xxx is Γ-FEAS) ≥ 1− λ, (28)

xxx ∈ X. (29)

Repeating the aforementioned interpretation of the con-

straint (28) and using (23) allows us to express (28) in terms

of λ-cuts. This leads to the following problem:

max (1− λ) (30)

s.t. max
DDD∈D∩Uλ

C(DDD,xxx) ≤ Ĉ + ρ, (31)

xxx ∈ X. (32)



Observe that evaluating the left hand side of (31) for fixed λ
boils down to solving the problem (10) under the interval

uncertainty. Applying (11)-(21) yields a mathematical pro-

gramming formulation of the problem (26):

(1 − λ) → max (33)
∑

t∈[T ]

πt + cPXT

+ Γα+
∑

t∈[T ]

γt ≤ Ĉ + ρ, (34)

Constraints (12)-(15), (35)

α+ γt ≥ cI(Xt − (D̂t − αt(λ))) − πt, t ∈ [T − 1], (36)

α+ γt ≥ cB(D̂t + αt(λ) −Xt)− πt, t ∈ [T − 1], (37)

α+ γT ≥ cI(XT − (D̂T − αT (λ)))

− bP (D̂T − αT (λ)) − πT , (38)

α+ γT ≥ cB(D̂T + αT (λ)−XT )

− bPXT − πT , (39)

α, γt ≥ 0, πt unrestricted t ∈ [T ], (40)

xxx ∈ X, (41)

0 ≤ λ ≤ 1, (42)

The model (33)-(42) is nonlinear due to the terms αt(λ),
t ∈ [T ]. However, a best necessarily feasible plan can found

efficiently. We use a similar approach to that in [17] for a

method for finding a best necessarily feasible solution to a

linear programming problem with fuzzy coefficients. Observe

that for a fixed value of λ ∈ [0, 1], the constraints (36)-(39)

are linear. Let Xλ ⊆ X be the set of feasible solutions to (34)-

(41) for a fixed value of λ ∈ [0, 1]. Since αt(λ), t ∈ [T ], are

nonincreasing Xλ1 ⊆ Xλ2 if λ1 ≤ λ2. Hence (33)-(42) boils

down to computing, by a binary search in [0, 1], the smallest

value λmin ∈ [0, 1] for which Xλmin 6= ∅ and the corresponding

solution xxx∗ ∈ Xλmin is a best necessarily feasible plan such

that N(xxx∗ is Γ-FEAS) = 1−λmin. This requires checking the

feasibility of (34)-(41) at most ⌈log ǫ−1⌉ times, where ǫ > 0
is a given accuracy. It can be done in polynomial time if the

values of αt(λ), t ∈ [T ], are computed in polynomial time as

well.

Fortunately, we can give a compact linear programming

formulation of (26) and thus (33)-(42) for instance if the uncer-

tainty of the cumulative demands are modeled by general L-R
fuzzy intervals (see, e.g., [12]) whose the left and right shape

functions, Lt and Rt, respectively, are such that Lt = Rt = L
for every t ∈ [T ]. In our case αt(λ) = ∆t · (1 − λzt) (see

Fig. 1a). Assume that zt = z for every t ∈ [T ] and z > 0 (case

z = 0 is trivial). Thus the shape function 1− λzt is the same

for each demand. Now, it is sufficient to replace the term αt(λ)
with ∆t ·Θ in constraints (36)-(39), where Θ is a new variable,

the objective function (33) with Θ and constraint (42) with

0 ≤ Θ ≤ 1. Clearly, the modified formulation (33)-(42) is

a linear program. Let Θmax and xxx∗ be a part of an optimal

solution to the modified (33)-(42). Now, λmin = (1−θmax)
1/z

and N(xxx∗ is Γ-FEAS) = 1−λmin. It is worth pointing out that

the xxx∗ computed is the same best necessarily feasible plan for

every z > 0, of course, with different degree of necessary

Γ-feasibility.

We now apply an idea of a best necessary soft feasibility

proposed in [17], which is a generalization of the idea of a best

necessary feasibility, already used in this section. It describes,

in a more general manner, requirements on a production

plan under the possibilistic uncertainty representation of cu-

mulative demands as a plan among these robust production

plans whose costs in plausible cumulative demand scenarios

satisfy a flexible cost constraint. We required previously that

C(xxx,D̃DD) ≤ Ĉ + ρ for xxx ∈ X, where the uncertainty of D̃DD is

modeled by a possibility distribution π
D̃DD

provided in (22), Ĉ
is the cost of an optimal production plan under the nominal

demand scenario and ρ ∈ R+ is a given acceptable deviation

in costs of xxx above the nominal cost Ĉ . We recall that a

given plan xxx ∈ X is Γ-feasible in scenario DDD ∈ D if the

cost constraint C(xxx,DDD) ≤ Ĉ + ρ is satisfied. We replace this

constraint with a flexible cost constraint: “C(xxx,DDD)≤̃C̃”, where

C̃ is a fuzzy set in R with membership function µC̃ (see for

instance Fig. 1b). The value of µC̃(C(xxx,DDD)), DDD ∈ D, is the

extent to which C(xxx,DDD) satisfies the flexible cost constraint.

We call such plan xxx, whose cost C(xxx,DDD) falls within the

fuzzy right hand side C̃, Γ-soft feasible plan in DDD. The fuzzy

right hand side C̃ can be seen also as a fuzzy goal. Applying

possibility theory to handle both uncertainty in parameters and

flexible constraints (see, e.g. [21]) we can determine the degree

of necessity that a plan xxx ∈ X is Γ-soft feasible:

N(xxx is Γ-F̃EAS) = 1−Π(xxx is not Γ-F̃EAS) (43)

= 1− sup
DDD∈D

min{π
D̃DD
(DDD), 1− µC̃(C(xxx,DDD))}.

N(xxx is Γ-F̃EAS) ≥ 1 − λ, λ ∈ (0, 1], means that for all

scenarios DDD ∈ D such that π
D̃DD
(DDD) ≥ λ, the inequality

µC̃(C(xxx,DDD)) ≥ 1− λ holds.

Hence maximizing (43) over X leads to the problem of

finding a most robust production plan, under the possibilistic

uncertainty, among ones whose costs satisfy the flexible cost

constraint, fall within C̃, i.e.

max
xxx∈X

N(xxx is Γ-F̃EAS). (44)

An optimal solution x∗ to (44) is called best necessarily soft

feasible plan.

By a similar argument as for (28), we can rewrite (44),

equivalently, in terms of λ-cuts:

max (1 − λ) (45)

s.t. max
DDD∈D∩Uλ

C(DDD,xxx) ≤ µ−1

C̃
(1− λ), (46)

xxx ∈ X, (47)

where µ−1

C̃
(λ) = sup{v : µC̃(v) ≥ λ} is the pseudo-inverse

of µC̃ . For C̃ depicted in Fig. 1b µ−1

C̃
(λ) = Ĉ + ρ+ ξ(λ) =

Ĉ+ρ+σ ·(1−λzc), where σ is a given maximum allowed cost

constraint violation (the slack), i.e. µ−1

C̃
(0) = Ĉ + ρ+ ξ(0) =

Ĉ + ρ+ σ. Replacing the left hand side of (46) by (11)-(21)



and taking into account the forms of fuzzy intervals presented

in Fig. 1 give the following mathematical programming model

for the problem of computing a best necessarily soft feasible

plan (44):

(1− λ) → max (48)
∑

t∈[T ]

πt + cPXT + Γα+
∑

t∈[T ]

γt ≤ Ĉ + ρ+ ξ(λ), (49)

Constraints (12)-(15), (36)-(42). (50)

Similarly as the model (33)-(42) for finding a best necessarily

feasible plan the model (48)-(50) is nonlinear as well, now

due to the terms αt(λ), t ∈ [T ], and ξ(λ). In order to

solve (48)-(50) we apply the binary search in [0, 1] previously

used for (33)-(42). The only difference is that checking the

feasibility of (34)-(41) is now replaced by checking the

feasibility of (49)-(50). The number of such checkings is at

most ⌈log ǫ−1⌉, where ǫ > 0 is a given accuracy. Furthermore,

if αt(λ), t ∈ [T ], and ξ(λ) are computed in polynomial

time, then the running time of the binary search approach is

polynomial.

The model (48)-(50) can be linearized by assuming that the

uncertainty of the cumulative demands D̃t, t ∈ [T ], and the

fuzzy goal C̃ are modeled by the L-R fuzzy intervals whose

the left and right shape functions are such that Lt = Rt =
Lc = Rc = L, where Lt, Rt and Lc, Rc correspond to the

cumulative demands D̃t, t ∈ [T ], and the goal C̃, respectively.

The above assumption leads to a compact linear programming

model for the problem (44). A similar situation is for the forms

of fuzzy intervals presented in Fig. 1. Indeed, αt(λ) = ∆t ·
(1 − λzt), t ∈ [T ], and ξ(λ) = σ · (1 − λzc) and assuming

that zc = zt = z for every t ∈ [T ], we have the same shape

function 1 − λz for the goal and the cumulative demands.

Substituting ∆t·Θ into αt(λ) and σ·Θ into ξ(λ) in model (48)-

(50) we obtain its compact linearized counterpart:

Θ → max (51)
∑

t∈[T ]

πt + cPXT

+ Γα+
∑

t∈[T ]

γt ≤ Ĉ + ρ+ σΘ, (52)

Constraints (12)-(15), (53)

α+ γt ≥ cI(Xt − (D̂t −∆tΘ))− πt, t ∈ [T − 1], (54)

α+ γt ≥ cB(D̂t +∆tΘ−Xt)− πt, t ∈ [T − 1], (55)

α+ γT ≥ cI(XT − (D̂T −∆TΘ))

− bP (D̂T −∆TΘ)− πT , (56)

α+ γT ≥ cB(D̂T +∆TΘ−XT )

− bPXT − πT , (57)

α, γt ≥ 0, πt unrestricted t ∈ [T ], (58)

xxx ∈ X, (59)

0 ≤ Θ ≤ 1, (60)

Solving (51)-(60) yields a best necessarily soft feasible pro-

duction plan xxx∗ and Θmax. The degree of necessary Γ-soft fea-

sibility of xxx∗ can be computed as follows: N(xxx∗ is Γ-F̃EAS) =
1 − λmin, where λmin = (1 − θmax)

1/z . Note also that

solving (51)-(60) gives the same best necessarily soft feasible

production plan xxx∗ for every z > 0 with different degree of

necessary Γ-soft feasibility.

V. EXPERIMENTAL RESULTS

In this section we present experiments illustrating the robust

possibilistic approach (see Sec. IV) to the production planning

problem (7) with cumulative demands under the possibilistic

model of uncertainty (see Sec. IV-A) and compare this ap-

proach with the classical robust one that assumes the interval

model of uncertainty (see Sec. III).

An instance I of the problem (7) is built in the following

way: the number of periods T = 25; we are given one product

and its the selling price bP is a random number uniformly

distributed in [100, 150], the production, inventory and back-

ordering costs are as follows: cP = 0.8bP , cI = 0.05cP

and cB = 0.2bP ; the nominal value D̂t of D̃t, t ∈ [T ], is

set to
∑

i∈[t] d̂i, where d̂i is a nominal demand in period i
uniformly generated in [700, 1000]. In order to ensure that the

supports of D̃t for every t ∈ [T ] are non-overlapping each

maximum deviation ∆t is a random number uniformly dis-

tributed in [0.4min{d̂t, d̂t+1}, 0.5min{d̂t, d̂t+1}], t ∈ [T −1],
for t = T , in [0.4d̂T , 0.5d̂T ]. Each lower capacity limit lt
is uniformly generated in [0, 1.1d̂t] and the upper capacity

limit ut is generated in [lt, 2d̂t]. There are no cumulative

capacity limits Lt and Ut. For both robust approaches we

choose the robustness level Γ = 16. In the robust possibilistic

approach all the membership functions µD̃t
, t ∈ [T ], and

µC̃ have the shape parameters such that zc = zt = 1,

i.e. D̃t, t ∈ [T ], are triangular fuzzy intervals and C̃ is a

trapezoidal fuzzy interval. The tolerance ρ in the right hand

side of the cost constraint, Ĉ + ρ, is set to ρ = ρ̂ · Ĉ/100
for ρ̂ ∈ {0%, 0.2%, 0.4%, . . . , 10%} and the slack σ in the

support of the fuzzy right hand side C̃, Ĉ + ρ+ σ, is set ρ/3.

We recall that Ĉ denotes the cost of an optimal plan under

the nominal cumulative demand scenario and µC̃(Ĉ + ρ) = 1

and µC̃(Ĉ + ρ+ σ) = 0 (see Fig 1b).

Let xxxI ∈ X be a solution (production plan) of instance I of

the problem (7) with respect to the aforementioned approaches,

i.e. (10), (26) or (44). We use a Monte Carlo simulation to

evaluate a posteriori the quality of xxxI in terms of its cost

and the cost constraint violation under a randomly generated

cumulative demand scenario DDD, according to the possibility

distributions πD̃t
, t ∈ [T ]. Namely, for each D̃t, t ∈ [T ]

we generate its value as follows. We uniformly generate λ
in [0, 1] and then uniformly generate the value of Dt in

D̃λ = [D̂ − ∆t(1 − λ), D̂ + ∆t(1 − λ)], which gives a

scenario DDD = (Dt)t∈[T ] and in consequence a deterministic

counterpart of (7), i.e. an instance of the problem (6). For this

scenario DDD we compute the distance d(xxxI ,DDD) of the cost of

xxxI from the instance optimal nominal cost ĈI , d(xxxI ,DDD) =



|C(xxxI ,DDD)−ĈI |

|ĈI |
, and the magnitude of the cost constraint viola-

tion v(xxxI ,DDD) of xxxI , v(xxxI ,DDD) = max{0,C(xxxI ,DDD)−(ĈI+ρ)}

|ĈI+ρ|
. We

generate 1000 such random scenarios that form set U. We

determine the following quantities that express a posteriori

evaluation of xxxI computed, namely the average distance

over U, i.e. davg(xxxI) = 1
|U|

∑
DDD∈U

d(xxxI ,DDD), the fraction

of the scenarios in which xxxI violates the cost constraint

#infeas(xxxI) = 1
|U| |{DDD ∈ U : v(xxxI ,DDD) > 0}|, and the

average magnitude of the cost constraint violation vavg(xxx) =
1
|U|

∑
DDD∈U

v(xxx,DDD).
Our computational experiments were made in the following

way. For each ρ̂ ∈ {0%, 0.2%, 0.4%, . . . , 10%} we generated

a set I of 100 random instances I = {I1, . . . , I100} according

to the scheme above described. For every instance I ∈ I

we set ρ = ρ̂ · ĈI/100 and σ = ρ/3 and computed a

best necessarily feasible production plan xxxBN
I by solving the

linearized model (33)-(42), a best necessarily soft feasible

production plan xxxBNS
I by solving (51)-(60), and a robust pro-

duction plan xxxR
I by solving (11)-(21). Note that xxxR

I minimizes

its maximum cost over scenario set D ∩ U and depends on

neither ρ nor σ (see (11)-(21)). For solving the models we

used IBM ILOG CPLEX 12.9 optimizer and the modeling

package JuMP [23] embedded in the programming language

Julia. For such plans computed we determined their average

qualities over I, i.e. for xxxBN
I :

dBN(ρ̂) =
1

|I|

∑

I∈[I]

davg(xxx
BN
I ), (61)

#infeasBN(ρ̂) =
1

|I|

∑

I∈[I|]

#infeas(xxxBN
I ), (62)

vBN
avg(ρ̂) =

1

|I|

∑

I∈[I]

vavg(xxx
BN
I ), (63)

NBN(ρ̂) =
1

|I|

∑

I∈[I]

N(xxxBN
I is Γ-FEAS). (64)

For xxxBNS
I we computed (61)-(63) and NBNS(ρ̂) =

1
|I|

∑
I∈[I]N(xxx

BNS
I is Γ-F̃EAS) instead of (64) and for xxxR

I we

determined only (61)-(63).

Fig. 2 presents average distances of the costs of the com-

puted production plans from the instance optimal nominal

costs for various ρ̂. For robust plans xxxR
I ’s the distances are at

the same level, approximately 0.078, for every ρ̂, because they

do not depend on ρ̂ and are only geared towards minimizing

the worst case cost, whereas for best necessarily (soft) feasible

production plans xxxBN
I ’s (xxxBNS

I ’s) the (flexible) cost constraint

and information about plausibility of cumulative demands

scenarios are additionally taken into account while they are

computed. Thus evident differences in the distances between

xxxR
I ’s and xxxBN

I ’s (xxxBNS
I ’s) have been revealed. Note also

that the (flexible) cost constraint is tight at some λmin’s

for λmin ∈ [0, 1), λmin = 1 − Θmax, (see Fig. 5 for

average Θmax’s).

Fig. 3 and 4 show fractions of scenarios in which production

plans computed violate the cost constraint and average magni-
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Fig. 2. Average distances of costs of production plans from the optimal
instance nominal costs for various ρ̂.

tudes of the cost constraint violation. In both figures the graphs

for best necessarily feasible plans and best necessarily soft

feasible ones overlap, however the numerical results that are

behind slightly differ. Obviously, for ρ̂ = 0 xxxBN
I ’s and xxxBNS

I ’s

violate the cost constraint for all the generated scenarios, since

it has the form of ĈI (ρ = 0). In this case their robustness are

very weak. It is the first extreme case, where the attention is

paid on the costs of plans computed. For ρ̂ > 10% xxxBN
I ’s and

xxxBNS
I ’s are feasible under almost all scenarios and it is the

second extreme case, where there has been a shift of emphasis

from the costs to the robustness of the plans. A compromise

situation can be observed around ρ̂ ≈ 5% in Fig. 3 and 4 and

also in Fig. 2. Thus for ρ̂ ≈ 5% xxxBN
I ’s and xxxBNS

I ’s can be seen

as best choices, since they are compromise ones. Furthermore

their performance is better than the performance of robust

plans with respect to all the criteria (61)-(63) examined,

since information about a possibility distribution of cumulative

demand scenarios, induced by fuzzy cumulative demands,

is exploited while they are build. Accordingly, the main

conclusion can be drawn from the experimental results that

taking the possibilistic information into account can improve

the quality of the obtained production plans.
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Fig. 3. Fractions of scenarios in which production plans violate the cost
constraint for various ρ̂.



0.0 2.5 5.0 7.5 10.0
̂ρ (%)

0.00

0.02

0.04

0.06

0.08

Av
er
ag

ê
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Fig. 4. Average magnitudes of the cost constraint violation for various ρ̂.
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Fig. 5. Average degrees of necessity that plans are Γ-(soft) feasible for
various ρ̂.

VI. CONCLUSIONS

In this paper we dealt with a version of the capacitated

single-item lot sizing problem with backordering under un-

certain cumulative demands modeled by fuzzy intervals pre-

scribed whose membership functions are regarded as possi-

bility distributions for their values. The distributions induce

a possibility distribution in scenario set U that describes

plaussible cumulative demand scenarios and is an upper bound

on the unknown probability one. We applied the possibilistic

approach [17], to the problem under consideration, which

exploits information about a possibility distribution in U
while a robust production plan is constructed and allows

decision makers to control a price of robustness by specifying

the (flexible) cost constraint, unlike the traditional robust

approach [13], [14] that only assumes that scenarios belong

to U . Therefore, the possibilistic approach provides a robust

plan that is a compromise one, because it optimizes against

plausible scenarios and its costs in plausible scenarios are not

too far from the cost an optimal plan in the nominal scenario.

Indeed, we confirmed the above fact experimentally, namely

the experiments performed illustrate, among others, that ap-

plying the possibilistic approach leads to production plans

with lower costs over a set of scenario randomly generated

according to a possibilistic distribution in U . Furthermore, we

proposed polynomial linear programming based methods for

finding such robust production plans, showing in this way

that introducing uncertainty in the cumulative demands in

the possibilistic setting does not make our problem much

computationally harder than its deterministic counterpart.
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