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Abstract—This paper presents a system implementing a novel
addition to a fuzzy deductive database: hypothetical queries.
Such queries allow users to dynamically make assumptions on
a given database instance, either by adding or removing data,
without changing the instance. Further, since a fuzzy database
includes fuzzy relations, these relations can also be changed with
assumptions. This ability for dynamic change seamlessly enables
writing “what-if” applications such as decision-support systems.
Here, the new language Fuzzy Hypothetical Datalog is presented,
along with an operational semantics and stratified inference. It
has been implemented in a working system DES readily available
on-line.

I. INTRODUCTION

Making assumptions in foreseeing future possible scenar-
ios is determinant for some applications such as trending,
logistics, planning and scheduling. However, real-world data
is often not as precise as required because in particular may
refer to either unknown facts or approximations. For example,
it is unknown whether a given product under development
will satisfy customer’s needs, and user geolocation with GPS
and WFPS (WiFi Positioning Systems) provides approximate
data for deducing user routes and habits, which can be used
to provide them with specific services and products based
on their behaviour. Developing applications with expressive
queries on data for these kinds of scenarios can be more
productive by using declarative techniques, such as rule-based
systems, which raises the abstraction level and therefore eases
programming. This is arguably one of the best advantages
of logic programming for programming productivity, and it
is gaining a renewed interest in both industry and academia
(most likely, the most prominent system is SWI-Prolog [27]
nowadays, backed by different companies for real world
applications: pathwayslms.com/swipltuts; see also the Strange
Loop 2019 conference thestrangeloop.com). Thus, this work
proposes a logic-based approach for embodying assumptions
in a fuzzy deductive database.

Datalog [1] is the de-facto query language for deduc-
tive databases, which has regained interest in last years for
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commercial applications since efficient solving methods have
been developed such as SAT (propositional SATisfiability
problem) solvers (e.g., [10]). Several commercial systems
with Datalog-like languages are available, such as LogicBlox
[4], [11] (logicblox.com), Semmle [5] (semmle.com), Datomic
(datomic.com) and DLV [24] (dlvsystem.com). As well, free,
open-source systems exist such as pyDatalog for Python (sites.
google.com/site/pydatalog), Datalog for Racket (docs.racket-
lang.org/datalog), and Datalog Educational System (DES) [20]
(des.sourceforge.net). Datalog was conceived as a query lan-
guage for relational databases, more expressive than relational
algebra and calculi because recursive definitions are allowed.
With respect to SQL, it adds neater formulations and allows for
non-linear and mutual recursion, features which are important
to solve graph problems as those occurring in social networks
[9].

Fuzzy Datalog (as can be found as early as [2]) embraces
proposals coming from both deductive databases and fuzzy
logic programming [12], [13], [17], [19], [23], [26]. Among
other proposals, such as [18] (which explicitly include the
computation of the rule approximation degree as a burden to
the programmer), FuzzyDES (FDES for short) [15] extends the
Datalog language in DES with fuzzy relations and predicates.
In this system (which follows Bousi∼Prolog (BPL) [13],
[19]), a Weak SLD (WSLD) resolution algorithm using fuzzy
relations (described as sets of either proximity or similarity
equations) is applied to compute the approximation degree to a
query, replacing the classical Prolog SLD resolution (Selected
linear resolution with Definite clauses) [16]. Additionally, each
rule can be tagged with a weight that modulates its confidence,
being known as a graded rule. This allows for solving database
applications such as recommender systems [15] based on
subjective data. The rest of this paper focuses on the system
FuzzyDES.

Hypothetical Datalog was also proposed time ago [6], al-
lowing inferences in hypothetical contexts where new database
tuples (hypotheses) can be added and removed. Further works
[21], [22] extended this setting by allowing for the assumption
of both new rules and predicates, the notion of restricted
predicates for pruning predicate semantics, strong integrity
constraints, and duplicates for dealing with multiple copies
of data as needed in aggregations. These additions were
motivated by applications such as OLAP (Online Analytical
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Processing), data warehouses, business intelligence and e-
commerce [21]. As well, we focus on Hypothetical Datalog
as implemented in DES.

In this work, results from both Fuzzy Datalog and Hypothet-
ical Datalog are integrated into a deductive database with the
aim of facing applications in which data is not crisp, knowl-
edge can be modulated by approximations degrees, and “what-
if” queries are relevant for making deductions in hypothetical
scenarios. To this end, hypothetical inference is exported to a
fuzzy deductive database, allowing for assumptions of facts,
rules, and proximity equations. Since negative assumptions
are also of interest in applications, the concept of restricted
predicates [22] is adjusted to the fuzzy setting. Similarly,
assumptions on proximity equations are proposed, as well as
their hypothetical tuning. To the best of our knowledge, this
is the first proposal of such an integration of features. As
a practical outcome of this proposal, the system FuzzyDES
implements this integration, and it has been made available as
a working system with both desktop applications for multiple
operating systems (des.sourceforge.net), and an on-line system
for rapid testing (desweb.fdi.ucm.es).

A whole section is devoted to motivate by examples what is
expected from this work (Section II). The next sections recall
concepts and examples in both fuzzy deductive databases
(Section III) and Hypothetical Datalog (Section IV). Then,
their integration is proposed in Section V, followed by a
description of its implementation in Section VI (which resorts
to tabling, a technique based on dynamic programming).
Finally, Section VII concludes and provides points for future
work.

II. ASSUMPTIONS IN A FUZZY DATABASE

As a motivation for the integration of assumptions in a fuzzy
deductive database, let us consider the following example in
the stock market, following Prolog syntax:

stock_up(google) with 0.9.
stock_up(greek_bonds) with 0.2.

shareholder(paul,google).
shareholder(paul,greek_bonds).

keep_stock(Name,Stock) :-
shareholder(Name,Stock), stock_up(Stock).

where google stock is expected to raise with a degree of 0.9
and greek_bonds with 0.2, and paul has shares of both google

and greek_bonds. Then, the query keep_stock(Name,Stock)

would return the stocks that are profitable to keep for each
shareholder:

FDES> keep_stock(N,S)
Info: Processing: answer(N,S) :- Query.
{ answer(paul,google) with 0.9,

answer(paul,greek_bonds) with 0.2 }

Observe that the system prompt is FDES, which is an indi-
cation of the fuzzy system mode (enabled with the command
/system_mode fuzzy). Also, as in other database systems, the
system automatically adds the default relation name answer

for displaying the results. From here on and for the sake of

space, we replace the body of answer by Query, where Query

is the query posed at the top-level. Here, the second line would
be read as answer(N,S) :- keep_stock(N,S).

A. Assuming Graded Rules

Now, let us assume that Paul is willing to buy Amazon
shares with a stock up expectation of 0.7. Determining what
stocks are profitable under this assumption would be expressed
with the hypothetical goal:
FDES> stock_up(amazon) with 0.7 /\

shareholder(paul,amazon) => keep_stock(N,S)
Info: Processing: answer(N,S) :- Query.
{ answer(paul,google) with 0.9,
answer(paul,amazon) with 0.7,
answer(paul,greek_bonds) with 0.2 }

It would be interesting to tune existing information in the
database: On the one hand, by raising approximation degrees
in graded rules. For example, if confidence on Greek bonds is
expected to raise from 0.2 to 0.5:
FDES> stock_up(greek_bonds) with 0.5 =>

keep_stock(N,S)
Info: Processing: answer(N,S) :- Query.
{ answer(paul,google) with 0.9,
answer(paul,greek_bonds) with 0.5 }

On the other hand, tuning can be done by lowering such
approximation degrees. For example, for testing a decreasing
confidence in Google, it would not be appropriate to simply
assume something as stock_up(google) with 0.6, because
there is already a fact (stock_up(google) with 0.9) with a
higher grade in the database, a fact that is not overwritten by
this assumption:
FDES> stock_up(google) with 0.6 => stock_up(google)
Info: Processing: answer :- Query.
{ answer with 0.9 }

The resulting approximation degree is computed as the
maximum of the approximation degrees of the two involved
rules [15]. Thus, a decreasing tuning introduces a new re-
quirement neither present in the fuzzy deductive database nor
in the Hypothetical Datalog system, but in their integration.
Restricting rules are used to this end as follows:
FDES> -stock_up(google) with 0.3 => keep_stock(N,S)
Info: Processing: answer(N,S) :- Query.
{ answer(paul,google) with 0.6,
answer(paul,greek_bonds) with 0.2 }

Assuming a restricted graded rule (in the example, a fact) on
a database (context) equates to decrease the maximum degree
of the positive rule with the degree of the restricted rule in
the current context for building the set of axioms. If more
than one restricting rule exist for the same positive rule, the
maximum grade is chosen to apply the reduction. This will be
formalized in Section V.

B. Assuming Fuzzy Equations

Fuzzy relations are also subject to assumptions that change
their definition by either adding or replacing existing fuzzy
equations. For example, let us consider a fuzzy relation near

that states how “near” are two cities by train (railway paths



are generally not straight, and two cities can be linked by a
much more train distance than it might be expected because
of the orography):

:- fuzzy_relation(near,
[reflexive,symmetric,transitive(product)]).

madrid near ciudad_real = 0.6.
ciudad_real near badajoz = 0.4.
badajoz near lisbon = 0.5.

This fuzzy relation has attached the reflexive, symmetric
and transitive properties, with the product t-norm. Indeed, the
train connection between madrid and badajoz is deceptive,
but a new high-speed railway is under discussion for its
development. If built, reaching lisbon would be faster:

FDES> madrid near lisbon
Info: Processing: answer :- Query.
{ answer with 0.12 }

FDES> madrid near badajoz = 0.4 => madrid near lisbon
Info: Processing: answer :- Query.
{ answer with 0.2 }

The new (explicit) equation madrid near badajoz = 0.4

has been considered as an assumption. Before it was, the link
between madrid and badajoz was still available because near

is transitive, and its t-closure included madrid near badajoz

= 0.24 (it can be tested with /list_t_closure near).
By (automatically) recomputing the t-closure of near in the

presence of the new explicit equation, it includes the implicit
equation madrid near lisbon = 0.2, which is the one used
to compute the answer.

In addition, it is interesting to replace an existing explicit
equation with an assumption. Only one proximity equation
between two given nodes is allowed in a database (adding a
new one for the same nodes overwrites the older one). So,
assuming an existing equation with a different approximation
degree amounts to removing it in the assumption context and
adding the new equation. Out of this context, the original
equation remains. In the same example, considering that a
new high-speed railway has been built between ciudad_real

and badajoz (so that both cities are “closer”):

FDES> ciudad_real near badajoz = 0.6 =>
madrid near lisbon

Info: Processing: answer :- Query.
{ answer with 0.18 }

Note that the assumed equation is only applicable in its
hypothetical context, and it has no sense outside:

FDES> (ciudad_real near badajoz = 0.6
=> madrid near lisbon),
ciudad_real near badajoz = Degree

Info: Processing: answer(Degree) :- Query.
{ answer(0.4) with 0.18 }

The second goal, which allows for accessing the degree
corresponding to the enquired proximity equation, makes clear
that, out of the hypothetical context, this degree is not altered
(Degree is bound to 0.4).

Finally, note that removing an existing equation is equiva-
lent to asserting (or assuming) another one between the same
two elements with approximation degree 0.

III. FUZZY DEDUCTIVE DATABASES

Following [15], a fuzzy deductive database is composed of
a set of (binary) fuzzy relations, a set of graded facts (the
extensional database) and a set of graded rules (the intensional
database).

A binary fuzzy relation R on a universal domain of dis-
course U defines the mapping U × U −→ [0, 1], which may
have attached several properties, namely: reflexive (R(x, x) =
1), symmetric (R(x, y) = R(y, x)), and transitive (R(x, z) ≥
R(x, y)4R(y, z), where 4 is an arbitrary t-norm). R is a
proximity relation if it is both reflexive and symmetric (e.g.,
useful for expressing closeness) R is said to be a similarity
relation if, in addition, it is transitive (e.g., useful for express-
ing likeness). Symbols in U include both data terms (symbolic
constants) and predicate symbols as disjoint signatures which
cannot be related between them by R. A fuzzy relation is
specified both extensionally, with fuzzy equations of the form
R(x, y) = α (where α is the approximation degree between
x and y), and intensionally, with the aforementioned prop-
erties. Each fuzzy program has attached a default similarity
relation ∼ as an infix operator, which is used along WSLD
to unify data, on the one hand, and predicate symbols, on
the other hand. Thus, this default fuzzy relation is extended
to atomic formulas as: R(p(t1, . . . , tn), q(s1, . . . , sn)) =
R(p, q)4R(t1, s1)4 · · ·4R(tn, sn), where p and q are n−ary
predicate symbols, and ti, si are either constants or variables.
Following Prolog syntax, variables start with uppercase, while
constants and predicate symbols start with lowercase. For ex-
ample, given the proximity equations tall/1 ∼ medium/1 =
0.4 and ann ∼ anne = 0.7, and the t-norm minimum (i.e.,
Gödel), then tall(ann) ∼ medium(anne) = 0.4.

A weak unifier between expressions E1 and E2 is defined
by E1θ ∼ E2θ, which must be greater than or equal to
a given approximation degree threshold λ ∈ [0, 1] (known
as λ-cut) specified for each program. The notion of weak
most general unifier θ between two expressions, denoted by
wmguλR(E1, E2), is accordingly defined as the substitution such
that there is no a more general weak unifier between E1
and E2. As well, a weak unification algorithm is provided
with the definition of a transition system on ∼ (see [15] for
details). For the same example equations above, tall(ann) ∼
medium(X) = 0.4, with θ = {X/ann} (i.e., X is bound to
ann).

A fuzzy program is a fuzzy theory defined with the mapping
F : Π −→ (0, 1],1 where Π is the set of possible logic rules.
In practice, a program can be seen as a set of graded logic
rules. A graded logic rule takes the form 〈A← Q;α〉, where
A (known as head) is an atomic formula or atom (i.e., an n-ary
predicate, n ≥ 0, applied to n terms),2 Q ≡ Q1 ∧ . . . ∧Qn is
a conjunctive body composed of Qi atoms, and α is the rule
approximation degree (grade) applied by F to the logic rule.
A fact is a graded logic rule with a true consequent, and it

1Note that 0 does not belong to this interval as it would mean that a rule
has no support: it would be equivalent to omit the rule from the program.

2The case n = 0 corresponds to a propositional formula.



is simplified as 〈A;α〉. A safe database requires ground facts
and safe rules [15], [25]. An operational semantics for WSLD
resolution has been defined for finding answers to queries
[15]. In particular, the following inference rule represents a
transition step ⇒WSLD for a conjunctive goal, where an atomic
conjunctor A′ is replaced by the body of a rule whose head
weakly unifies with A′:

〈(← A′ ∧Q′), θ, α〉 ⇒WSLD 〈← (Q ∧Q′)σ, θσ, δ4β4α〉

if there exits a rule 〈(A ← Q); δ〉 in the program, δ ≥ λ,
σ = wmguλR(A,A′) 6= fail, the unification degree β =
R(Aσ,A′σ) ≥ λ, and (δ4β4α) ≥ λ (a transition step can
be applied if the computed approximation degree surpasses
the threshold λ).

Example 1: Let us consider the proximity equations rent/2 ∼
lease/2 = 0.6 between predicates (the arity N is added as /N
after each predicate symbol name), so much ∼ very much = 0.5
between constants, the program Π

{〈(likes(john, porsche, so much)); 1.0〉,
〈(rent(P,C)← likes(P,C, very much)); 1.0〉,
〈(borrow(P,C)← lease(P,C)); 0.7〉},

and the query (← borrow(P,C)). Then, the following se-
quence of transition steps can be found: 〈(← borrow(P,C)),
∅, 1.0〉 ⇒WSLD 〈(← lease(P,C)), ∅, 0.7〉 ⇒WSLD 〈(← likes(P,
C)), ∅, 0.6〉 ⇒WSLD 〈�, {P/john,C/porsche}, 0.5〉. Observe that
lease(P,C) ∼ rent(P,C) = 0.7, rent(P,C) ∼ lease(P,C) =
0.6, and so much ∼ very much = 0.5 and successive t-norm
compositions become 1.040.740.640.5 = 0.5. The system pro-
ceeds as follows:

FDES> borrow(Person,Car).
Info: Processing:
answer(Person,Car) :- borrow(Person,Car).

{ answer(john,porsche,0.5) }

�

IV. HYPOTHETICAL DATALOG

Hypothetical Datalog allows for making two types of as-
sumptions: positive knowledge for adding data, and negative
knowledge for removing data when trying to prove a goal. The
notion of embedded implication [7] is introduced to this end
in order to represent hypothetical implications in rule bodies,
as in A ← (C ⇒ B): “Intuitively, in the formula A ← B,
the atom B is ‘executed’ in order to prove A, while in the
formula C ⇒ B, the atom C is ‘assumed’ to be true in order
to prove B.” So, C is assumed to be true in the context of
any derivation starting at the goal B. Following [21], which
builds on [7], the syntax of the language is extended with this
kind of hypothetical goals, in particular with:

φ ::= A | R1 ∧ . . . ∧Rm ⇒ φ

where A is an atom, φ is a goal, and each Ri is a rule.
An inference system for Hypothetical Datalog (defined by a

relation ⇒DL) introduces the notion of contexts in derivations,
and the following rule is included in the inference system as
part of its operational semantics:

∆ ∪ {R1, . . . , Rn} ` φ
∆ ` R1 ∧ . . . ∧Rn ⇒ φ

where φ is a goal, and ∆ is a database. This inference rule
means that if the inference expression above the line can be
inferred, then the one below the line can be inferred too.

Intuitively, proving the embedded implication is equivalent
to proving the consequent where the database has been ex-
tended which each one of the rules in the antecedent. An
extended database is known as a context, which is only used in
the inferencing process of the goal φ. This process considers,
in particular, the following inference rule, which takes a
matching rule to infer a goal: For any rule A← φ1 ∧ . . .∧φn
in ∆, where str(∆, pred(A)) is the stratum (as explained
next) corresponding to the predicate for A, and for any ground
substitution θ:

∆ ` φiθ for each i
∆ ` Aθ

where we omit duplicates with respect to [21] and therefore
elide both rule and axiom source identifiers.

Stratification [25] is a well-known syntactical constraint to
classify valid programs in terms of predicate dependencies,
where each predicate is mapped to a stratum. In turn, it is based
on the notion of predicate dependency graph, which includes
a positive arc from each goal predicate in a body to the head
predicate. If the goal is negated, the arc is negative. A stratum
contains predicates which are not related by a negative arc in
the transitive closure of the dependency relation. Stratification
is adopted in [22] to enable negative knowledge in the form of
restricting axioms (which is an axiom with a restricting atom
denoted as −A), and dependencies are defined as:3 A predicate
P positively (negatively, respectively) depends on Q if P is
the predicate symbol of A in a rule (both a program rule and a
rule in a premise) A← G1 ∧ . . .∧Gn, and Q occurs either in
some positive (restricting, respectively) atom Gi, or in G in an
embedded implication Gj ≡ R1 ∧ . . . ∧Rn ⇒ G. A query Q
to a database ∆ can be specified as answer(X)← Q, where
X are the relevant variables for the query.

Example 2: Let us consider the database ∆0 composed of
the Hypothetical Datalog rules {own(john, umbrella), own(ann,
umbrella), (walk(Person) ← raining, own(Person, umbre-
lla))}, and the query Q ≡ −own(john, umbrella) ∧ raining
=> walk(Person).4 Since own/2 becomes a restricted predicate
in ∆0 ∪ {(answer(Person) ← Q)}, a possible stratification
is {own/2 : 1, raining/0 : 1, walk/1 : 2, answer/1 : 2},
where predicates are characterized by their arity, and the map-
ping from a predicate to its stratum is denoted by the colon.
Each stratum has associated an inference system, and the uni-
fied stratified semantics proceeds by strata, from lower to up-
per [21], in order to infer the meaning of databases and goals.
Thus, for stratum 1, the following expressions can be inferred:
{∆0 ` own(john, umbrella),∆0 ` own(ann, umbrella),∆1 `
−own(john, umbrella),∆1 ` raining}. And for stratum 2:
{∆1 ` walk(ann),∆1 ` answer(ann)}. Adapting the definition
of the meaning of a goal [21], [22]: solve(φ,A) = {∆ ` ψ ∈
A such that φθ = ψ}, where φ is a goal, A is a set of inference
expressions, solve returns a bag, and θ is a substitution (most general
unifier). The input set of axioms A to solve is built as the positive

3This definition has been simplified since no metapredicates such as
negation is considered in this work.

4Assuming that john lost his umbrella and it is raining.



information of a set of inference expressions (i.e., axioms ∆ ` A
such that there is no ∆ ` −A) plus the restricting axioms with no
counterpart positive axioms (i.e., axioms ∆ ` −A such that there
is no ∆ ` A).5 Thus, the meaning of the query answer(P ) for
∆1 is {∆1 ` answer(ann)} with substitution {P/ann} for its
single axiom. Observe that a goal such as own(P,O) with respect
to ∆0 gives the meaning {∆0 ` own(john, umbrella),∆0 `
own(ann, umbrella)} because the restricting atom for john is not
in ∆0. The system, for the first goal, returns:
DES> -own(john,umbrella) /\ raining => walk(P)
Info: Processing: answer(P) :- Query
{ answer(ann) }

�

V. INTEGRATION

This section integrates the two existing different approaches
recalled in sections III and IV, including the new features
given in Section II. While the first approach considers infer-
ence sequences, the second one considers inference expres-
sions. In the following, the first approach is followed to include
augmenting databases along inference steps.

The syntax of the Fuzzy Hypothetical Datalog language
(FHDL for short) resulting from the integration is the same
as the language in Section III but augmented with goals of
the form R1 ∧ . . . ∧ Rn ⇒ A, where Ri are rules and A is
an atom.6 Also, rules and atoms in a database can be either
positive or restricting in the sense of Section IV.

Because assumptions can be on both rules and fuzzy
equations, the notions of both programs and fuzzy relations
as defined in Section III become dynamic as opposed to
static. Thus, from here on, a database is a collection of
both predicates and fuzzy relations which can change along
inferencing.

A. Extending FuzzyDES Operational Semantics

From Section IV, adding the embedded implication to
a logic language requires to explicitly handle the current
database. In addition, from previous Section II, another re-
quirement is the explicit handling of fuzzy relations. So, the
operational semantics [15] recalled in Section III is extended
to include a changing database ∆. In addition to rules, ∆ is
extended with fuzzy equations defining both default and user-
defined fuzzy relations. A transition system operating on states
is defined next.

Let ∆ be a FuzzyDES database, including a default similar-
ity relation R (and possibly others) on the first order alphabet
induced by the rules in ∆, where each fuzzy relation has
a corresponding fixed t-norm, and let λ be a λ-cut. Let E
be a set of tuples 〈G,∆, θ, α〉 (goal, database, substitution,
approximation degree), each one representing a state of a
computation. Let⇒HWSLD⊆ (E×E) be the transition relation as
defined next in Definition 5.1. A successful inference sequence
for a given state is a sequence ending in the state 〈�,∆′, θ′, α′〉
for a given database ∆ ⊆ ∆′ and some substitution θ′ and
approximation degree α′, where � represents an empty clause.

5This is an adaptation from [22] eliding the definition of closed world as-
sumption for a set of inference expressions because negation is not considered.

6This is not a restriction with respect to the syntax in Section IV since
R1 ∧ . . . ∧ Rn ⇒ φ (with φ a conjunctive goal) is operationally equivalent
to R1 ∧ . . . ∧Rn ⇒ A and A← φ.

The symbol ⊆, when applied to databases ∆1 and ∆2, stands
for a classical subset of graded rules, while for fuzzy equations
means that an equation R(a, b) = α in ∆1 is contained in ∆2

whenever R(a, b) = α′ is in ∆2, for any α′ ∈ [0, 1].
Definition 5.1: Hypothetical Weak SLD (HWSLD) resolu-

tion is defined as a transition system 〈E,⇒HWSLD〉, and whose
transition relation ⇒HWSLD is the smallest relation satisfying:

Rule 1: if R ≡ 〈(A ← Q); δ〉 << ∆, σ = wmguλR(A,A′) 6=
fail, λ ≤ β = R(Aσ,A′σ), R is as defined in ∆, and
(δ4β4α) ≥ λ:
〈(←A′∧Q′),∆, θ, α〉 ⇒HWSLD 〈(←Q∧Q′)σ,∆, θσ, δ4β4α〉

Rule 2: if there exists a successful inference sequence 〈(←
A′),∆ ]∆A′ , θ, α〉 ∗⇒HWSLD 〈�,∆′, σ, α′〉:
〈(←(∆A′⇒A′)∧Q),∆, θ, α〉 ⇒HWSLD 〈(←Q)σ,∆, θσ, α4α′〉
where A is either a positive or restricting atom, Q and Q′

are conjunctions of atoms, R << ∆ represents that R is a
standardized apart rule, and ∆1 ] ∆2 joins two databases
as follows: it returns the union of rules in ∆i and all fuzzy
equations in ∆i but each R(a, b) = α ∈ ∆1 such that there
exists R(a, b) = α′ ∈ ∆2 (i.e., R(a, b) = α is replaced by
R(a, b) = α′). An antecedent d1 ∧ · · · ∧ dn, with di being
either a graded rule or fuzzy equation is written as a database
∆ = ]1≤i≤n{di} . Without loss of generality, the consequent
in the embedded implication is considered to be a single atom.

Example 3: Let us consider the t-norm Gödel and the database
∆:

{R(a, b) = 0.6,
〈r(X)← {R(p/1, q/1) = 0.7, 〈p(a); 0.8〉} ⇒ q(X); 0.9〉}

Then, a possible successful inference sequence is:
〈← r(b),∆, ∅, 1.0〉 ⇒HWSLD 〈{R(p/1, q/1) = 0.7, 〈p(a); 0.8〉} ⇒
q(b),∆, {X/b}, 1.040.9〉 ⇒HWSLD 〈�,∆ ] {R(p/1, q/1) =

0.7, 〈p(a); 0.8〉}, {X/b}, 0.6〉.
where the last step with Rule 2 of Definition 5.1 can be performed
because there exits the derivation: 〈← q(b),∆ ] {R(p/1, q/1) =

0.7, 〈p(a); 0.8〉}, {X/b}, 0.9〉 ⇒HWSLD 〈�,∆ ] {R(p/1, q/1) =

0.7, 〈p(a); 0.8〉}, {X/b}, 0.94(0.740.6)40.8〉 �

B. Stratified Inference

As introduced in Section IV, stratification enables to give a
safe meaning to restricted predicates. Programs in [15] have
a fixed stratification for expanded programs, and all of the
predicates belong to a single stratum. By adding restricted
predicates as required in this current setting (cf. Section
II-A), stratification becomes a need, and several strata are
expected for a given database. Moreover, since assumptions
are involved, the stratification is no longer static because
hypotheses in general add new rules and fuzzy equations,
therefore modifying the dependency graph and stratification.
Thus, we consider the stratification as stated in Section IV, and
a stratified inference for fuzzy hypothetical Datalog databases
is developed. In what follows, safe databases [15], [25] are
required, which in particular help to ensure that answers are
closed (ground).

Any inference sequence in a database ∆ for a stratum s
includes predicates pi with str(∆, pi) ≤ s because, otherwise,



the database would not be stratifiable (any arc p→ q implies
str(∆, p) ≥ str(∆, q)). Next definitions are needed to provide
meaning to a database.

Definition 5.2: Given a database ∆ and stratum s, its
negative meaning J∆sK− is the set of graded ground restricting
facts 〈A;α〉 such that str(∆, pred(A)) = s and there exists a
successful inference sequence

〈← A,∆, ∅, 1〉 ∗⇒HWSLD 〈�,∆, θ, α〉

for which there is no other sequence ending in 〈�,∆, θ′, α′〉
such that α′ > α.

Definition 5.3: Given a database ∆ and stratum s, its
positive meaning J∆sK+ is the set of graded ground positive
atoms 〈A;α〉 such that str(∆, pred(A)) = s and there exists
a successful inference sequence

〈← A,∆, ∅, 1〉 ∗⇒HWSLD 〈�,∆, θ, β〉

for which, first, there is no other sequence ending in
〈�,∆, θ′, β′〉 such that β′ > β and, second, if 〈−A; γ〉 ∈
J∆sK−, then α = β − γ, and α = β otherwise.

Example 4: Let us consider the t-norm Gödel
and the propositional database ∆ = {R(p/0, q/0) =

0.9, 〈p; 0.3〉, 〈−p; 0.2〉, 〈q; 0.4〉}. Then, there exist the following
successful inference sequences:
〈← −p,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.2〉 α = 0.2

〈← −q,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.940.2〉 α = 0.2

〈← p,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.3〉 α = 0.3

〈← p,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.940.4〉 α = 0.4

〈← q,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.940.3〉 α = 0.3

〈← q,∆, ∅, 1.0〉 ⇒HWSLD 〈�,∆, ∅, 1.040.4〉 α = 0.4

Since both predicates belong to the same stratum (s = 1):
J∆1K− = {〈−p; 0.2〉, 〈−q; 0.2〉}
J∆1K+ = {〈p; 0.2〉, 〈q; 0.2〉} �

Definition 5.4: The meaning of a database ∆ at stratum s
is written as: J∆sK = J∆sK+ ∪ J∆sK−.

Definition 5.5: The unified stratified semantics of a database
∆ with s strata is inductively defined as:
• ∆0 = ∅
• ∆i = J∆iK ∪∆i−1, where 1 ≤ i ≤ s
Thus, the construction of meanings at a given stratum re-

quires that meanings at lower strata to be already constructed.
Example 5: Let us consider the t-norm Gödel and the propo-

sitional database ∆ = {〈q; 0.5〉, 〈r ← {〈p; 0.4〉} ⇒ p ∧ q; 0.6〉}.
Predicates p/0 and q/0 are assigned to stratum 1, and r/0 to stratum
2. So: ∆1 = {〈p; 0.4〉, 〈q; 0.5〉} and ∆2 = {〈r; 0.4〉} ∪∆1 �

Therefore, this procedure makes explicit all the facts which
can be deduced from the (non-fact) rules of ∆.

C. From FHDL to Hypothetical Datalog

Analogously to FuzzyDES, which translates programs to
Datalog, an FHDL program is translated into a non-fuzzy
logic language; in this case, into the Hypothetical Datalog
version as found in [15]. This benefits from a target language
and system that enjoy several advantages (program analy-
sis, automatic transformations, tabled system. . . ), therefore
eliding the implementation of a new system. To this end, a

translation is defined by extending definitions 4.2 and 4.3 in
[15] with restricting rules and facts. The overall idea behind
the translation is to make explicit the handling of the weak
unification by linearising heads and explicitly computing the
approximation degree in the body of each rule and fact. In
this work, rules can be either positive or restricting rules. So,
Definition 4.2 in [15] is extended as follows:7 Given a graded
rule 〈[−]p(tn) ← Q; δ〉, for each R(p, q) = α ∈ ∆ with
α ≥ λ, generate the clause:

[−]q(xn)← (δ4α) ∧ x1 ≈ t1 ∧ · · · ∧ xn ≈ tn ∧Q

where ≈ is the weak unification operator, ti are terms, xi
are variables, and δ4α abbreviates the goal δ4α ≥ λ. This
transformation is known as BPL expansion. Definition 4.3 in
[15] is adapted in a similar way: First, there is only one
transformed rule for each original rule in a predicate, and,
if there is a fuzzy relation linking to another predicate, only
one more rule is added, as follows:
• For each 〈[−]p(tn)← Q; δ〉, generate the clause:

[−]p(xn)← δ ∧ x1 ≈ t1 ∧ · · · ∧ xn ≈ tn ∧Q

• For each R(p, q) = α ∈ ∆ with q 6≡ p and α ≥ λ,
generate the clause:

[−]q(xn)← α ∧ [−]p(xn)

This transformation is known as FDES expansion. In general,
FDES expansion requires less clauses in the transformation
than BPL expansion (because several clauses are expected to
define a single predicate), therefore saving both space and
time along solving. However, when considering the integrated
setting which includes restricted predicates, the advantage
of the second transformation is not always applicable: some
programs become non-stratifiable and therefore rejected.

Example 6: Let us consider the database ∆ in Example 4.
With the first transformation, ∆ is transformed into: {(−p ←
0.241.0), (−q ← 0.240.9)(p ← 0.440.9)(p ← 0.341.0)(q ←
0.441.0)(q ← 0.3)}, its dependency graph is empty and the stratifi-
cation becomes {p/0 : 1, q/0 : 1}. In turn, the second transformation
yields: {(−p ← 0.2), (p ← 0.3), (p ← 0.9 ∧ q), (q ← 0.4), (q ←
0.9∧p)}, where its dependency graph is {p/0← q/0, q/0

¬← p/0},
becoming a non-stratifiable database because of a cycle in the graph
including a negative dependency. �

D. Extending Operational Semantics for Expanded Programs

As in Section V-A, the current database ∆ must be explicitly
included in the state E with the same four components
〈G,∆, θ, α〉 (goal, database, substitution, approximation de-
gree) and managed accordingly. In addition, a new inference
rule to tackle assumptions is added at the end of the following
definition.

Definition 5.6: The operational semantics for expanded
programs is a transition system 〈E,⇒Ex〉 and whose transition
relation ⇒Ex is the smallest relation satisfying:

7on denotes the sequence of syntactic objects o1, . . . , on (e.g., p(tn)
denotes p(t1, . . . , tn)).



Rule 1: if β ∈ (0, 1], and (β4α) ≥ λ:

〈(← β ∧Q′),∆, θ, α〉 ⇒Ex 〈(← Q′),∆, θ, β4α〉

Rule 2: if σ = wmguλR(A,B) 6= fail, λ ≤ β = R(Aσ,Bσ),
R is as defined in ∆, and (β4α) ≥ λ:

〈(← A ≈ B ∧Q′),∆, θ, α〉 ⇒Ex 〈(← Q′σ),∆, θσ, β4α〉

Rule 3: if ([−]p(xn)← β∧x1 ≈ t1∧· · ·∧xn ≈ tn∧Q) << ∆:

〈(← [−]p(sn) ∧Q′),∆, θ, α〉 ⇒Ex

〈(←β∧s1≈ t1∧ · · · ∧sn≈ tn∧Q∧Q′),∆, θ, α〉

Rule 4: if there exists a successful inference sequence

〈(← [−]p(sn)),∆ ]∆p, ∅, 1〉
∗⇒Ex 〈�,∆′, σ, β〉

with ∆ ]∆p ⊆ ∆′:

〈(←∆p⇒[−]p(sn)∧Q′),∆,θ,α〉 ⇒Ex 〈(← Q′σ),∆,θσ,β4α〉

In this system, transition steps are applied to underlined
fragments.

E. Stratified Inference for Expanded Programs

Analogously to Section V-B, the next definitions provide
the notion of negative and positive meaning for a database of
expanded programs which, together, provide the meaning to a
database at a given stratum (cf. Definition 5.4).

Definition 5.7: Given a database ∆ and stratum s, its
negative meaning J∆sK− is the set of graded ground re-
stricting facts 〈−p(t1, . . . , tn));α〉 such that str(∆, p/n) =
s and there exists a successful inference sequence 〈(←
−p(t1, . . . , tn)),∆, ∅, 1〉 ∗⇒Ex 〈�,∆, θ, α〉 for which there is
no other sequence ending in 〈�,∆, θ′, α′〉 such that α′ > α.

Definition 5.8: Given a database ∆ and stratum s, its posi-
tive meaning J∆sK+ is the set of graded ground positive facts
〈p(t1, . . . , tn);α〉 such that str(∆, p/n) = s and there exists a
successful inference sequence 〈← p(t1, . . . , tn),∆, ∅, 1〉 ∗⇒Ex

〈�,∆, θ, β〉 for which, first, there is no other sequence
ending in 〈�,∆, θ′, β′〉 such that β′ > β and, second, if
〈−p(t1, . . . , tn); γ〉 ∈ J∆sK−, then α = β − γ, and α = β
otherwise.

The construction of the complete meaning of a database ∆
follows the same procedure as in Definition 5.5 for a unified
stratified semantics.

VI. IMPLEMENTATION

The Datalog Educational System (DES) [20] (des.
sourceforge.net) is an open-source, Prolog implementation of
a deductive database system that, in particular, includes a
version of Hypothetical Datalog [21], [22] as recalled in this
paper (Section IV), and a system mode for Fuzzy Datalog [15]
(Section III) which were incompatible until the development
of the current proposal. With respect to [15], this system has
been improved to include the expansion of programs in order
to include restricted predicates. In addition, since databases are
dynamic (in the sense that they can grow because of assump-
tions), both the expansions and 4-closures are recomputed
when needed for each new database context. This also includes

the recomputation of the predicate dependency graph and the
stratification. As a collateral effect, this dynamic nature leads
to a fully interactive fuzzy system, in which graded rules and
fuzzy equations can be added and removed from the database,
something that was not possible in the version reported in [15],
which only allowed for monotonic database changes.

A new on-line system has been developed including the
proposal in this paper, which can be accessed at desweb.fdi.
ucm.es. Examples in this paper and other databases can be
tested there (users with no credentials can log in with a Guest
account; recall to use the command /system_mode fuzzy to
enable fuzzy reasoning).

Next, some distinguished predicates implementing the pro-
posal in this paper are briefly described, and correspond to
the published version 6.3 of DES (complete sources can be
downloaded from its site).

Rule expansion as described in Section V-C is implemented
with the predicate for a clause Clause of a predicate p:
expand_rule(+SimDegrees, +Clause, +NVs, +Cin, -Cout,

-RuleDegreeVars, -ExpClauses, +IArgs, -IArgsList)

where SimDegrees are the approximation degrees αi for each
predicate q such that there exists R(p, q) = αi; NVs are the
mapping of names to variables (useful for error reporting
and listings); Cin (Cout, respectively) is the input (output,
respectively) constraint store for implementing an efficient
weak unification procedure [14]; RuleDegreeVars are the
variables representing the approximation degrees of the
different goals in the clause; and ExpClauses are the clauses
resulting from the expansion, which depends on the selected
expansion (either BPL or FDES as explained in Section V-C).

This predicate is called whenever a new clause is
asserted (via either compiling a program for the first
time, or interactively asserting a clause, or asserting a
clause when solving an embedded implication). Since
fuzzy equations can be retracted and asserted, the predicate
update_fuzzy_expansion(+AssertRetract,+Equation,+CId)

is responsible for updating the database expansion due to
either adding or retracting Equation (in general, a database
contains the default fuzzy relation R and others) for a given
database context CId (a positive integer). In turn, the predicate
update_fuzzy_relation(+Rel,+CId) updates the 4-closure
of the relation Rel corresponding to the context CId.

Preprocessing in the compilation stage has changed to in-
clude the database context identifier because clause expansion
needs it (cf. predicate expand_rule/9).

The predicate for computing the weak unification of two
terms Term1 and Term2 [14] has been extended to include
the current database context CId as follows: unify(+Term1,

+Term2, +CId, +Cin, -Cout, -Degree), which in particu-
lar calls to the new version for retrieving the uni-
fication degree: unification_degree(+Atomic1, +Atomic2,

+CId, ?Block, -Degree). One of the clauses of this predi-
cate includes the call ’~’(Atomic1, Atomic2, CId, Block,

Degree) to the predicate ’~’/5, which explicitly represents the
default fuzzy relationR. Each fact in this predicate is extended
with the context identifier CId for each different database along



assumptions. This predicate is generated with gen_rb(+CId),
which in turn is called each time R changes in the database
context CId.

The predicate compute_restricted_meaning(+Q,+CId) im-
plements Definition 5.4 by traversing the extension table,
looking for the maximum positive and restricting entries
(Definitions 5.7 and 5.8).

The function memo (cf. [15]) implements a form of tabling
(following [8]) by adding to the extension table entries of
the form et(Hash, Atom, Source, CId, It), where Hash is a
hash value for quick index-based lookup, Atom is an inferred
fact A together with its approximation degree α in its last argu-
ment (corresponding to 〈A;α〉), Source is the fact source (for
duplicates), CId is the database context identifier, and It is the
fixpoint iteration in which the fact has been inferred (not used
yet but ready for an implementation of differential optimiza-
tion [3]). This function is called in a fixpoint computation for
each strata (predicate solve_star(+Query,+Stratum,+CId))
whenever a new fact is inferred. Each stratum is com-
puted from the lower to the upper with the predicate
solve_stratified(+Query,+CId,-Undefined) (which can re-
turn undefined tuples for non-stratifiable databases). This
predicate implements a top-down, bottom-up construction of
the fixpoint, focusing on a user query instead of solving the
meaning of the whole database, therefore improving efficiency
with respect to a simple bottom-up approach.

VII. CONCLUSION

A novel proposal for a fuzzy hypothetical deductive
database has been described. To the best of authors’ knowl-
edge, there is neither a similar approach in the existing
literature nor a system. Syntax, operational semantics and
stratified inference have been developed for committing to a
series of requirements in decision-support applications with
vague knowledge. As a strong result of this research, a working
system implementing this scenario has been made available,
which can be tested, downloaded, and its sources can be
inspected.

This work can be extended with duplicates, strong con-
straints, negation, data types, and aggregates in the fuzzy
setting, to name a few. Also, compiling can be enhanced by
analysing the program and generate a specific transformation
for each predicate: apply the FDES transformation if it does
not break stratification, and BPL otherwise. With respect to the
system as a whole, it can be improved in a number of ways
including a more efficient parser and the implementation of a
differential optimization [3].
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