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Abstract— An application field of Multi-Robot Systems (MRS) 

is within victim rescue operations. The main challenge faced by 

disaster rescue teams is response time. The chances of finding 

survivors decrease significantly over time and dramatically 

decrease after 48 hours. In this context, the motivation of this work 

is to present an MRS inspired by the concepts of swarm robotics 

to rescue victims in unknown environments. In this case, the 

robots are unaware of the search area boundaries and obstacles, 

knowing the number of victims to be rescued as a stopping 

criterion for the simulations made in Matlab®. Therefore, three 

approaches inheriting the main aspects of fuzzy logic are used 

based on previous works: a fuzzy logic controller (FLC), a 

dynamic fuzzy cognitive map (DFCM) controller, and a DFCM 

inspired by the ant colony optimization metaheuristic (DFCM-

ACO). The proposed task simulates real life disaster rescue 

operations, or even humans lost in unfamiliar environments such 

as forests. The simulations were performed in three environments 

in order to test the overall robustness against unpredictable 

situations, autonomy, explored area and processing time for both 

approaches using a subsumption-based architecture. In general, 

the results suggest that the DFCM-based MRS approaches are 

able to complete the tasks consuming less processing time, with 

robots travelling shorter distances to explore a similar 

environment to the FLC approach and with the DFCM-ACO 

presenting balanced results between the other techniques. Finally, 

future works are outlined. 

Keywords—swarm robotics, multi-robot system, dynamic fuzzy 

cognitive maps, ant colony optimization. 

I. INTRODUCTION 

Autonomous robotics has recently emerged as a recurring 
theme due to its participation in Industry 4.0 concepts. This term 
was created in 2011 and, in short, refers to the fourth industrial 
revolution. It has three basic principles: cyber-physical systems, 
internet of things (IoT), and smart factories [1]. 

In Industry 4.0, industrial machines or active systems are 
characterized by the use of intelligent networked systems in 
order to provide greater flexibility, efficiency and integration 
with the entire production chain. In this way, robots can promote 
data and information sharing and perform specific activities [2]. 

Therefore, these entities may be aligned with mechanical 
functions in logistical collaboration, variable monitoring issues, 
and identification and search for victims of large-scale 
accidents. From the extensive knowledge of the environment, 
with the large amount of information obtained (big data), it is 
possible, through intelligent systems (such as those used in this 
work), to make decisions with greater precision in a 
collaborative way. 

An example of this case occurs in space, where we can 
highlight the semi-autonomous rovers of the Curiosity 
expedition to Mars, active since its launch in 2012. An operator 
controls from Earth the details of each mission (routes and 
scientific experiments to be performed), while that rovers have 
obstacle avoidance capabilities. This is due to the time 
difference between the operator command and its receipt by the 
rovers (response time), which could cause damage to these 
vehicles. In this case, autonomous navigation requires the 
integration of depth measurement with a vision system, through 
stereo vision analysis or other range-determining methods. It 
also requires heuristic behavioral rules for the device to navigate 
in this unknown environment [3]. 

Thus, the use of multi-robot systems (MRS) and their 
subdomains, such as swarm robotics, has gained prominence in 
the mobile robotics landscape. In this type of system, multiple 
robots are employed to perform common tasks in shared 
environments [4]. However, while these robot teams may be 
more effective, they also present new challenges. Robots may 
have nonholonomic kinematics; Information captured by 
sensors may be limited, and external noise and disturbance may 
make it difficult to process available information. Thus, it can 
be said that maintaining various objectives and merging sensory 
information are non-trivial design challenges [5]. 

One of the possible uses of MRS is within victim rescue 
operations, a recurring scenario today. The main challenge 
encountered by disaster rescue teams is response time. Rates of 
finding surviving people and/or animals decrease significantly 
over time and, due to factors such as dehydration and injury, are 
dramatically reduced after 48 hours [6]. Therefore, rescuers 
need to move as quickly as possible, avoiding static and dynamic 
obstacles, and covering the largest area to reach all potential This work was supported by CAPES/BRASIL (process 
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victims to save their lives [7]. An emerging alternative to the use 
of human first responders is emerging in disaster rescue (DR) or 
search and rescue (S&R) robots. 

Tasks of S&R robots are characterized by scenario 
exploration and require the determination of all victims ' 
locations in order to significantly reduce the chances of harming 
rescuers' lives. These restrictions make S&R robots challenging 
tasks for humans, and one possible solution to the disadvantage 
is the use of robot systems, in particular MRS [6]. 

However, due to their relative novelty, S&R robots have not 
been widely adopted. Between 2001 and 2012, robots or MRS 
were used 37 times in meteorological, geological, mining, and 
human disasters, with success in 81% of cases. Since 2012, there 
has been a steady increase in the use of MRS in disasters, with 
their use in approximately 30 cases in six countries, mainly in 
mining and buildings collapses [7]. 

Several papers dealt with MRS exploration and rescue 
scenarios. A collective foraging task was achieved by MRS in 
[8], in which a decision-making mechanism and a fuzzy control 
system were presented to provide robots’ behavior, aiming at a 
trajectory planning, designed to avoid collisions. This behavior 
is inspired by the actions of ants and other social animals in their 
search for food and resources for their nests [4]. Another 
example of foraging behavior is presented in [9], bio-inspired by 
the slime mold aggregation strategy. In this work, the main 
cooperative task consists of garbage finding and disposal in 
desired locations, whereas the sub-tasks include scenario 
exploration, path finding and information propagation. 

The objective of this work is to develop an autonomous MRS 
capable of performing search tasks in simulated environments. 
Robot movement and orientation control will be accomplished 
by three fuzzy logic strategies: a Mamdani fuzzy logic controller 
(FLC), a dynamic fuzzy cognitive map (DFCM) - both from a 
previous work [10] – and a DFCM inspired in the ant colony 
optimization (ACO) metaheuristic (DFCM-ACO), which is 
exploited in this research study. 

The authors expect this work to contribute to the intelligent 
systems area, hence applying the DFCM-ACO to a navigation 
system for semi-unknown environments exploration, victims 
rescue and its robustness verification, test a possible stress (8 
robots) by contacting certain scenarios. The main advantage of 
this approach is that the processes of knowledge acquisition and 
representation are simplified using DFCMs. With the ACO use, 
the authors expect to enhance last paper’s results by means of 
the robots’ paths being more distributed (optimized) in 
comparison with the other approaches. 

The remainder of this work is organized as follows: Section 
II compiles the overview of disaster-rescue and multi-robot 
systems. In Section III, the authors present development of the 
FLC, DFCM, and DFCM-ACO architectures. In Section IV, the 
results of all simulated scenarios are presented and compared to 
the previous work [10]. Finally, Section V concludes this work 
and addresses expected future contributions. 

II. MULTI-ROBOT AND SWARM SYSTEMS 

The research area of multi-robot systems (MRS) 
encompasses the use of a set of robots to perform behaviors that 

converge towards the achievement of a common goal, whether 
on land, water or air [7]. In turn, one of the definitions for the 
term “swarm robotics” is given as the set of nature-inspired 
techniques for controlling large groups of relatively simple 
structural nature robots. Examples of swarms in the wild can be 
seen in a flight of birds or in a shoal [11], [12]. In this MRS field, 
robots often do not know the actions of other distant robots, i.e., 
communication is only between nearby robots, depending on 
stigmergy most of the time [7]. 

A stigmergic system has a process that undergoes changes 
with each transformation in the environment. In other words, the 
characteristics of the environment serve as stimuli to the 
behaviors of the system. In natural swarms, stigmergy is often 
the driving force behind phenomena such as ant trails. 
Therefore, stigmergy is an important field of research in swarm 
robotics, for example in artificial pheromone trails, as seen in 
this work [13]. 

Thus, based on the concepts of repulsive artificial 
pheromones, this work presents an optimization of the robots' 
trajectory, thus increasing the search area without increasing the 
distance traveled. In other words, when a robot detects high 
concentrations of pheromones – whether they are left by the 
other robots or itself – it will deflect its course so as not to 
become trapped in relatively more difficult navigational zones 
such as narrow corridors. 

These concepts are part of ant colony optimization (ACO), a 
metaheuristic for combinatorial optimization problems 
presented by Marco Dorigo and his collaborators [14], [15]. 
ACO was inspired by ants' foraging behavior and, in particular, 
how they can find shorter paths between food sources and their 
nests. When searching for food, ants initially explore the area 
around the nest at random [16]. 

From the observation of their behavior, it was found that 
communication between the ants that walked the same trails 
occurred through a chemical called pheromone. As they move, 
they leave a pheromone trail on their path. Thus, the next ants 
decide which path to follow by the amount of pheromone 
detected, i.e., choose the path most used by the group [15]. As 
the pheromone evaporates over time, the higher the 
concentration of ants on one path, the more attractive it will be 
for the next ones [17]. 

Another feature needed for swarm MRS concerns the 
difficulty of the proposed tasks: the use of a robot swarm is only 
necessary if the tasks can only be performed at team level, or if 
completion time is a determining factor for the swarm. 
achievement of objectives. In other words, increasing the 
number of robots in a group can significantly reduce task 
completion time [18]. 

Robots in an MRS can have different types of behaviors, 
such as grouping, threading, searching, aggregating, and 
foraging. These behaviors are classified into collective (this 
work, as discussed earlier); cooperative, where robots are aware 
of each other; collaborative, when each robot helps others 
achieve their goals, and coordinative when robots are aware of 
others but do not share a common goal [19]. 

Another aspect inherent in swarm robotics is movement 
coordination. It can be related only to other robots, the 



environment, external agents and combinations of them [6], [7]. 
In this paper, robot movements are related to the three categories 
discussed: they change their movements due to other robots, 
static and dynamic obstacles (environment) and victim detection 
(external agents). 

Other concepts of swarm robotics were also used to develop 
the simulations in this work. Robots are redundant (i.e., easily 
interchangeable) and coordination is decentralized: the loss of 
one robot is immediately compensated for by others and/or the 
deployment of another agent, not disrupting system operation. 
Finally, structural and component simplicity was aimed at 
facilitating repairs and reducing implementation costs, resulting 
in a less fault-prone system [20]. 

In this paper the perception of the MRS is distributed, so as 
to enable robustness against local environmental disturbances 
(dynamic obstacles). The proposed system also has a local 
communication algorithm, responsible for the only information 
that the robots share among them: the number of victims already 
rescued – to stop simulations when the robots find all the victims 
– and the obstacles already detected. Finally, memory 
algorithms store the position and direction of each robot for 
mapping environments. 

With these features, robots are expected to have sufficient 
autonomy to operate in unknown or semi-unknown 
environments. For example, the flexibility to operate under 
noise or malfunction sensors, robot failure, dynamic 
environments and stress scenarios. 

III. ROBOTS’ ARCHITECTURE AND CONTROL STRATEGIES 

The robots are modelled through a subsumption-based 
architecture, as seen in [10], with gathered aspects of the original 
one proposed by Brooks [21], in which a robot must be reactive 
only to external stimulus, not comprehensively. In this 
architecture, the global behavior (high-level) is decomposed into 
sub-behaviors of lower complexity levels. That approach is 
justified by Zadeh’s incompatibility principle [22], and it is 
present in Braitenberg’s vehicles work [23]: the increasing in a 
system’s complexity is directly proportional to the difficult to 
foresee its behavior.  

In short, the controllers’ outputs generate the motors’ pulses 
(wL and wR, 0 to 100%) of left and right wheels, respectively, 
according to each sub-behavior strategy. If both pulses are 
positive, the robot moves forward. If wL > wR it turns right, and 
vice versa. Finally, a robot spins if one pulse is negative and the 
other one is positive [10]. The inputs are the actual data obtained 
from three ultrasonic sensors – frontal (FS), left (LS), and right 
(RS) – located in the front of the robots.  These sensors have 12 
cm of range, beam angles of 45º, and a white noise in order to 
verify the robustness of FLC, DFCM and DFCM-ACO. 

The authors used the kinematic model given by (1) and (2) 
to develop this work: two powered front wheels and a dummy 
back wheel to stabilize the turns. V and w correspond to the 
robots’ linear and angular velocities, respectively, b is the axis 
length (14.4 cm), RR and RL are the radius of rotation of the 
wheels (2.5 cm). The indices R and L denote the right and left 
wheels, respectively. Thus, the integration between the 
intelligent systems and the kinematic model is performed by 
interpreting the values of the ultrasonic sensors from the FLC, 

DFCM and DFCM-ACO, responsible for providing the angular 
velocities wL and wR applied in (2) to move the robots. 

𝑣𝑅,𝐿 . 𝑑𝑡 = 𝑤𝑅,𝐿 . [𝑅 ± (𝑏 2⁄ )] 𝑑𝑡                     (1) 

[
𝑣
𝑤

] = [
(𝑅𝑅 2⁄ ) (𝑅𝐿 2⁄ )

(𝑅𝑅 𝑏⁄ ) (− 𝑅𝐿 𝑏⁄ )
] . [

𝑤𝑅

𝑤𝐿
]                 (2) 

 
The use of kinematics in this work instead of dynamic 

modeling is justified by its results matching in this application 
and its lower computational complexity [24]. Thus, as one of the 
principles of swarm robotics and MRS is simplicity of 
implementation, the authors opted to use kinematics to simplify 
simulated experiments to compare the proposed techniques. 

The proposed paper uses the same approach of previous 
work [10]. The MRS have three tasks: 1) to detect and avoid 
static and dynamic (other robots) obstacles; 2) locate and rescue 
all the victims, and 3) map the environments. To complete these 
tasks, the global behavior was divided into four sub-behaviors, 
according to emerging system needs. These behaviors are 
described in detail in the authors’ previous work [10]. Sub-
behaviors 1 to 4 are respectively: free movement, obstacle 
avoidance, imminent collision scenario, victim rescue operation. 

The sub-behaviors operate in parallel, each one implemented 
individually according to the finite-state machine shown in Fig. 
1, and its events described in Table I. As seen in Fig. 1, the 
sensors’ actual data inhibits or activates the sub-behaviors 
routines, generating the desired outputs of the controllers [10]. 

TABLE I.  EVENTS DESCRIPTION 

Event Description 

A Obstacle detected by any ultrasonic sensor 

B The three ultrasonic sensors detected an obstacle within the 

robot’s safety zone (4 cm) 

C The robot found a victim 

D Victim found on the way to being rescued 

E Activation of the robot’s memory algorithm 

 

 

Fig. 1. Finite-state machine of the robots’ operation. 

In the three simulated environments, a group of 8 robots 
must rescue the victims, map the environment, and avoid 
collisions with static and dynamic obstacles (other robots). The 
simulations were performed in Matlab® software. The PC used 
has the following specifications: eight-core CPU, 16 GB RAM, 
and a SATA 3 SSD (R: 500MB/s, W: 350MB/s). 



The authors used three control strategies for the MRS. The 
first one is a FLC with 3 inputs (ultrasonic sensors) and 2 outputs 
(pulses to the wheels), containing 125 rules adjusted on 
empirical trial [25]. The second one, described in more detail in 
[10], is a DFCM with 5 concepts based on the FLC approach. 
Finally, a more complex DFCM is presented in this work using 
concepts of ACO. The DFCM-ACO contains 8 concepts – 
adding the pheromone detection in a similar way as done with 
the ultrasonic sensors: frontal, left and right pheromone 
positions, respectively FF, LF, and RF. 

Fuzzy cognitive maps (FCMs) are a soft computing 
methodology that came as a combination of fuzzy logic and 
neural networks. They constitute a computational method that is 
able to examine situations where human thinking process 
involves fuzzy or uncertain descriptions. An FCM can be 
defined as a graphical representation, used to describe the cause 
and effect relations between nodes, thus giving us the 
opportunity to describe the behavior of a system in a simple and 
symbolic way.  

In order to ensure the operation of the system, FCMs 
embody the accumulated knowledge and experience from 
experts who know the way the system behaves in different 
circumstances. FCMs possess certain advantageous 
characteristics over traditional mapping methods; they capture 
more information in the relationships between concepts, are 
dynamic, combinable, tunable and express hidden relationships.  

The resulting fuzzy model can be used to analyze, simulate, 
and test the influence of parameters and predict the behavior of 
the system. FCMs have gained considerable research interest 
over the last decade and have been used in modelling a large 
variety of systems [26]–[29]. A FCM can be represented by a 4-
tuple (C, W, A, f), for intervals of K = [-1 1] and L = [0 1], 
described as follows [30]. 

C = {C1, C2, ..., Cn} is the group of n FCM concepts. W: (Ci, 
Cj)→Wij represents a causal relation (weight) connecting input 
and output concepts. Respectively, Wij<0 and Wij>0 indicate a 
negative and positive causal relationship. ‖Wij‖ is the intensity of 
the causal relationship. Finally, W(CxC) = Wi,j∈ Knxn is the 
connection matrix. A: Ci →Ai is the degree of activation of a 
concept (1). A(0) is the initial vector, that specifies the values of 
all concept nodes, and A(t) ∈ Ln is a state vector in iteration t. 
f(x): R→Li is a decision (sigmoid) function (2), which includes 
the recurrent relationship at t ≥ 0 between A(t+1) and A(t). λ is a 
positive number that indicates the learning rate, or the sensibility 
to the changes of A (λ=1 in this work).  

𝐴(𝑡+1) = 𝑓(∑ 𝑊𝑖𝑗  .  𝐴𝑗
𝑡𝑛

𝑗=1 )                      (3) 

𝑓(𝑥) =
1

1+𝑒−𝜆𝑥                                  (4) 

 

The proposed FCM is called DFCM since it 
modifies/updates its weight matrix according to the sensors data 
and the system actual sub-behavior. In this sense, there is a 
weight matrix for every sub-behavior, i.e., the DFCM is event-
driven by the actual state of the sensors, similarly as seen in [31].  

The DFCM-ACO is shown in Fig. 2, in which the diamonds 
correspond to the decision-making process. The authors tuned 
these causality levels empirically according to the simulation 

results and desired behaviors. The DFCM-ACO’s weight matrix 
is modified/updated according to the events described in Table I 
and Fig. 1. The event occurrence defines each robot sub-
behaviors’. The relation between weights and sub-behaviors are 
shown in Table II. The weights W77 and W88 of sub-behavior 1 
correspond to the acceleration of the robots in straight line. 

 

 

Fig. 2. Proposed DFCM-ACO. 

TABLE II.  SUB-BEHAVIORS’ WEIGHTS 

Weight 
Sub-behavior 

1 2 3 4 

W17 0.60 0.60 0.80 -0.40 

W18 -0.40 -0.40 -0.60 0.50 

W27 -0.30 -0.30 -0.80 0.30 

W28 -0.30 -0.30 -0.80 0.30 

W37 -0.20 -0.20 0.60 0.50 

W38 0.20 0.20 -0.40 -0.40 

W47 0.80 0.80 0.20 0.00 

W48 -0.20 -0.20 -0.20 0.00 

W57 -0.50 -0.50 -0.20 0.00 

W58 -0.50 -0.50 -0.20 0.00 

W67 -0.20 -0.20 -0.20 0.00 

W68 0.20 0.20 0.20 0.00 

W77 0.10 0.00 0.00 0.00 

W88 0.10 0.00 0.00 0.00 

 

In a similar approach as seen in State FCMs [28], the DFCM-
ACO has input and output concepts. The inputs are the sensors’ 
data, and the outputs are the pulses sent to the DC motors. 
However, in oppose to the State FCMs who got state concepts, 
the DFCM here has state weights, i.e., a different weight matrix 
according to the robot sub-behavior. Other scenarios can benefit 
from DFCM-ACO, such as autonomous fertilizer robots, and 
UAVs for mapping conflict areas. With the addition of ACO in 
a DFCM, these systems can operate for longer periods and in a 
more optimally, thus aiming at saving operating resources, such 
as fuel or batteries, and agricultural inputs. 

IV. RESULTS AND DISCUSSION 

In this section, the authors show the results from all 
approaches, but focusing on the DFCM-ACO. The MRS was 
simulated in each environment using 8 robots. The robots leave 
a landmark at every 10 iterations to compose its 
movements/pheromone trails. Thus, the simulated experiments 
are delimited in 10000 cm2. However, these dimensions can be 
readjusted for changes in actual victim search scenarios. In all 
environments there are six victims in the coordinates (10 40), 
(10 90), (40 20), (50 80), (90 20) and (90 80) [10]. The initial 
poses of the robots are given by Table III. 



TABLE III.  INITIAL POSES 

Robot X (cm) Y (cm) Angle (°) Color 

1 15 5 90 Blue 

2 25 5 90 Green 

3 35 5 90 Red 

4 45 5 90 Cyan 

5 55 5 90 Magenta 

6 65 5 90 Yellow 

7 75 5 90 Black 

8 85 5 90 Blue 

 

The results of the first environment are depicted in Figs. 3, 
4, and 5. For the second one, the results are shown in Figs. 6, 7, 
and 8. Finally, the third environment generated the results as 
seen in Figs. 9, 10, and 11, respectively for exploration, covered 
area, and pulses sent to wheels. 

 

Fig. 3. Environment I exploration and total explored area. 

 

Fig. 4. Pulses for environment I: robots 1-4. 

 

Fig. 5. Pulses for environment I: robots 5-8. 

 

Fig. 6. Environment II exploration and total explored area. 

 

Fig. 7. Pulses for environment II: robots 1-4. 

 

Fig. 8. Pulses for environment II: robots 5-8. 

 

Fig. 9. Environment III exploration and total explored area. 

The proximity between robots – caused by the size of the 
environments and the number of robots – triggered the sub-
behavior of imminent collision, e.g., as seen in Figs. 4 (robot 3 
at iteration 200), 7 (robot 2 at iteration 300), and 11 (robot 7 at 
iteration 20). 



 

Fig. 10. Pulses for environment III: robots 1-4. 

 

Fig. 11. Pulses for environment III: robots 5-8. 

TABLE IV.  EXECUTION TIME AND NUMBER OF ITERATIONS 

Controller FLC DFCM DFCM-ACO 

Environment I 

Time (s) 1204.04 647.99 739.94 

Iterations 355.00 400.00 634.00 

Environment II 

Time (s) 976.84 493.59 621.39 

Iterations 435.00 283.00 471.00 

Environment III 

Time (s) 487.63 297.41 240.46 

Iterations 155.00 162.00 153.00 

 

The DFCM approach completed the task with less iterations 
only in the second environment. However, as seen in Table IV, 
in all environments the proposed strategy consumed less 
processing time. This feature suggests that, with the increase in 
the number of robots, the DFCM approach will continue to 
consume less computing power to be implemented without 
prejudice in the battery life, as seen by the number of iterations. 
In the case of the DFCM-ACO, its results suggest a balance 
between explored area/traveled distance and the processing 
time, as seen in Tables V to X. 

The results presented in Tables V, VII, and IX, the DFCM 
and DFCM-ACO robots traveled less in all scenarios expect the 
DFCM-ACO in the first environment, i.e. even presenting 
similar total explored area, suggesting again an extended battery 
autonomy in real-life. 

From the analysis of Tables VI, VIII and X, the robots 
explored at least 85% of the proposed environments. This fact, 
combined with the identification and rescue of all victims, 
represents that the robots completed their task with an area 
dispersion within expectations, a fact stimulated by the released 
repulsive pheromones, as seen in Figs. 3, 6 and 9.  

TABLE V.  TRAVELED DISTANCE (CM): ENVIRONMENT I 

Robot FLC DFCM DFCM-ACO 

1 211.53 218.72 269.81 

2 198.22 214.95 255.35 

3 237.75 190.93 188.91 

4 150.93 192.45 282.97 

5 208.54 183.22 271.36 

6 198.37 161.22 281.13 

7 231.70 197.37 299.89 

8 191.13 197.48 298.65 

Total 1628.16 1556.34 1849.42 

TABLE VI.  EXPLORED AREA (CM
2): ENVIRONMENT I 

Robot FLC DFCM DFCM-ACO 

1 3937.00 4574.00 4841.00 

2 3737.00 5146.00 5878.00 

3 4830.00 4083.00 3668.00 

4 3884.00 4556.00 6507.00 

5 3535.00 4249.00 4740.00 

6 3765.00 3855.00 3898.00 

7 4460.00 4059.00 4169.00 

8 4109.00 3517.00 6093.00 

Total 9757.00 9840.00 9973.00 

TABLE VII.  TRAVELED DISTANCE (CM): ENVIRONMENT II 

Robot FLC DFCM DFCM-ACO 

1 222.87 113.71 189.07 

2 257.74 111.95 206.44 

3 210.65 118.89 166.61 

4 272.00 148.19 242.76 

5 212.78 129.99 200.50 

6 237.39 145.18 206.72 

7 212.61 116.56 210.14 

8 200.31 137.76 202.51 

Total 1826.35 1022.23 1624.75 

TABLE VIII.  EXPLORED AREA (CM
2): ENVIRONMENT II 

Robot FLC DFCM DFCM-ACO 

1 3352.00 1877.00 3745.00 

2 2990.00 2774.00 4656.00 

3 3282.00 2793.00 3183.00 

4 4896.00 3739.00 5055.00 

5 2850.00 3520.00 2793.00 

6 4886.00 3152.00 3777.00 

7 3046.00 3135.00 3970.00 

8 2287.00 3059.00 4210.00 

Total 9475.00 8896.00 9174.00 

 

The three MRS approaches showed similar results in relation 
to the covered area, as can be seen in Tables VI, VIII, and X. 
Thus, the ratio between processing time and explored area of the 
DFCM-MRS is significantly higher than the FLC-MRS, e.g. in 
environment I, where this ratio is almost the double. In addition, 
the unexplored regions could be covered if the authors used 
another stopping criterion in the simulations, e.g. time. 



TABLE IX.  TRAVELED DISTANCE (CM): ENVIRONMENT III 

Robot FLC DFCM DFCM-ACO 

1 85.36 86.90 84.55 

2 100.90 46.07 56.88 

3 76.81 83.89 51.28 

4 93.02 72.06 93.87 

5 104.08 96.85 70.88 

6 94.07 62.69 69.74 

7 73.01 61.47 58.12 

8 86.88 89.38 85.21 

Total 714.13 599.31 570.53 

TABLE X.  EXPLORED AREA (CM
2): ENVIRONMENT III 

Robot FLC DFCM DFCM-ACO 

1 2157.00 2280.00 2189.00 

2 2541.00 1310.00 1573.00 

3 1860.00 2348.00 1579.00 

4 2518.00 2240.00 2510.00 

5 2824.00 2622.00 2087.00 

6 2224.00 1641.00 1850.00 

7 2013.00 1746.00 1421.00 

8 2069.00 2293.00 2273.00 

Total 8994.00 8787.00 8557.00 

 

Figure 12 presents an overview of the processing times of 
FLC, DFCM, and DFCM-ACO controllers in the proposed 
MRS. Considering the tested scenarios, the DFCM and DFCM-
ACO strategies consumed less processing time than the FLC in 
all environments. However, when comparing both DFCM 
strategies, the DFCM-ACO simulations lasted more in 
environments I and II.  

Respectively, the performance difference between FLC 
(slower in all scenarios), DFCM and DFCM-ACO is 85.81% 
and 62.72% in environment I. In the second one, the difference 
between FLC and DFCM is at about 98%, and 57,20% between 
FLC and DFCM-ACO. The third environment was the fastest 
one, with difference between FLC, DFCM and DFCM-ACO 
respectively 63,96%, and 102%. 

 

Fig. 12. Graphical comparison of the MRS approaches. 

V. CONCLUSIONS 

The observed results showed flexibility in the 
communication between the robots and the autonomy in the 

exploration and rescue of the victims. These aspects suggest that 
the DFCM control can be successfully used in autonomous 
robots, since this controller presented optimized results 
compared to FLC. The DFCM-ACO approach presented a better 
balance between explored area and processing time in 
comparison to the other ones.  

The DFCM-ACO MRS rescued all victims while traveling 
larger distances than the DFCM, but consuming less processing 
time than the FLC and presenting explored area values located 
between FLC and DFCM. The employment of this strategy met 
the expectations by expanding the DFCM explored area, 
resulting in less battery consumption in real-life applications. 

As a result, the computational performance of the DFCM 
approaches, consisting of the number of iterations and 
processing time, has a clear advantage in these eight robot 
scenarios, due to its improved scalability compared to FLC. 
Therefore, it is concluded that the results meet the objectives set 
initially, since they are able to act autonomously in different 
environments, capture their targets and avoid obstacles. 
Furthermore, it is noteworthy that the use of DFCM-based 
strategies can be beneficial for low cost financial applications, 
such as the Arduino platform, which have low processing power. 

An objective for future work is the implementation of a 
larger group of robots and different scenarios, as well as 
validation through experiments with a prototype. In addition, 
simulations looking for emerging behaviors in robots and testing 
the possibility of failure to verify the robustness of the group. 
Finally, the addition of collaborative behaviors and the use of 
the leader concept for the robot group (guided by the users or 
not) will be studied. 
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