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Abstract—In this contribution, we develop the concept of an
Extended Partitioned Bonferroni Mean (EPBM) operator, which
is efficient enough to aggregate input vectors with a varying
number of components integrated with some dependence pattern.
The global monotonicity for the EPBM is analyzed by defining a
new partition for each arity. Further to illustrate the applicability
and feasibility of the proposed extended aggregation operator,
an example based on medical device selection is demonstrated.
Finally, we present a way to obtain the weights associated with
the corresponding EPBM operator employing the Max-Entropy
technique.

Index Terms—Extended aggregation function, Partitioned Bon-
ferroni mean, Global monotonicity.

I. INTRODUCTION

Aggregation is a process of combining several inputs to
obtain a single representative output value. A wide range of
aggregation operators have been introduced to obtain the rep-
resentative values of the accumulated information. Although,
the conventional aggregation operators usually consider a fixed
number of input arguments. For some applications, it may
be too restrictive as it is often the case that aggregation
of inputs of various sizes has to be considered under the
same framework. Thus we need to adopt the concept of
extended aggregation function where one is efficient enough to
aggregate input vectors with varying numbers of components.
In 1997, Mayor and Calvo [1] first introduced the concept of
Extended aggregation function (EAF). The idea of extended
aggregation operators allows decision-makers to make a com-
parison between two lists of input arguments with different
dimensions. Further, this notion has been put forwarded by
many researchers over different aggregation operators [2]–
[6]. Among them, the extended ordered weighted averaging
(EOWA) operator and extended quasi-linear arithmetic mean
(EQLWM) are widely acclaimed operators which draw the
attention of most of the researchers. But these two operators
are incompetent in capturing any kind of inter-relationship
among the aggregated arguments.
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Bonferroni mean (BM) operator [7] was first introduced
to address the homogenous conjunction among each pair of
input arguments in the aggregation scenario. Further several
variants of the BM operators have been developed where
instead of assuming that each input argument is related to rest
all input arguments, decision-makers emphasized a specific
inter-relationship structure amongst the criteria set, which has
a great importance in the process of aggregation [8], [15].
For instance, in [8] Dutta and Guha proposed the concept of
partitioned Bonferroni mean (PBM) operator, where the set of
criteria are partitioned into several groups and the members
of each partition are interrelated while no inter-relationships
exist among the intra-partitions. In our proposal, we shed
light on some aspects of PBM operator, which has not been
taken into account so far. Till now, the connection of extended
aggregation function with PBM has not yet been attended.
Defining extended-PBM operator was a challenging issue as
for each arity, we need to define a new partition. With this
view, in this article, we present the mathematical interpre-
tation of the extended PBM operator (EPBM). Further the
applicability of the newly proposed operators are explored in
fusing the interconnected data in the context of the multi-
layer hierarchy process, where the input vectors may have a
varying number of components. Finally the applicability of
the proposed extended PBM operator is illustrated in medical
decision making scenario, to elect a medical device like blood
pump associated with multiple evaluation parameters.

Another important aspect associated with the newly develop
extended aggregation operator is the choice of associated
weights. To estimate the weight vector of an aggregation
operator, the Max-Entropy technique proposed by O’Hagan
[24]–[26] is the most popular and elegant one. By investigating
the solution of a mathematical programming problem based
on two fundamental measures: orness measure and dispersion
[9], we can estimate the corresponding weights relating to the
given set of criteria. Since the measure of orness is associated
with the dimension of the input arguments with multiple
integral, thus instead of deriving the analytical formula of the
orness measure for our proposed EPBM operator, we attempt
to numerically estimate the integral value using the Monte
Carlo integration approach [28].

The paper is structured as follows: In section 2, we recall
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the basic concept of extended aggregation function and PBM
operators, which will be used in the rest of the papers. In
section 3, the modeling capability of extended partitioned
Bonferroni mean operator is presented with a systematic
investigation of its behavior and properties. Along with that
an algorithm to find the desirable alternative based on the
proposed operator is developed and justified with an example.
In Section 4, Weighted representation of the proposed operator
with a brief weight determination procedure is presented.
Section 5 concludes with some future work.

II. PRELIMINARIES

Here we begin by recalling the concept of Extended Aggre-
gation Function (EAF) first.

A. Extended aggregation function

Suppose,
⋃
n≥1[0, 1]n represents the set of all ordered lists

that can be constructed from [0, 1]. In order to compare two
ordered list with a different dimension, we first need to present
the binary relations on

⋃
n≥1[0, 1]n as follows:

Definition 1: [1] Suppose, x = (x1, x2, ..., xn1
) and y =

(y1, y2, ..., yn2
) be the two elements from

⋃
n≥1[0, 1]n. Then

the orderings on
⋃
n≥1[0, 1]n can be considered as,

(i) for n1 = n2, x ≤π y if xi ≤ yi for all i = 1, 2, ..., n1.
(ii) for n1 ≤ n2, x ≤α y if xi ≤ yi for all i =

1, 2, ..., n1 and if n1 < n2, then max(x1, x2, ..., xn1
) ≤

min(yn1+1, yn1+2, ..., yn2
).

(iii) for n1 ≥ n2, x ≤β y if xi ≤ yi for all i = 1, 2, ..., n2

and if n1 > n2, then max(xn2+1, xn2+2, ..., xn1
) ≤

min(y1, y2, ..., yn2
).

So, the binary relations ≤s, s ∈ {π, α, β} are orderings on⋃
n≥1[0, 1]n. The first order is the standard partial order on

Cartesian products of [0, 1] related to the considered dimen-
sions. As an extension of this order, two other partial orders
(α- and β-order) were introduced in [1], motivated by compar-
ison of weighted arithmetic means with different aggregated
entering arities.

In this contribution we will consider extended aggregation
function in the sense of [4].

Definition 2: [4] A mapping A :
⋃
n∈N[0, 1]n → [0, 1] is

an extended aggregation function on ([0, 1],≤) if
• it is monotonic with respect to ≤π , ≤α and ≤β , i.e., for

all x = (x1, ..., xn1
), y = (y1, ..., yn2

) ∈
⋃
n≥1[0, 1]n,

A(x) ≤ A(y) whenever x ≤s y, s ∈ {π, α, β}.
• A(x) = x for any x ∈ [0, 1].

Observe that, for any x ∈ [0, 1],

(

n times︷ ︸︸ ︷
x, x, ..., x) ≤β x ≤α (

n times︷ ︸︸ ︷
x, x, ..., x)

and thus A(

n times︷ ︸︸ ︷
x, x, ..., x) ≤ A(x) = x ≤ A(

n times︷ ︸︸ ︷
x, x, ..., x).

Hence a mapping A :
⋃
n≥1[0, 1]n → [0, 1] is an extended

aggregation function if and only if the restriction of A to
[0, 1]n, n ∈ N is an n-ary idempotent aggregation function

[5], [6]. One can interpret it as, A|[0,1]n = A(n) for all n ∈ N.
Thus the extended aggregation function can be introduced as a
family A = (A(n))n∈N of n-ary aggregation function. Thus by
definition 2, we get an extended aggregation function belongs
to the class of idempotent extended aggregation function.

Next, we recall the definition of weighting triangle as-
sociated with the weighted extended aggregation function
that collects the weights of any weighting list Wn =
(w1,n, w2,n, ..., wn,n) where, n ≥ 1.

Definition 3: [4] A weighting triangle is a collection of num-
bers wj,n ∈ [0, 1] , for j = 1, ..., n such that

∑n
j=1 wj,n = 1

for each n > 1. It can be represented as,

1

w1,2 w2,2

w1,3 w2,3 w3,3

w1,4 w2,4 w3,4 w4,4

...

It can be denoted as, ∆.
In the next section, we will recall the concept of conven-

tional PBM operator proposed by Dutta and Guha [8], for a
fixed number of arity n where n ∈ N.

B. Partitioned Bonferroni Mean (PBM) operator

Suppose, a = (a1, a2, ..., an) denotes the degree of satis-
faction of the alternative X associated with the criteria set
C = {C1, C2, . . . , Cn} where, ai ∈ [0, 1] ∀ i = 1, 2, ..., n.
Suppose that on the basis of the inter-relationship pattern, the
criteria set {C1, C2, . . . , Cn} is partitioned into d mutually dis-
joint partition sets {P1, P2, . . . .Pd} such that

⋃d
r=1 Pr = C.

We further assume that criteria of each partition set Pr is
interrelated to each other’s and there is no interrelationship
among attributes of any two partition sets Pr and Pk whenever
r, k ∈ {1, 2, ..., d} and r 6= k. With this information in
background, the partitioned Bonferroni mean (PBM) operator
of the collection of inputs (a1, a2, ..., an) can be defined as
follows:

Definition 4: [8] For p, q ≥ 0 with p+q>0, the partitioned
Bonferroni mean operator is a mapping PBMp,q : [0, 1]n →
[0, 1] such that

PBMp,q(a1, a2, ..., an) =

1

d

( d∑
r=1

(
1

|Pr|
∑
i∈Pr

api

(
1

|Pr| − 1

∑
j 6=i
j∈Pr

aqj

)) 1
p+q
)

(1)

with the convention 0
0 = 1 and |Pr|= cardinality of Pr.

From Eq.(1), the expression 1
|Pr|−1

∑
j 6=i
j∈Pr

aqj indicates the

average satisfaction of the inputs belonging to partition set

Pr except ai. Now, api

(
1

|Pr|−1
∑

j 6=i
j∈Pr

aqj

)
captures the con-

junction of the satisfaction of input ai with the average
satisfaction of the rest of inputs of the partition set Pr. Then



the expression 1
|Pr|

∑
i∈Pr

api

(
1

|Pr|−1
∑

j 6=i
j∈Pr

aqj

)
gives the

satisfaction of the inter-related inputs of the partition set Pr

and by 1
d

∑d
r=1

(
1
|Pr|

∑
i∈Pr

api

(
1

|Pr|−1
∑

j 6=i
j∈Pr

aqj

)) p
p+q

we

obtain the average satisfaction of all the inputs of the d distinct
partition sets.

From the construction of the PBM operator, it is clear that
the aggregated value computed by the PBM depends on the
inter-relationships among the inputs. Apart from that, one can
easily verify that the PBM operator satisfies the idempotency,
monotonicity, and boundedness properties.

In the next section, we extend the concept of the PBM
operator to aggregate input of various sizes.

III. CONSTRUCTION OF EXTENDED-PBM OPERATOR

In this section, we develop the concept of Extended-PBM
Operator where interconnected inputs of various sizes are
aggregated under the same framework. To do so, we first need
to define extended-PBM with possible different arities.

We are starting the process with the similar background
and notations used in the definition of PBM operator (Defi-
nition 4). We now include one new criteria Cn+1 in the old
criteria set C. Hence the old criteria set is updated to C∗ =
{C1, C2, . . . , Cn, Cn+1}. Suppose an+1 is the degree of satis-
faction of the alternative X under the criteria Cn+1, with the
assumption that an+1 ≥ max{a1, a2, ..., an}. Thus with this
assumption we can define the α-order between a and a∗ i.e.,
we can say that a ≤α a∗ where a∗ = (a1, a2, ..., an, an+1)
is the new input set. We primarily need to show that
PBMp,q(a1, a2, ..., an) ≤ PBMp,q(a1, a2, ..., an, an+1).

As we are updating the old criteria set C to C∗, con-
sequently the corresponding new partition structure can be
constructed from old partition structure in this way:
• Either the new criterion Cn+1 is not interrelated with any

of the other criteria {C1, .., Cn}. In that case, the new
partition structure is {P1, P2, ..., Pd, {Cn+1}}.

• Or, Cn+1 is interrelated with all the criteria of
a particular partition set, say for example, Pk and
then the new partition structure is {P1, ..., Pk−1, Pk ∪
{Cn+1}, Pk+1, ..., Pdn}.

Now analyzing both the cases one can get,
Case 1. First considering that, the new criterion Cn+1 is
not interrelated with any of the other criteria {C1, .., Cn}.
Hence, for the input arguments (a1, a2, ..., an, an+1) we
obtain the aggregated values of the alternative X as
follows:

PBMp,q(a1, a2, ..., an, an+1) =(
d

d+ 1

(
1

d

d∑
r=1

(
1

|Pr|
∑
i∈Pr

api

(
1

|Pr| − 1

∑
j 6=i
j∈Pr

aqj

)
) p

p+q
)

+
1

d+ 1

(
an+1

)p) 1
p

(2)

Now, Eq (2) is equivalent to,

PBMp,q(a1, a2, ..., an, an+1) =(
d

d+ 1

(
PBMp,q(a1, a2, ..., an)

)p
+

1

d+ 1

(
an+1

)p) 1
p

Since, PBMp,q(a1, a2, ..., an, an+1) is the convex com-
bination of PBMp,q(a1, a2, ..., an) and an+1 with
an+1 ≥ max{a1, a2, ..., an} and d

d+1 ,
1
d+1 ≥ 0, d

d+1 +
1
d+1 = 1.
Hence,

PBMp,q(a1, a2, ..., an) ≤ PBMp,q(a1, a2, ..., an, an+1).

Case 2. If Cn+1 is interrelated with all the criteria of a
particular partition set, say, Pk then, partition set Pk is
updated to P ∗k = Pk ∪ {Cn+1} while the construction
of the rest of the partition sets will remain same. In this
instance, instead of proving the monotonicity condition
for whole set of input arguments we just need to prove
it for the k-th partition set only. Now as we know each
member of partition set is interrelated to the rest of the
member of that particular partition set and thus form a
homogeneous kind of inter-relationship structure within
that particular partition set.
Suppose x = (x1, x2, ..., xm) be the collection of inputs
associated with the k-th partition set Pk where x ⊂ a.
Denoting an+1 = xm+1, x∗ = (x1, x2, ..., xm, xm+1)
will be the collection of the input arguments of parti-
tion set P ∗k . Then to prove PBMp,q(a1, a2, ..., an) ≤
PBMp,q(a1, a2, ..., an, an+1) we just need to establish,(

1

|Pk|
∑
i∈Pk

xpi

(
1

|Pk| − 1

∑
j 6=i, j∈Pk

xqj

)) 1
p+q

≤

(
1

|P ∗k |
∑
i∈P∗

k

xpi

(
1

|P ∗k | − 1

∑
j 6=i, j∈P∗

k

xqj

)) 1
p+q

Thereby, from the definition of α-order we can write
xm+1 ≥ max{x1, x2, ..., xm}.
Consequently we have,

1

|Pk| − 1

∑
j 6=i, j∈Pk

xqj ≤ x
q
m+1

i.e., ∑
j 6=i, j∈Pk

xqj ≤ (|Pk| − 1)xqm+1

Hence,

(|Pk| − 1)
∑

j 6=i, j∈Pk

xqj +
∑

j 6=i, j∈Pk

xqj ≤

(|Pk| − 1)
∑

j 6=i, j∈Pk

xqj + (|Pk| − 1)xqm+1

Thus,

|Pk|
∑

j 6=i, j∈Pk

xqj ≤ (|Pk| − 1)
∑

j 6=i, j∈P∗
k

xqj



As, |Pk| = |P ∗k | − 1. So,

1

|Pk| − 1

∑
j 6=i, j∈Pk

xqj ≤
1

|P ∗k | − 1

∑
j 6=i, j∈P∗

k

xqj

In the similar manner we can prove,(
1

|Pk|
∑
i∈Pk

xpi

(
1

|Pk| − 1

∑
j 6=i, j∈Pk

xqj

)) 1
p+q

≤

(
1

|P ∗k |
∑
i∈P∗

k

xpi

(
1

|P ∗k | − 1

∑
j 6=i, j∈P∗

k

xqj

)) 1
p+q

Thus combining case 1. and case 2., for any two collec-
tions of input arguments a = (a1, a2, ..., an) and a∗ =
(a1, a2, ..., an, an+1) with varying numbers of components we
can conclude that, if a ≤α a∗ then,

PBMp,q(a1, a2, ..., an) ≤ PBMp,q(a1, a2, ..., an, an+1).

Similarly, the case when ≤β is considered can be discussed.
In general, we can say that a function EPBM is a mapping
EPBM :

⋃
n∈N[0, 1]n → [0, 1] that satisfies the monotonicity

condition with respect to ≤π , ≤α and ≤β i.e, for all x =
(x1, ..., xn1

), y = (y1, ..., yn2
) ∈

⋃
n≥1[0, 1]n, EPBM(x) ≤

EPBM(y) whenever x ≤s y, s ∈ {π, α, β}.

Further one can easily prove the idempotency condition of
EPBM operator for any fixed number of input argument i.e.,

PBMp,q(

n times︷ ︸︸ ︷
x, x, ..., x) = x for all x ∈ [0, 1], n ≥ 1. Follow-

ing these two characterizations, our proposed EPBM operator
belongs to the class of idempotent EAF on

⋃
n≥1[0, 1]n.

Finally, we introduce the formal definition the EPBM
operator as:

Definition 5: An extended aggregation function EPBM :⋃
n≥1[0, 1]n → [0, 1] is called an extended partitioned Bon-

ferroni mean if EPBM(x) = x where x ∈ [0, 1] and there
are p, q ≥ 0, p + q > 0 such that for each n ≥ 2 the
restriction EPBM|[0,1]n is a PBMp,q

(n) operator related to
partition {Pn1 , Pn2 , ..., Pndn} of {1, 2, ..., n} so that for any
n < m and any i, k ∈ {1, 2, ..., dn} with i 6= k, there
exists some j, s element in {1, 2, ..., dm} with j 6= s so that
Pni ⊂ Pmj and Pnk ⊂ Pms .

Now depending on the nature of the criteria set, our pro-
posed operator EPBM relates with some classical EAF. If all
the criteria belong to the same class i.e. d=1, then the EPBM
operator transforms to the extended-BM operator defined in
[6].

Remark 1: More precisely we can depict the idea of the
partition set defined for a fixed n as follows:
for any countable criteria set {C1, C2, ...} we always have a set
of partition {P1, P2, ...} which is possibly infinite in number
but for sure countable, then, for a fixed n, we can consider
finite partition, omitting empty sets, of the form P (n) = {P1∩
N,P2 ∩N, ...}, where N = {1, .., n}.

Now to aggregate the result in the presence of inter-related
data, modeling inter-relationship is very important. Based on

the real-life decision situations, experts first have to construct
the relationship pattern among the attributes and the proposed
operator and its different reduced versions can be used.
In the present study, the relationship pattern between attributes
is given beforehand. However, one can identify the underlying
inter-relationship pattern directly from the data set using the
concept of similarity measure. In this regard few attempts have
been done [14], [17].

A. Handling the hierarchy of criteria with extended PBM
operator

Hierarchical decomposition basically assists decision maker
by providing a ranking of alternatives not only considering
the whole set of criteria but also with respect to any interme-
diate higher-level point of view. Hierarchical system can be
observed as a simple linear chain of interactions where the
output of each level is dependent on another in a sequential
manner. In this segment, we develop a general aggregation
approach which can not only evaluate the ultimate goal, but
also produces partial results by characterizing the situations
with the possible partition.

In a consequence, we propose an efficient algorithm based
on the newly developed EPBM operator (developed in the
section III.), to find the most desirable alternative. To carry
out the computation two types of information are required;
one is the performance of the alternatives against the assessed
set of criteria and the another one is the specific structure of
the interrelationship among the criteria set.

Step 1. Suppose a set of alternatives A = {Ai|i ∈ I}
(where I = {1, 2, ...,m}) are assessed over a criteria set
structured into hierarchical fashion. The set of sub-criteria
at elementary level (i.e., the set of criteria lies at the lower
tier of the multi-layer hierarchical structure) are denoted
by {Cj |j ∈ J} where J = {1, 2, ..., n}. The performance
of the alternative Ai under the elementary criterion Cj is
given by a real entity aij . The evaluations are summarized
in the following decision matrix:

D =

C1 C2 · · · Cn


A1 a11 a12 · · · a1n
A2 a21 a22 · · · a2n
...

...
... · · ·

...
Am am1 am2 · · · amn

.

Step 2. Next we need to provide the specific structure
of the interrelationship among the criteria set to imple-
ment our proposed operator. In the spirit of [16], we
assume that the elementary criteria set follows a partition
structure interrelationship pattern where each class of
the partition comprises of the elementary sub-criteria
belonging to the same criteria of the immediately upper
level.

Step 3. Based on the interrelationship pattern, we utilize
our newly developed EPBM operator to find the alterna-



Fig. 1. Hierarchical structure of the criteria set for evaluation of medical device

tives Ai’s overall performance ηi for all i ∈ {1, 2, ...,m}
as:

ηi = PBMp,q
(n)(ai1, ai2, ..., ain)

Based on the grounds that decision makers can compute
the decision output for different dimensions of criteria
set utilizing EPBM operator, thus one can easily exhibit
the final comprehensive result with respect to the whole
set of criteria or partial result for any set of elementary
sub-criteria.

Step 4. Finally, by comparing the overall performances we
find out the elite one in the sense that higher overall
performance indicates better rank.

In the next example, the applicability and feasibility of the
proposed extended aggregation operator is demonstrated.

Example 3.1: Here we are presenting a sample problem
(Adopted from [30]) where the various aspects of an medical
device can be examined based on a set of criteria, presented
in a hierarchical evaluation structure. To provide a temporary
support to the circulatory system of a patient, a group of
decision support system team has offer three choices for left
ventricular assist devices which might be adapted. These are

1) Pulsatile Catheter Pump/ PUCA Pump (A1)
2) Intra-Aortic Balloon Pump / IABP (A2)
3) Hemopump (A3).
The comparison among the different blood pump machines

has been conducted based on the parameters that are organized
into 4 broad categories C1: Pump Performance, C2: Safety,
C3: Ease of Use, C4: Applicability; which have been further
grouped into a number of subcategories {Cj |j ∈ J} where
J = {1 : 15} as shown in Fig. 1. For ease, we consider
here a 2-layer hierarchical structure of the criteria set. We

have assumed that the elementary criteria set follows a parti-
tion structure interrelationship pattern in the sense that every
subset of elementary sub-criteria set belonging to only one
criterion of the level immediately above follow homogeneous
dependency relationship.

The effectiveness of different ventricular assist devises
Ai(i = 1, 2, 3) estimated by a multi-disciplinary group of
developers, manufacturers and end-users (i.e., cardiologists
and thoracic surgeons) based on sub-criteria Cj where j ∈ J
are collected and summarized in Fig. 2.

With this available estimations, we employ the proposed
decision-making algorithm to sort the medical devices and
finally find out the elite one. For the sake of simplicity,

we have set the parameters associated with EPBM as
p = q = 1. However choice of the parameters p and q
associated with EPBM may have an influence on the final
ranking of the different ventricular assist devises. Now
utilizing EPBM operator, aggregate all the estimated values
aij , (j = 1, 2, ..., 15) of the i-th line and get the overall
decision outcome ηi, (i = 1, 2, 3) corresponding to the
alternative Ai as:

η1 = 0.2378;
η2 = 0.4986;
η3 = 0.2379.
Thus the overall performance for the IABP pump is respec-

tively much higher than the rest two. Thus from the afore-
mentioned numerical analysis, the proposed EPBM operator
produces the ranking of all the alternatives at the comprehen-
sive level (root node of the hierarchy) as A2 > A3 > A1 in
which the alternative A2 ranks the first.

With conventional methodologies it is not possible to com-



ALTERNATIVE Pump Performance Safety Ease Of Use Applicability

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

PUCA Pump 0.50 0.58 0.21 0.19 0.13 0.30 0.19 0.14 0.15 0.10 0.17 0.14 0.20 0.33 0.14

IABP 0.06 0.21 0.03 0.65 0.43 0.58 0.62 0.76 0.81 0.75 0.65 0.73 0.60 0.33 0.78

Hemopump 0.44 0.21 0.76 0.16 0.44 0.12 0.19 0.11 0.04 0.15 0.17 0.14 0.20 0.33 0.08

Fig. 2. Degree of satisfaction of the alternatives under hierarchical criteria set

TABLE I
RANKING OF BLOOD PUMPING DEVICES AT ALL THE LEVEL OF THE

HIERARCHICAL STRUCTURE OF CRITERIA SET

Ranking 1 2 3
Comprehensive A2 A3 A1

Pump Performance A3 A1 A2

Safety A2 A3 A1

Ease Of Use A2 A1 A3

Applicability A2 A1 A3

pute the aggregated evaluation of the inputs of various sizes
under the same framework. The idea of extended aggregation
operators allow us to make a comparison between two lists
of input arguments with different dimensions. The optimal
ranking obtained by utilizing proposed EPBM operator for
each criteria/ sub-criterion of the hierarchy is summarized in
Table I. As from the ranking results of the devices one can
see that A1 amuse the last position, thus it may be possible
that the group of decision support system team wants to
analyze the performances of A1 based on each broad category
distinctly. Employing proposed EPBM operator we acquire
the effectiveness of device A1 based on different criteria as;
the performance of A1 based on the criteria pump performance
is computed as, 0.4151 and for criteria safety is, 0.1994. So,
the committee finds that the efficiency of A1 with respect to
the criteria safety, which is one of the vital criteria to elect
a medical devise, is not up to the mark. Thus they can take
initiative to improve the preference of the alternative A1 with
respect to that particular criteria.

IV. WEIGHTED FORM OF EXTENDED PBM OPERATOR

As all the evaluation criteria are not equally important, thus
to take into account the variability among them we need to
consider the weight vectors associated with the criteria set.
In this section, we introduce the definition of the weighted
extended PBM operator. By assigning weight vectors, one can
rewrite the definition of extended-PBM operator as follows,

Definition 6: An extended aggregation functionWEPBM :⋃
n≥1[0, 1]n → [0, 1] is called an weighted extended parti-

tioned Bonferroni mean ifWEPBM(x) = x where x ∈ [0, 1]
and there are p, q ≥ 0, p+ q > 0 such that for each n ≥ 2 the

restriction WEPBM|[0,1]n is a WPBMp,q
(n) operator related

to partition {Pn1 , Pn2 , ..., Pndn} of {1, 2, ..., n} and defined as

WPBMp,q
(n)(a1, a2, ..., an) =

1

dn

( dn∑
r=1

(
1∑

i∈Pn
r
wi,n∑

i∈Pn
r

wi,na
p
i

(
1∑

j 6=i
j∈Pn

r

wj,n

∑
j 6=i
j∈Pn

r

wj,na
q
j

)) 1
p+q
)

(3)

where for each n ∈ N, there exists a Wn =
(w1,n, w2,n, ..., wn,n) with

∑n
j=1 wj,n = 1, so that for any

n < m and any i, k element in {1, 2, ..., dn}, i 6= k, there are
j, s element in {1, 2, ..., dm} with j 6= s so that Pni ⊂ Pmj
and Pnk ⊂ Pms .

Observe that, the above defined weighted extended-PBM
operator WEPBM as a function on

⋃
n≥1[0, 1]n is idempo-

tent, bounded and monotonic with respect to ≤π .
In the next segment, we try to estimate the weight associ-

ated with the proposed EAF by implementing Max-Entropy
technique.

A. Learning of weights in the aggregation operator

In this section our main focus is to identifying the weights of
criteria set based on the associated subjective knowledge about
the problem and regardless of the empirical data. The decision
maker’s subjective view regarding any aggregation operator is
a necessary and crucial parameter in the decision making sys-
tem which can be expressed by the behavioral property of the
aggregation operator. In this regard, to measure the continuous
transition of an aggregation operator from conjunction to dis-
junction Yager first introduced the orness measure [9] in 1988
associated with ordered weighted averaging (OWA) operator. It
reflects how much an aggregation operator is turned to become
more or-like, i.e. the degree to which an aggregation function
is close to maximum function. Initially, it was introduced for
power mean by Dujmovic [10] and was named as disjunction
degree. For any set of aggregation arguments, the aggregated
value always monotonically increases with the level of orness,
i.e., the aggregated values are consistent with the orness
level. Thus for any parameterized aggregation operator orness
measure is used to control the parameters and to represent



the opinion of a decision-maker. A decision maker with a
pessimistic view may prefer high andness (more and-like,
i.e. close to minimum), whereas a decision-maker with an
optimistic perspective may prefer high orness [14]. In [13],
Salido extends Yager’s orness concept for the OWA operator
to other mean operators. Some intrinsic properties of orness
measure are studied in [11], [12]. However, in literature there
exists a massive range of aggregation operators, which are
essential in both theoretical and application purposes. Of
which researchers developed the analytical formula of orness
measure for some primary aggregation operators [18]–[22].
The orness measure associated with any aggregation operator
can be presented in the following way,

Definition 7: [10], [23] Suppose, a ∈ [0, 1]n denotes
the collection of input arguments. Then, the orness of an
aggregation function A : [0, 1]n → [0, 1] is defined as:

Orness(A) =

∫
[0,1]n

A(a) da−
∫
[0,1]n

Min(a) da∫
[0,1]n

Max(a) da−
∫
[0,1]n

Min(a) da
(4)

It is easy to compute the orness measure of fundamental
aggregation functions like arithmetic mean, geometric mean,
or OWA operator etc. by calculating the simple n-fold integral∫
[0,1]n

A(a) da. Whereas in case of complex aggregation
operators like extended BM operator or our proposed EPBM
operator, determination of the associated n-fold integration
is quite impossible. In this instance, instead of deriving the
analytical formula of the orness measure one can numerically
estimate the integral value using Monte Carlo integration
approach with an estimate of error [29].

In Monte Carlo simulation method, for any complicated
operator the value of the n-fold integral

∫
[0,1]n

A(a)da is
approximated by using the random sampling of the domain
of integrands for evaluating the integrand values. For any n-
dimensional unit hyper cube [0, 1]n, the Monte Carlo estimated
value for the integral

∫
[0,1]n

A(a)da is 1
N

∑N
k=1A(a) where

N is the number of sampled points in [0, 1]n. The detailed can
be found out in [27]–[29].

Thus, with
∫
[0,1]n

Max(a) da = n
n+1 and∫

[0,1]n
Min(a) da = 1

n+1 , for WPBMp,q
(n) operator

eq.(4) can be expressed more specifically as,

Orness(PBMp,q
(n)) =

1
N

∑N
k=1WPBMp,q

(n)(a)− 1
n+1

n
n+1 −

1
n+1

=
n+ 1

n− 1

1

N

N∑
k=1

WPBMp,q
(n)(a)− 1

n− 1
(5)

Now from Equality (5), it is clear that the orness measure of
WPBMp,q

(n) operator depends on four parameters: length of the
input set n, associated parameters p and q, partition structure
of the criteria set and finally, on its associated weight vector.

Next, to measure the amount of information used by the
aggregation operator, Yager introduced a new measure named
as dispersion in [9] as,

disp(W ) = (−
∑
j

wj .ln wj) (6)

This measures a kind of entropy associated with the aggre-
gation operator. This measure of dispersion uses the Shannon
entropy concept in a certain sense that the more disperse the
W the more of the information about the individual criteria is
being used in the aggregation of the aggregate value.

Based on these two measures introduced by Yager, O’Hagan
proposed a maximal entropy technique [24]–[26] in order
to evaluate the unique weight vector for some aggregation
operator by solving the mathematical programming problem
just by specifying a desired value for the single parameter
α which is the decision maker’s view towards the specific
aggregation operator and maximizing the entropy subject to
the constraint.

Given α ∈ (0, 1), for each n ≥ 2 solving the following
mathematical programming problem, we can find the weight
vector associated with our proposed operator WPBMp,q

(n) .

Max (−
n∑
j=1

wj,n. ln wj,n)

Subject to,
n+1
n−1

1
N

∑N
k=1WPBMp,q

(n)(a)− 1
n−1 = α

n∑
j=1

wj,n = 1

wj,n ∈ [0, 1] ∀ j ∈ {1, 2, ..., n}.
α ∈ [0, 1].

(7)

If the values of the set of parameters (p, q) and structure of
the partition set is known to the decision maker, then for each
n ≥ 2, the weight vector associated with our proposed operator
EPBM could be determined solving the above mathematical
programming problem (7). However in literature there exists
several non-linear optimization techniques to solve non-linear
optimization problem. But the aforementioned optimization
problem consist of a complex non-linear constraints due to
the semantic representation of the orness measure of the
proposed operator. With the increasing number of parameters,
the complexity of the problem get increased in proportionate
linear O(n) manner. Future work concerns deeper analysis of
solving this particular mathematical programming problem.

V. CONCLUSION

In this study, we have proposed a new concept of Extended
Partitioned Bonferroni Mean (EPBM) operator, to model
the interconnections among the varying dimensional real data
involved in the MCGDM problem. By developing this new
aggregation operator, we have tried to overcome the drawbacks
of the traditional PBM operator, which usually considers a
fixed number of input arguments. We have investigated the
global monotonicity and idempotence properties of the newly
developed operator. Further, we have implemented this new
concept of Extended Partitioned Bonferroni Mean (EPBM)
operator to handle the hierarchical structure of criteria set for
evaluation of a medical device, where decision-maker is able to
ranking the alternatives not only considering the whole set of
criteria but also with respect to any intermediate higher-level



point of view. In any decision-making process, the results at
each level of the hierarchy is considered as a handy tool. Hence
to analyze the hierarchical model, the aggregation operators
defined for varying number of components can be taken as
a significant constituent. Finally, utilizing the Max-Entropy
technique we have learned the weight vector associated with
our proposed operator.

In future, we hope to apply the EPBM operator to other
fields and study more interesting properties of this operator.
Moreover, we can extend the proposed aggregation operator

to handle real-life problems where uncertainty is involved in
the decision process. Along with that, our another motive is
to establish the condition of weight vectors satisfies by the
weighting triangle ∆ associated with the WEPBM operator.
That is, under which condition the above defined weighted
WEPBM operator is an EAF or, under which condition of
weight vectors it is monotonic with respect to ≤α and ≤β .
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eration of Weighting Triangles Associated with Aggregation Functions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 8, 417–452, (2000).

[5] T. Calvo, G. Mayor, R. Mesiar (eds.): Aggregation operators, New
Trends and Applications, Physica-Verlag, Heidelberg, (2002).
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